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Abstract  
Original scientific paper 

Laminated composites exhibit highly complex damage mechanisms. One of the most critical failure modes is delamination, which refers 

to the separation between adjacent layers and can lead to significant reductions in structural stiffness. A major challenge associated with 

delamination is its invisibility on the material surface, making visual detection difficult. Although vibration-based damage detection 

methods offer a promising solution for identifying delamination, the effectiveness of such approaches relies on the availability of an 

accurate numerical model that can capture the behavior of delaminated structures. This study focuses on the modeling of delamination 

damage in laminated composite beams and the investigation of their free vibration behavior through the generalized lamination theory and 

finite element analysis. The displacement field within each lamina is assumed to vary linearly based on Lagrange polynomials, while terms 

accounting for interlayer sliding and separation caused by delamination are explicitly included. The governing equations of motion are 

derived using Hamilton’s principle, and the corresponding mass and stiffness matrices are formulated using the Galerkin method. The 

influence of delamination length and position on the natural frequencies and mode shapes is examined under various boundary conditions 

and laminate stacking sequences. The results are compared with existing studies in the literature to validate the accuracy of the proposed 

model. Additionally, three-dimensional finite element models are developed using ANSYS® software to perform a comparative analysis. 

Two different modeling strategies for the delaminated interfaces are considered: in the first, nodes on the delaminated surfaces are allowed 

to move independently; in the second, contact elements are used to constrain the relative motion between layers. The impact of these two 

modeling approaches on the simulation results is evaluated in detail. 

 

Keywords: Delamination, free vibration, finite element method, generalized lamination theory, layered composite beam. 

 

 

1 Introduction  
 

The rapid advancement in technology and industrial 

innovation has significantly increased the demand for 

advanced structural materials characterized by high 

strength-to-weight ratios, enhanced durability, corrosion 

resistance, favorable thermal properties, and ease of 

manufacturing. Composite materials, particularly 

laminated composites, fulfill these criteria and have 

consequently become indispensable in various 

engineering fields, including aerospace, automotive, 

marine, civil infrastructure, energy production, and 

mechanical systems. 

Despite their numerous benefits, laminated composite 

structures exhibit unique damage mechanisms due to their 

heterogeneous and anisotropic nature. Unlike 

conventional isotropic materials where damage typically 

manifests visibly as surface cracks, laminated composites 

predominantly experience internal damage, such as matrix 

cracking, fiber fractures, and especially delamination—

the separation of adjacent layers—before reaching 

catastrophic structural failure [1], [2]. Such internal 

damage might initially remain undetected yet significantly 

degrade the structural integrity, stiffness, and overall load-

bearing capacity of composite structures. 

Delamination is recognized as a critical failure 

mechanism in laminated composites, often initiated by 

interlaminar stress concentrations arising from fatigue 

loading, transverse impacts, or complex loading 

conditions [1], [3]. Accurately predicting the onset and 

progression of delamination is essential for ensuring 

structural safety and integrity. Consequently, substantial 

research effort has been dedicated to developing robust 

and precise numerical modeling approaches to simulate 

and predict delamination phenomena. 

The Finite Element Method (FEM) remains one of the 

most widely employed numerical tools for analyzing 

complex damage phenomena, including delamination in 

laminated composites. The accuracy and reliability of 

FEM simulations are highly influenced by the underlying 

theoretical framework and the assumptions utilized to 

represent the material and structural behavior [4]. To this 

end, several advanced theories have been proposed, 

including the Equivalent Single Layer (ESL) theory [5]–

[7], the Layerwise theory [7]–[9], the Zig-Zag theory 

[10]–[13], and the Three-Dimensional Elasticity theory 

[14], [15]. 

While ESL theories offer computational simplicity 

and efficiency, they are inadequate for accurately 

capturing the complex interlaminar stress fields, 
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especially in thick laminates or when detailed local 

damage analyses are required. In contrast, Layerwise 

theories overcome these limitations by independently 

modeling each laminate layer, providing detailed 

descriptions of displacement and stress distributions 

through the laminate thickness [16], [17]. Recent 

developments have enhanced Layerwise theory further, 

notably the Carrera Unified Formulation (CUF), which 

allows for flexible, high-order expansions to accurately 

capture multilayered composite behavior [18], [19]. 

Additionally, integration of advanced numerical methods, 

such as modified spectral collocation approaches, has 

significantly improved the predictive capability of 

Layerwise theories, particularly in complex boundary 

condition scenarios [17]. 

Despite these theoretical advancements, a notable gap 

remains in comprehensive comparative studies between 

simplified LW-based analytical approaches and fully 

three-dimensional FEM solutions under delamination 

conditions, particularly concerning free vibration 

analyses. Addressing this gap is essential to establish the 

practical reliability and limitations of simpler analytical 

frameworks in predicting dynamic structural responses. 

Motivated by this need, the present study 

systematically investigates the free vibration 

characteristics of laminated composite beams subjected to 

various delamination scenarios. The analytical model 

employed is based on Reddy’s delaminated beam theory, 

utilizing linear Lagrange shape functions to represent 

inter-layer displacement behavior accurately. The model 

explicitly incorporates interlaminar slip and normal 

separation effects associated with delamination. The 

governing equations of motion are derived using 

Hamilton’s principle, while the mass and stiffness 

matrices are constructed through the Galerkin procedure. 

To validate the developed analytical formulation, 

comparative numerical simulations are conducted using 

the commercial FE software ANSYS®. The three-

dimensional FEM employs SOLID185 elements, 

modeling delaminated interfaces with two distinct 

methods: one permitting free separation between layers 

and another employing contact elements to replicate 

realistic ply interactions. The resulting free vibration 

responses under varying delamination configurations are 

extensively analyzed and compared. 

 

2 Generalized Lamination Theory 
 

2.1 Kinematic Relations and Constitutive Equations 
 

Figure 1 illustrates a schematic view of a composite 

beam experiencing delamination. In this figure, x0, zi and 

d represent the delamination midpoint's distance from the 

origin, the interface location of delamination, and the total 

length of the delamination, respectively. The beam’s 

displacement field is formulated by Equation (1) [20]: 
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where 
LWTu  and 

LWTw  denote displacements along the 

longitudinal (x) and transverse (z) axes. The terms 
DELu  

and 
DELw  define the relative in-plane shear and out-of-

plane separation displacements at the delaminated 

interface. These are further detailed in Equation (2): 
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In this context, ND indicates the number of delaminated 

regions within the beam. The Heaviside unit step function, 

defined in Equation (3), captures the discontinuity due to 

delamination:  
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Within these equations, zi signifies the interface location 

where delamination occurs, and the functions D

IU  and 

D

IW  represent shear slip and normal separation between 

the respective layers. 

 

 
Figure 1. Geometry and coordinate axes of a delaminated beam. 

 

Using the displacement relations provided in 

Equations (1) and (2), the corresponding strain-

displacement relationships are derived: 
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Here, the coefficients k

ijC  represent the transformed 

reduced stiffness values for each individual layer [20]. 

 

2.2 Equations of Motion 
 

Let T  represent virtual kinetic energy, U  virtual 

strain energy, and the virtual work by external forces. 

According to Hamilton’s principle [15]: 
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Since the current analysis addresses the beam’s free 

vibration behavior, the term V  becomes zero. Inserting 

the respective energy formulations into Equation (6) and 

executing variational procedures leads to the governing 

equations of motion, expressed as: 

 

3 Finite Element Model 
 

3.1 Finite Element Model Based on the Generalized 
Lamination Theory 
 

Figure 2 depicts the finite element representation of a 

beam containing an interfacial delamination. The 

displacement field within each FE is formulated as: 
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In this expression, IU , IW , D

IU  and D

IW  are the 

generalized coordinates associated with the element's 

degrees of freedom. The interpolation functions i  are 

linear Lagrange polynomials applied for spatial 

discretization within the FE context. By substituting the 

displacement field described in Equation (8) into the 

motion equations obtained previously (Equation (7)), and 

subsequently applying the Galerkin method, the elemental 

FE equation is derived as: 

 

𝑀𝑒 + Ü𝑒 +𝐾𝑒𝑈𝑒                                                            (9) 
 

where, Me and Ke denote the elemental mass and stiffness 

matrices, while Ue and Ü𝑒 represent the element 

displacement and acceleration vectors, respectively. 

These vectors are defined as follows: 
 

 
Figure 2. Finite element model with delamination. 
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The evaluation of the submatrices within the global 

system requires integral expressions, which are provided 

by: 
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Within these formulations, the matrices A, B and 

terms correspond to the laminate's extensional stiffness, 

coupling stiffness, and bending stiffness matrices, 

respectively, as established in composite lamination 

theory [21]. 
 

3.2 ANSYS® Finite Element Model 
 

To validate the analytical results derived from the 

generalized lamination theory, a comprehensive three-

dimensional FE model of the delaminated composite 

beam was developed using ANSYS 16.0, a widely utilized 

commercial FE analysis software. 

For the structural discretization of the laminated 

composite beam, the SOLID185 element type was 

employed. SOLID185 is an 8-node hexahedral element 

capable of modeling nonlinear material behavior, large 

deformations, and strain-based geometric nonlinearity. 

Each node has three translational degrees of freedom (UX, 
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UY, UZ), allowing accurate simulation of deformation in 

3D space. To capture the thorough-thickness behavior of 

the laminated structure with sufficient fidelity, one 

element per layer was used across the thickness direction. 

This modeling approach enabled precise characterization 

of interlaminar stress distributions and deformation 

gradients, which are particularly significant in the 

presence of delamination. 

The laminate stacking sequence, ply orientation 

angles, and orthotropic material properties were defined 

using the SHELL SECTION assignment for layered 

solids. This ANSYS feature allows users to assign varying 

fiber orientations, elastic properties, and thicknesses to 

each ply within a single layered volume, thereby 

facilitating accurate representation of composite layups 

without requiring separate meshing for each ply. 

A mesh convergence study was performed to 

determine the optimal element size that balances accuracy 

with computational cost. Several mesh configurations 

were analyzed, with natural frequency convergence used 

as the primary assessment metric. Following this 

parametric analysis, a refined mesh configuration 

comprising 1752 elements and 1664 nodes was adopted 

for all simulations, ensuring consistency across models 

while maintaining numerical efficiency. 

In the FE model, interlaminar continuity was enforced 

across intact interfaces by coupling the degrees of 

freedom (DOFs) between nodes of adjacent plies. This 

constraint condition ensures that no relative displacement 

occurs in undamaged regions, accurately simulating the 

perfect bonding assumption typical in composite theory. 

Conversely, at delaminated interfaces, the nodes were left 

uncoupled to allow independent movement, thereby 

replicating the mechanical discontinuity caused by 

delamination. 

To model the delaminated interface behavior, two 

distinct strategies were implemented: 

First Strategy – Free Node Separation: In this 

simplified method, nodes on opposing delaminated 

surfaces were left entirely unconstrained. This approach 

permits full relative motion between the delaminated plies 

in all spatial directions, offering computational simplicity. 

However, such an assumption may yield non-physical 

results under dynamic loading, including excessive 

separation or even interpenetration of layers, particularly 

during out-of-plane vibration responses (see Figure 3(a)). 

Consequently, this method is primarily used for 

preliminary evaluations or when qualitative behavior is of 

interest. 

Second Strategy – Contact-Based Delamination 

Modeling: A more realistic and physically robust 

approach was implemented using contact elements, 

specifically CONTAC173 and TARGE170. These allow 

accurate modeling of interface interactions by defining 

surface-to-surface contact behavior. 

TARGE170 represents the target surface and is 

usually assigned to the stiffer body or underlying layer. 

CONTAC173 is designated as the contact surface and is 

applied to the deformable body, enabling interaction with 

the target during loading. 

This strategy permits the model to replicate the 

asymmetric behavior of delaminated interfaces: 

During compressive loading, contact elements 

transfer normal forces between plies, effectively 

preventing interpenetration and ensuring realistic 

mechanical response. 

Under tensile conditions, the contact pair 

automatically deactivates, allowing the delaminated 

surfaces to separate freely. This behavior reflects the 

actual physical mechanism of delamination propagation 

and recovery (see Figure 3(b)). 

The contact parameters, including normal stiffness, 

frictional properties (if applicable), and penetration 

tolerance, were carefully selected to avoid numerical 

instabilities while preserving solution accuracy. This 

contact-based approach significantly enhances the realism 

of the FE simulations, particularly for vibration and 

stability analyses of delaminated composite structures. 

 

 
 

(a) (b) 
Figure 3. FE models of delaminated beams created in ANSYS®: (a) without contact elements, (b) with contact elements. 

 

4 Results and Discussion 
 

In order to obtain sufficiently accurate results in the 

finite element analyses, a mesh convergence study was 

first conducted. For this purpose, a laminated composite 

beam with a length of L = 300 mm, width b = 20 mm, and 

height h = 20 mm was considered. The beam is made of 

AS3501/6 graphite-epoxy material. The material 

properties are as follows: E1 = 144.9 GPa, E2 = 9.65 GPa, 

G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, ν = 0.3, and ρ = 

1389.23 kg/m³ [22]. Table 1 presents the variation of the 

first three dimensionless natural frequencies of a 

clamped–clamped undamaged (0/90)2 beam with respect 
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to the number of elements. The natural frequencies are 

expressed in a nondimensional form. As observed, the 

dimensionless natural frequencies decrease rapidly and 

converge toward a constant value as the number of 

elements increases. Based on the table, it is concluded that 

using N = 80 elements in the finite element analyses is 

sufficient. 

 To verify the accuracy of the natural frequencies 

obtained using the generalized lamination theory and to 

validate the results for potential damage detection 

applications, a comparison with existing literature results 

was performed. Specifically, the non-dimensionalized 

natural frequencies of a symmetrically delaminated 

isotropic fixed-fixed beam were considered, based on the 

study in [23]. The dimensionless frequency parameter Ω  

was defined as follows: 
 

 

2 4 20 0

0

0 0

Ω
A

L
E I


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 
  
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 (13) 

 

where 0  is the material density,, 0A  is the cross-

sectional area, 0E is the Young’s modulus, 0I is the 

second moment of area (moment of inertia), 0L is the total 

beam length, and is the angular frequency.  

Table 2 presents a comparative summary of the 

dimensionless natural frequencies obtained in the present 

study alongside those reported in [23]. The results 

demonstrate excellent agreement, confirming the validity 

of the present FE model and analytical approach. 

The results clearly show a very strong correlation 

between the natural frequencies obtained in the present 

study and those reported in [23] who employed an 

analytical solution. Particularly for small delamination 

lengths (a / L ≤ 0.1), the dimensionless frequencies are 

nearly identical, indicating the robustness of the modeling 

approach for slight damage scenarios. 

When the results are evaluated internally, as the 

relative length of the delamination (a / L) increases, a 

progressive decrease in the natural frequencies is 

observed, with the higher modes being particularly more 

affected. While the first natural frequency 1Ω  exhibits a 

relatively slower reduction, the second and third modes 

demonstrate greater sensitivity to the presence and growth 

of delamination. This behavior suggests that higher 

vibration modes are more effective indicators of 

delamination damage. Moreover, when the delamination 

length exceeds a / L ≥ 0.6, the frequency reduction 

becomes significantly more pronounced, reflecting 

substantial stiffness degradation and a corresponding loss 

of structural integrity. 

 
Table 1. Finite element convergence analysis. 

Number of Elements 
Natural Frequencies 

1  2 3 

10 3.9395 9.5608 16.8382 

20 3.7246 8.8667 15.2230 

30 3.6833 8.7352 14.9225 

40 3.6687 8.6886 14.8168 

60 3.6581 8.6551 15.7410 

80 3.6543 8.6433 14.7143 
100 3.6526 8.6378 15.7019 

 
Table 2. Non-dimensional natural frequencies of an isotropic fixed-fixed beam with mid-plane delamination. 

a / L 
Present Study Analytical [23] 

1 2 3 1 2 3 

0.00 22.6131 61.1880 117.1458 22.39 61.67 120.91 

0.05 22.6131 61.1090 117.1447 22.37 61.53 120.90 

0.10 22.6126 60.5399 117.1012 22.37 60.76 120.81 

0.20 22.5984 56.7449 115.7720 22.35 55.97 118.76 

0.30 22.5032 50.7074 108.8308 22.23 49.00 109.04 

0.40 22.1713 45.8342   96.1191 21.83 43.87   93.57 

0.50 21.3842 43.3365   85.5149 20.88 41.45   82.29 

0.60 20.0055 42.7007   80.5521 19.29 40.93   77.64 

0.70 18.1395 42.5913   79.7721 17.23 40.72   77.05 

0.80 16.0652 41.2531   78.7290 15.05 39.01   75.33 

0.90 14.0357 37.9362   73.5082 13.00 69.17   68.84 

0.99 12.4029 34.0117   66.2261 11.36 61.36   61.36 

 

To validate the finite element model, a cantilever 

composite beam with a (0/-45/45/90)s stacking sequence 

was considered. The beam has a length of L = 244 mm, 

while its height and width are given in Table 3. The 

material properties are as follows: E1 = 92.5 GPa, E2 = 

8.04 GPa, G12 = G13 = 2.88 GPa, G23 = 2.80 GPa, v = 0.33, 

and ρ = 1429.0 kg/m³ [24]. The damage scenarios 

considered are listed in Table 3. Table 4 presents the first 

five natural frequencies (Hz) of the beam for both the 

undamaged case and four different damage scenarios. The 

results of this study were compared with the experimental 

data reported in [24]. As can be seen, the results are in 

good agreement with each other.
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Table 3. Dimensions and damage scenarios for cantilever composite beams with (0/−45/45/90)s lay-up [24]. 

Model 
Width 

(mm) 
Thickness (mm) Delaminated Interface 

Delamination Length 

(mm) 

Distance from Support 

(mm) 

Undamaged 19.18 2.27 - - - 

Case 1 19.25 2.46 4 28 44.9 

Case 2 19.09 2.66 3 31 45.3 

Case 3 19.36 2.76 2 60.2 105.1 

Case 4 18.98 2.69 1 34.5 43 

 
Table 4. First five natural frequencies for undamaged and delaminated cantilever beams with (0/−45/45/90)s. 

Method f1 f2 f3 f4 f5 

Undamaged      

Present Study 40.6109 253.9843 708.9229 1382.971 2273.114 

Zhang et al. (2014) [24] 40 248 698 1362 2244 

Case 1      

Present Study 43.6278 266.5954 736.2754 1463.726 2418.190 

Zhang et al. (2014) [24] 46 260 724 1482 2434 

Case 2      

Present Study 46.88932 284.1747 780.3951 1555.483 2587.254 

Zhang et al. (2014) [24] 50 286 792 1610 2636 

Case 3      

Present Study 47.9252 295.0304 717.4321 1330.968 2286.246 

Zhang et al. (2014) [24] 48 276 704 1434 2402 

Case 4      

Present Study 47.4401 290.4456 799.5212 1576.927 2615.020 

Zhang et al. (2014) [24] 44 290 804 1564 2665 

 

Following the validation study, numerical results 

concerning the natural frequencies and mode shapes of a 

laminated composite beam under various delamination 

scenarios are presented. The beam considered has a 

[0/90]2 stacking sequence, with both ends fixed, and equal 

layer thicknesses are assumed. The material properties for 

a single ply are taken as: E1 = 144.9 GPa, E2 = 9.65 GPa, 

G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, Poisson’s ratio v = 

0.3 and density ρ = 1389.23 kg/m3. The beam dimensions 

are considered as L/h =15, b = h = 1 unit. 

Table 5 summarizes the delamination scenarios 

considered in the analysis. In all cases, a single 

delamination is located at the mid-span of the beam. 

Variations in delamination position across different 

interfaces and changes in delamination length are 

investigated to assess their effects on the natural 

frequencies and mode shapes. In the first three scenarios 

(S1–S3), the delamination length is L/5, while in the last 

three scenarios (S4–S6), it is increased to L/3. In both sets, 

the delamination is positioned sequentially at different 

interlaminar interfaces. 

Numerical results were obtained using a FE code 

developed in FORTRAN and compared against results 

obtained from a 3D FE model created in ANSYS®. In the 

ANSYS® simulations, contact elements were employed 

along delaminated surfaces to realistically capture 

opening and sliding effects between layers. It was 

observed that the inclusion of contact elements did not 

significantly alter the natural frequencies but affected the 

deformation patterns during vibration. 

 
Table 5. Delamination scenarios considered in the analysis. 

Damage Scenario 
Variables describing delamination (see Figure 1) 

Interface, zI Length, d Midpoint, x0 

S1 1 L / 5 L / 2 

S2 2 L / 5 L / 2 

S3 3 L / 5 L / 2 

S4 1 L / 3 L / 2 

S5 2 L / 3 L / 2 

S6 3 L / 3 L / 2 

 
Table 6. First four natural frequencies (Hz) obtained from Reddy’s Theory and ANSYS® for different delamination scenarios. 

Damage 

Scenario 

f1 f2 f3 f4 

Reddy ANSYS® Reddy ANSYS® Reddy ANSYS® Reddy ANSYS® 

S1 2633.67 2667.07 5430.13 6366.64 10399.47 11019.80 12929.54 16151.90 

S2 2632.64 2663.77 5409.83 5587.51 10342.91 10869.89 12914.37 13782.94 

S3 2623.31 2663.76 6213.01 5595.65 11185.41 10869.93 14814.82 13785.87 

S4 2579.53 2666.09 4542.21 6319.76 9005.38 10987.01 12460.03 15864.43 

S5 2573.47 2617.85 4518.34 4651.17 9002.69 9559.01 12455.67 13295.84 

S6 2308.58 2618.57 5911.20 4668.30 11015.27 9571.07 15670.04 13299.48 

 

The first four natural frequencies obtained for each 

damage scenario are listed in Table 6, showing results 

from both Reddy’s theory-based FE model and the 

ANSYS® simulations. It can be observed that the 

presence of delamination significantly affects the natural 

frequencies of the composite beam. An increase in 

delamination length leads to a noticeable reduction in the 

natural frequencies across all modes. Specifically, for 
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shorter delaminations (scenarios S1–S3 with d = L/5), the 

natural frequencies from both methods are relatively 

close, with only minor differences. However, as the 

delamination length increases to L/3 (scenarios S4–S6), 

the reduction in frequency becomes more pronounced, 

and the differences between the two approaches tend to 

increase, particularly for the third and fourth modes. This 

behavior can be attributed to the growing influence of 

localized stiffness degradation, which affects the dynamic 

response more severely at higher frequencies. 

Figures 4 and 5 illustrate the first four bending mode 

shapes for the beam with a delamination located at the 

second interface (Scenario S2), obtained using the 

proposed FE approach and ANSYS® simulations, 

respectively. In Figure 4, which corresponds to Reddy’s 

theory-based model, discontinuities in the slope of the 

mode shapes are clearly visible at the start and end points 

of the delamination, indicating the localized stiffness 

reduction. These discontinuities are more pronounced in 

higher modes, consistent with the greater sensitivity of 

higher modes to local defects. 

In contrast, Figure 5, showing the ANSYS® results, 

reveals additional physical phenomena. Relative sliding 

between the separated layers is clearly observed during 

vibration, a behavior captured due to the use of contact 

elements. While separation (opening) between the layers 

is less evident in lower modes, it becomes noticeable in 

the fourth mode, as the deformation becomes sufficiently 

large to induce contact opening. This observation 

confirms that the proposed numerical approach accurately 

captures key deformation characteristics while 

maintaining computational efficiency.

 

  

  
Figure 4. First four mode shapes of the fixed-fixed laminated composite beam obtained from the FE model based on Reddy’s Theory (Scenario S2). 

 

 

 

 

 
Figure 5. First four mode shapes of the fixed-fixed laminated 

composite beam obtained from ANSYS® Simulations (Scenario S2). 

 

 

5 Conclusions 
 

This study examined the free vibration behavior of 

laminated composite beams under various delamination 

scenarios using an FE formulation based on Reddy’s 

delaminated beam theory. The displacement field within 

each ply was approximated by linear Lagrange 

polynomials, and interlaminar sliding and separation due 

to delamination, along with Poisson’s effects, were 

considered. Equations of motion were derived via 

Hamilton’s principle, and FE matrices were constructed 

using the Galerkin method. 

Validation was performed against analytical results 

and three-dimensional FE simulations conducted using 

ANSYS®. The developed model exhibited excellent 

agreement with analytical solutions, particularly for 

smaller delamination, and maintained consistency as 

delamination length increased. ANSYS® simulations 

with SOLID185 elements employed both free-separation 

and contact-element modeling approaches. 
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 Increasing delamination length significantly reduces 

natural frequencies, highlighting the sensitivity of 

dynamic response to structural damage.  

 Reddy’s theory-based FE model efficiently simplifies 

the three-dimensional problem into a two-

dimensional approach, achieving accurate predictions 

with lower computational effort.  

 The developed model demonstrates strong agreement 

with both analytical and comprehensive 3D numerical 

solutions, confirming its accuracy and reliability.  

 This approach provides a flexible and 

computationally efficient tool suitable for vibration-

based damage detection in laminated composite 

structures. 

 

Overall, the proposed FE methodology effectively 

captures delamination effects and represents a reliable 

approach for dynamic structural analyses of laminated 

composite beams. 
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