
 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2025; 14(4), 1447-1461 

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 

Niğde Ömer Halisdemir University Journal of Engineering Sciences 

Araştırma makalesi / Research article 

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh 

 

 

 

* Sorumlu yazar / Corresponding author, e-posta / e-mail: muhammet.basarslan@medeniyet.edu.tr (M. S. Başarslan) 
Geliş / Received:  07.05.2025   Kabul / Accepted: 03.09.2025    Yayımlanma / Published: 15.10.2025 

doi: 10.28948/ngumuh.1694988 

 

1447 

The effect of text representation and model selection on classification 

performance: A comprehensive comparison of TF-IDF, Bow and Transformer-

based methods on the Covid19-FNIR dataset 

Metin temsili ve model seçiminin sınıflandırma performansına etkisi: Covid19-

FNIR veri seti üzerinde TF-IDF, BoW ve Transformatör tabanlı yöntemlerin 

kapsamlı bir karşılaştırması 

 

Muhammet Sinan Başaraslan1,* , Fatih Bal2  

1 Istanbul Medeniyet University, Computer Engineering Department, 34700, Istanbul Türkiye 
2 Kırklareli University, Software Engineering Department, 39010, Kırklareli, Türkiye  

 

Abstract  Öz  

This study evaluates the performance of various machine 

learning (ML) models on a dataset split into 80% training 

and 20% testing using Term Frequency-Inverse Document 

Frequency (TF-IDF) and Bag of Words (BoW) text 

vectorization. Transformer-based models like DistilBERT, 

RoBERTa, and alBERT were integrated with classical ML 

algorithms and ensemble methods such as Stacking, Hard 

Voting, and Soft Voting. Stacking achieved the highest 

performance with both methods—92.62% Accuracy (Acc) 

and 92.51% F1-score (F1) with TF-IDF, and 92.29% Acc 

and 92.41% F1 with BoW. Hard Voting with BoW yielded 

the highest Recall (95.23%). Classical models like Logistic 

Regression (LR) and Support Vector Machine (SVM) 

performed better with BoW, reaching 90.98% and 90.51% 

Acc, respectively. Overall, TF-IDF produced balanced 

outcomes, while BoW offered higher Recall and Precision 

in specific cases. These results highlight the significance of 

both model and text representation choices in achieving 

optimal classification performance. 

 Bu çalışmada, Terim Frekansı-Ters Doküman Frekansı 

(TF-IDF) ve Bag of Words (BoW) metin vektörleştirmesi 

kullanılarak %80 eğitim ve %20 teste ayrılmış bir veri 

kümesi üzerinde çeşitli makine öğrenimi (ML) 

modellerinin performansı değerlendirilmiştir. DistilBERT, 

RoBERTa ve alBERT gibi dönüştürücü tabanlı modeller, 

klasik makine öğrenimi algoritmaları ve Stacking, Hard 

Voting ve Soft Voting gibi topluluk yöntemleriyle entegre 

edilmiştir. Yığınlama her iki yöntemle de en yüksek 

performansı elde etmiştir- TF-IDF ile %92.62 Doğruluk ve 

%92.51 F1, BoW ile %92.29 Doğruluk ve %92.41 F1. BoW 

ile Hard Voting en yüksek geri çağırmayı (%95,23) 

vermiştir. Lojistik Regresyon ve DVM gibi klasik modeller 

BoW ile daha iyi performans göstererek sırasıyla %90.98 

ve %90.51 Doğruluğa ulaşmıştır. Genel olarak, TF-IDF 

dengeli sonuçlar üretirken, BoW belirli durumlarda daha 

yüksek geri çağırma ve kesinlik sunmuştur. Bu sonuçlar, 

optimum sınıflandırma performansına ulaşmada hem 

model hem de metin temsili seçimlerinin önemini 

vurgulamaktadır. 

Keywords: Fake news, ML, Text Representation, Pre-

trained 

 Anahtar kelimeler: Sahte haber, ML, Metin Gösterimi, 

Önceden eğitilmiş 

1 Introduction 

The COVID-19 pandemic has not only led to a major 

global health crisis but has also triggered an unprecedented 

surge in the spread of misinformation on online platforms. 

As social media has become the primary source of real-time 

information, the line between verified facts and misleading 

claims has become increasingly blurred. The rapid spread of 

fake news about treatments, vaccines and infection rates has 

led to widespread confusion, public panic and, in some cases, 

harmful behavior. There is therefore an urgent need to 

develop robust methods to detect and prevent the spread of 

such misinformation. 

In recent years, the field of Natural Language Processing 

(NLP) has witnessed a major transformation with the 

emergence of deep learning (DL) and transducer-based 

language models. Traditional approaches to fake news 

detection often rely on statistical representations of text such 

as TF-IDF and BoW, which, while effective to some extent, 

often fail to capture the semantic and contextual nuances of 

language. On the other hand, transducer-based models such 

as BERT, RoBERTa, aLBERT, and DistilBERT have shown 

remarkable success in a wide range of NLP tasks due to their 

ability to learn deep contextual representations from large-

scale corpora. 

In this work, we aim to evaluate the effectiveness of both 

traditional ML methods and modern transducer-based 

architectures for the task of COVID-19 fake news detection. 

For this purpose, we use the CoVID19-FNIR dataset, a 

carefully curated corpus containing fact-checked real and 

fake news related to the pandemic [1]. The dataset includes 

posts collected from verified Twitter accounts and sources 

https://orcid.org/0000-0002-7996-9169
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such as Poynter, covering various regions including India, 

the USA, and Europe between February and June 2020. 

We compare the performance of models using both TF-

IDF/BoW representations and contextual embeddings 

derived from transformative models. Our goal is to analyze 

how different text representation techniques affect 

classification performance and identify the most effective 

model setup for detecting misinformation related to COVID-

19. This research not only contributes to the growing 

literature on fake news detection but also provides practical 

insights for building reliable misinformation monitoring 

systems during global crises. 

Section 2 presents the related work and Section 3 

presents the technical background including data source, text 

representation, classification models, pre-trained models. 

Section 4 presents the experimental setup and results. 

Section 5 presents the results and discussion. 

2 Related works 

Several recent studies have utilized the CoVID-19 Fake 

News and Infodemic Research (CoVID19-FNIR) dataset to 

detect misinformation during the pandemic. These works 

vary in terms of the learning models and text representation 

techniques employed. 

Sikosana et al. [2] evaluated both traditional ML 

algorithms such as Naive Bayes (NB), SVM, and Random 

Forest (RF), and DL models including Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM), and 

a hybrid CNN+LSTM. In addition, they experimented with 

transformer-based pre-trained language models such as 

DistilBERT and RoBERTa. Their best results were achieved 

with a CNN+LSTM model using Word2Vec embeddings, 

yielding 99.21% Acc and 99.17% F1. 

Vinay et al. [3] focused on ML approaches including NB, 

SVM, Decision Trees (DT), RF, and LR, and employed TF-

IDF as a representation method. Their RF model achieved 

the highest performance with 99.14% Acc and 99.14% F1-

score. 

Qadess and Hannan [4] reported moderate results by 

comparing NB, Gradient Boosting, SVM, DT, RF, and LR 

models. Their highest F1-score was 91.0%. 

Bozuyla and Özçift [5] applied both DL architectures 

(LSTM, Bi-LSTM) and transformer-based models (BERT, 

RoBERTa, BerTURK) adapted for Turkish texts. They 

obtained their best result using BerTURK, with 98.5% aCC 

and 98.4% F1-score, demonstrating the effectiveness of 

domain-specific transformers. 

These studies confirm that the CoVID19-FNIR dataset 

enables high-Acc classification using a variety of 

approaches. However, most previous research has focused 

either on a single model category or has not systematically 

compared multiple representation methods across ML and 

DL architectures. 

3 Material methods 

This section describes the technical background, 

including data source, text representation, classification 

models, pre-trained models. 

3.1 Data source 

The CoVID19-FNIR dataset is a curated collection of 

news content related to the COVID-19 pandemic, 

specifically designed for fake news detection tasks. It 

includes fact-checked fake news obtained from the Poynter 

Institute and authentic news sourced from the verified 

Twitter accounts of credible news organizations. The dataset 

comprises samples gathered from various regions including 

India, the United States, and parts of Europe, covering online 

social media activity between February and June 2020. To 

ensure data quality and consistency, preprocessing steps 

such as the removal of special characters and irrelevant 

content have been applied. The overall class distribution 

within the dataset is illustrated in Figure 1. 

 

 

Figure 1. Class distribution of the dataset 

 

According to the class distribution given in Figure 1, the 

dataset is balanced. Figure 2 shows the word cloud of the 

dataset 

Although the dataset used in the study is open source and 

pre-processed, it has been reprocessed. In case these 

transactions are listed. 

• HTML tags have been removed,  

• special expressions such as URL and email have 

been removed,  

• numbers have been removed,  

• extra spaces between words have been removed,  

• punctuation has been removed,  

• it has been broken down into tokens,  

• all text data has been converted to lower case so that 

words are in a single format,  

• Stopwords were removed. 

• Each word was lemmatized to its root form to reduce 

inflectional forms and improve semantic 

consistency. 
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Figure 2. Dataset word cloud. 

 

The wordcloud in Figure 2 reflects the prominent topics 

in public discourse during the COVID-19 pandemic, 

particularly centered in India. Various dimensions are 

prominently represented, such as the spread of the pandemic 

(“coronavirus”, “covid”, “case”), its social impact 

(“lockdown”, “people”), its impact on the healthcare system 

(“hospital”, “patient”), and government responses 

(“government”, “state”). 

3.2 Text representation 

Text representation methods, also known as language 

models, are probability distributions over groups of words 

that attempt to make sense of text in a context. Various 

statistical and probabilistic techniques are used to determine 

the probability of a given sequence of words occurring in a 

sentence. Language models are used in various NLP 

applications such as text classification, machine translation, 

etc.  

In order to process textual data, the data must first be 

made understandable to machines. Text representation 

methods are used to do this. Text representation methods are 

a language modelling technique. In this technique, words are 

digitized into vectors and represented in vector space. 

Another name for this technique is text vectorization. 

Text representation methods are classified as follows. 

• Frequency-based methods,  

• Prediction-based methods,  

• Transformer methods. 

In this study, BoW and TF-IDF are used as predictive 

methods and RoBERTa, DilstilBERT, alBERT is used as 

pre-trained transformative methods. 

3.2.1 Frequency based methods 

The methods used in this study, which are based on the 

occurrence of words in sentences, are TF-IDF and BOW. 

This section describes TF-IDF and BOW. 

3.2.1.1 Term Frequency-Inverse Document Frequency  

TF-IDF works by determining the relative frequency of 

words in each document and the inverse ratio of these words 

in the dataset. It is a statistically calculated weighting factor 

that indicates the importance of a term in a document [6]. TF 

is the work of Luhn [7] and IDF is the work of Jones [8]. TF 

is a technique used to determine the importance of a word 

within a specific document. It is calculated by dividing the 

frequency of a term by the total number of terms in the same 

document. This normalization helps account for document 

length and emphasizes terms that appear more frequently 

relative to the document size. The formula representing the 

TF calculation is given in Equation (1). 

 

𝑇𝐹(𝑖, 𝑗)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑖 𝑎𝑝𝑝𝑒𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗
 

(1) 

 

IDF is obtained by dividing the total number of 

documents by the number of documents in which the word 

occurs. As the value obtained as a result of this process 

approaches zero, it is understood that the word occurs in 

many places. If it is close to one, it is understood that it 

occurs less frequently. This indicates the IDF value, which is 

the importance of the word in the document.       The IDF is 

shown in Equation (2) [9]. The TF-IDF score is calculated as 

given in Equation (3). 

 

𝐼𝐷𝐹(𝑖)

= 𝑙𝑜𝑔 (
𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑒𝑢𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑖
) 

(2) 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗) = 𝑇𝐹(𝑖, 𝑗)𝑥 𝐼𝐷𝐹(𝑖) (3) 

 

In this study, version 1.0.2 of the Python sci-kit learn [10] 

library was used for the TF-IDF method.  

 

Table 1. Examples from the dataset 

Original data After preprocessing 

Breaking News! Visit https://covid-info.com 

for more info. Stay safe!        Email us at 

info@covid.org 

break news visit info 
stay safe email 

COVID-19 vaccines are 95% effective!!! 

#pandemic #vaccine2021         

covid vaccine effective 

pandemic vaccine 

 

3.2.1.2 Bag of Words  

BoW is a commonly used approach in natural language 

processing that represents text based on word frequency, 

disregarding the order or grammar of the words in the 

document. Instead of considering the sequence of terms, 

BoW focuses solely on how often each word appears. This 

technique transforms documents into fixed-length feature 

vectors by counting the occurrences of known words across 

the dataset. These frequency-based vectors are then utilized 

by ML algorithms during the model training process [11,12]. 

3.2.2 Transformer text representation methods 

Waswasi et al [13] developed a new text representation 

method called Transformer based on Attention network. In 

Transformers, the training time is reduced as the text 

representation process is performed in parallel.  

Transformer architecture is a closed system consisting of 

six Encoders and Decoders. 

The six Encoders and six Decoders used in this 

architecture are identical. The only difference is the word 

embedding at the bottom, which converts the sentences 

received by the Encoder into word vectors. There is also a 

parameter called position-embedding that converts the 

position of the words in the sentences into numerical code. 

This vector is the same length as the word embedding vector. 

mailto:info@covid.org


 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461 

M. S. Başarslan, F. Bal 

 

1450 

In this way, the position information of the words collected 

with word embedding vectors is known [13].   

3.3 Classification models 

In this section of the study, information on the models 

whose performance was evaluated for classification is 

presented. 

3.3.1 Logistic regression 

LR is a statistical model that examines the relationship 

between one or more independent variables and the 

independent variable [14].  The LR model transforms linear 

combinations of independent variables into a value between 

0 and 1 by predicting the probability of an event using a 

logistic function [15]. The main purpose of the LR is to 

enable interpretation of the effect of variables on the 

outcome, with the coefficients reflecting the effect of a one-

unit increase in the independent variables on the log-

likelihood of the dependent variable [16]. 

3.3.2 Naive bayes 

NB is a model that performs efficient and probabilistic 

classification using Bayes' Theorem [17]. The term “naive” 

means that the model assumes conditional independence 

between attributes and that each attribute contributes 

independently to the class probability [18]. This 

independence assumption allows NB to calculate 

probabilities efficiently, allowing for effective classification. 

3.3.3 Decision tree 

The DT model, which works by subdividing the dataset 

according to feature conditions, is based on a tree structure 

where each internal node represents an attribute test, each 

branch represents a test result, and each leaf node represents 

a class label or prediction [19]. This tree structure simplifies 

the decision-making process and enables effective 

monitoring and interpretation of results. 

3.3.4 K-nearest neighbor 

KNN is a simple and efficient model used in regression 

and classification models. Based on instance-based learning, 

this nonparametric algorithm classifies a data point 

according to the majority class of its KNN in the feature 

space; it is flexible and adaptive to different types of data as 

it makes no assumptions about the data distribution [20]. The 

most common class among these neighbors is selected as the 

predicted class for the new instance in classification tasks 

[21]. 

3.3.5 Support vector machine 

SVM, developed by Vladimir Vapnik and colleagues, 

performs classification by creating an optimal hyperplane 

that separates data points of different classes in a high-

dimensional space [22]. The main goal of SVM is to 

maximize the margin between the support vectors, which are 

the closest data points of each class, so that the model can 

perform strong generalization on new and unseen data [23].  

SVM, which works on the principle of finding the 

optimal hyperplane separating classes with the largest 

margin, provides a robust and effective solution to 

overfitting in high-dimensional data where the number of 

dimensions exceeds the number of samples [24]. 

3.3.6 Adaptive boosting 

Adaptive Boosting (AdaBoost) is a tree-based model that 

aims to create a strong classification model by combining 

weak and inaccurate prediction trees [25]. AdaBoost is 

basically a sequential modeling approach in which each 

subsequent weak classifier is trained on examples that were 

misclassified in previous steps [26]. AdaBoost starts by 

initially giving equal weight to all instances; after each weak 

classifier, it increases the weights of the misclassified 

instances, allowing subsequent classifiers to focus on these 

instances, gradually increasing the overall Acc of the model 

[27]. 

3.3.7 Stacking 

It is a technique that combines multiple models to realize 

the classification result more efficiently. By combining the 

outputs of different base learners through a meta-model, this 

method utilizes the strengths of each algorithm to create a 

superior prediction model; the stacking approach can be 

applied with homogeneous or heterogeneous learners and 

generally provides high Acc [28]. The basis of stacking is a 

multi-layer structure consisting of a first layer with multiple 

base classifiers and a meta-model that learns the outputs of 

these models and makes the final prediction; algorithms such 

as DT, SVM and neural networks can be used in the base 

layer, while the second layer combines these predictions to 

form a powerful learning model [29]. 

3.3.8 Hard and Soft Voting 

Voting classifiers are ensemble learning methods that 

aim to improve classification performance by combining the 

predictions of multiple models. There are two basic types of 

voting: Hard Voting and Soft Voting. Hard Voting, or 

majority voting, is an ensemble method where each model 

votes for only one class label and the class with the most 

votes is the final prediction [30]. The Hard Voting approach 

shows improved classification performance, especially when 

predictions from several classifiers that complement each 

other's strengths are combined [31]. In contrast to Hard 

Voting, Soft Voting considers not only the class labels of the 

models but also the probability distributions they provide for 

each class. These probabilities are averaged and the class 

with the highest average probability is selected as the final 

prediction [32]. This method provides a more precise 

combination of predictions by considering the confidence 

levels of different classifiers, which usually results in higher 

overall Acc. 

3.3.9 Extreme gradient boosting 

Extreme Gradient Boosting (XGBoost) is an optimized 

model of classical gradient boosting techniques, offering 

computational efficiency, performance, additional 

regularization methods and innovative tree learning 

strategies in predictive modeling [33].  

XGBoost is a gradient boosting-based method that 

minimizes a loss function with a gradient descent algorithm, 
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forming an ensemble of DT where each tree corrects the 

errors of previous trees, resulting in high prediction Acc [34]. 

3.4 Pre-trained models 

A pre-trained model is an AI model that has been trained 

on large data sets pre-task and has learned the general 

features of the language. It is then retrained and used for a 

specific task.  

Pre-trained models are AI models that have been pre-

trained on large datasets. Since these models have learned 

the general structure and statistical properties of the 

language, they can show high performance with much less 

data by fine-tuning for a specific task. Thus, both the training 

time is shortened, and the generalization ability of the model 

is increased [35]. In this study, comparative performance 

analysis was performed on text classification tasks using the 

pre-trained language models RoBERTa, DistilBERT and 

alBERT. 

3.4.1 RoBERTa 

RoBERTa (A Robustly Optimized BERT Pretraining 

Approach) is a version of the BERT architecture proposed 

by Liu et al. that further optimizes the training process and is 

trained on large datasets [36]. 

3.4.2 DistilBERT 

DistilBERT is a smaller and faster version of BERT 

developed by Sanh et al. using the knowledge distillation 

technique to reduce model size and computational cost [37] 

3.4.3 alBERT 

aLBERT (A Lite BERT) is an architecture proposed by 

Lan et al. that aims to reduce the size of the model through 

strategies such as parameter sharing and embedding 

factorization [38]. These models are characterized by high 

Acc and representativeness in NLP tasks. 

4 Experimental setup and results 

In this study, experiments were conducted to detect fake 

news using both traditional and transformer-based NLP 

approaches. For traditional models, text data was vectorized 

using TF-IDF and BoW methods, which were then provided 

as input to classical ML algorithms such as NB, LR, DT, 

SVM, and KNN. 

In parallel, contextual embeddings were derived from 

pre-trained transformer models — specifically DistilBERT, 

RoBERTa, and aLBERT — to capture deeper semantic 

information. Each sentence was tokenized using the Hugging 

Face tokenizer, and the [CLS] token embedding was 

extracted from the final hidden state of the transformer 

model. These fixed-size embeddings were not fine-tuned but 

used as static feature vectors. These vectors were then passed 

as input to classifiers including LR, SVM, KNN, DT, 

AdaBoost, and XGBoost, which were trained on top of the 

extracted embeddings. This pipeline allowed evaluation of 

traditional classifiers using transformer-derived features.  

All experiments were conducted using the CoVID19-

FNIR dataset with 80% training and 20% testing split. 

Preprocessing steps such as removal of special characters, 

lowercasing, and tokenization were applied prior to model 

input. 

Hyperparameter tuning was performed using 

GridSearchCV for classifiers such as LR, XGBoost, DT, 

KNN, and SVM, and the configuration details are provided 

in Table 2. 

 

Table 2. Parameter optimization table. 

 Parameter Values 

LR 
C 0.1, 1, 10, 100 

penalty l1, l2 

XGB 
n_estimator 50, 100, 200 

max_depth 3, 4, 5 

DT max_depth 5, 10, 20 

KNN n_neighbor 1 to 20; 7 

SVM C 0.1, 1,2,3,4,5,6,7,8,910 

* Selected parameter is in bold 

 

After the TF-IDF process, the training and test data were 

separated into 80% and 20% respectively, and the results of 

the confusion matrix are presented in Table 3. The Acc, F1, 

Precision, Recall, and Specificity metrics are presented in 

Table 4. The confusion matrix results for the same 

representation method using 5-fold cross-validation 

separation are given in Table 5, alongside the metrics 

obtained from this matrix in Table 6. 

 

Table 3. Confusion matrix results of models with TF-IDF 

after 80%-20%. 

Model Predicted  

Values 

Real Values 

0 1 

LR 
0 676 67 

1 88 687 

NB 

0 661 121 

1 103 633 

DT 
0 656 70 
1 108 684 

KNN 

0 709 470 

1 55 284 

SVM 

0 696 90 

1 68 664 

AdaBoost 

0 546 54 

1 218 700 

Stacking 

0 693 44 

1 71 710 

Hard Voting 
0 698 63 

1 66 691 

Soft Voting 
0 673 36 
1 91 718 

XGBoost 
0 666 42 

1 98 712 

 

According to the results of the confusion matrix 

presented in Table 3, the Stacking model with TF-IDF 

representation was the most successful. This model stood out 
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due to its high Acc and balanced TP and TN values. Soft 

Voting yielded the highest recall, while the LR and SVM 

models also demonstrated stable performance.  

In contrast, the KNN and AdaBoost models exhibited 

inferior performance due to their elevated error rates. 

Overall, ensemble methods delivered stronger results when 

combined with the TF-IDF representation. 

 
Table 4. Performance results of models with TF-IDF after 

80%-20%. 
Model Acc F1 Precision Recall Specificity 

LR 0.8972 0.8986 0.8865 0.9111 0.8845 

NB 0.8523 0.8490 0.8590 0.8393 0.8657 

DT 0.8825 0.8848 0.8636 0.9071 0.8585 

KNN 0.6540 0.5194 0.8378 0.8376 0.9279 

SVM 0.8959 0.8932 0.9066 0.8801 0.9110 

AdaBoost 0.8205 0.8375 0.7627 0.9284 0.7141 

Stacking 0.9262 0.9251 0.9091 0.9417 0.9071 

Hard 

Voting 

0.9163 0.9146 0.9128 0.9164 0.9136 

Soft Voting 0.9084 0.9107 0.8791 0.9443 0.8715 

XGBoost 0.9165 0.9189 0.8875 0.9517 0.8809 

 

Table 5. Confusion matrix results of models with TF-IDF 

after 5-fold. 

Model Predicted  

Values 

Real Values 

0 1 

LR 0 887 88 
1 868 159 

NB 0 861 92 
1 931 617 

DT 0 914 118 
1 717 71 

KNN 0 910 58 

1 916 83 

SVM 0 883 47 
1 874 55 

AdaBoost 0 887 88 

1 868 159 

Stacking 0 861 92 
1 931 617 

Hard Voting 0 914 118 

1 717 71 

Soft Voting 0 910 58 
1 916 83 

XGBoost 0 883 47 

1 874 55 

 

According to Table 4, the Stacking model achieved the 

highest Acc and F1 using the TF-IDF representation (92.62% 

Acc, 92.51% F1). This was followed by the XGBoost, Hard 

Voting and Soft Voting models. Notably, the XGBoost 

model achieved the highest recall value of 95.17%, making 

it the most effective at discriminating between positive 

classes. Conversely, the KNN model showed the lowest 

performance in all metrics. These findings suggest that 

ensemble methods with TF-IDF offer stronger classification 

performance.  

According to the results in Table 5, the most successful 

models in the confusion matrices obtained using the BoW 

vectorization method with an 80:20 training-test split are 

Stacking and Hard Voting. The Stacking model 

demonstrated a balanced and robust performance with 617 

TP and only 92 FN. The Hard Voting model was similarly 

successful in distinguishing positive classes, with 617 TP 

and 118 FN. The Soft Voting model showed a more 

moderate performance, with 583 TP and 47 FN, but its false 

positive values were higher compared to Stacking and Hard 

Voting. On the other hand, the KNN model showed the 

weakest performance with 142 FP and 103 FN, revealing its 

sensitivity to the data structure. Similarly, the AdaBoost 

model also failed to distinguish positive classes and showed 

a remarkably low performance, particularly with 218 FN.  

Overall, the results demonstrate the effectiveness of the 

TF-IDF method in identifying positive classes within certain 

models, particularly when ensemble methods are employed. 

 

Table 6. Performance results of models with TF-IDF after 

5-fold. 
Model Acc F1 Precision Recall Specificity 

LR 0.8976 0.8984 0.9111 0.8861 0.9097 

NB 0.8525 0.8497 0.8394 0.8602 0.8452 

DT 0.8826 0.8847 0.9071 0.8635 0.9035 

KNN 0.6543 0.5199 0.3768 0.8382 0.6014 

SVM 0.8961 0.8939 0.8808 0.9074 0.8857 

AdaBoost 0.8209 0.8374 0.9283 0.7627 0.9099 

Stacking 0.9242 0.9251 0.9414 0.9093 0.9401 

Hard 
Voting 

0.9147 0.9143 0.9162 0.9125 0.9169 

Soft Voting 0.9166 0.919 0.9525 0.8878 0.9495 

XGBoost 0.9076 0.9103 0.9444 0.8786 0.9408 

 

According to the results in the Table 6, the Stacking 

method showed the best performance among the models 

trained with TF-IDF. This model outperformed all other 

methods in terms of Acc (0.9242), F1 (0.9251), and precision 

(0.9414). 

 The Soft Voting model achieved the highest success in 

terms of specificity (0.9495), excelling in distinguishing 

negative classes. Among the single models, XGBoost 

attracted attention with its high precision (0.9444), but its 

sensitivity remained relatively low (0.8786). LR and SVM 

showed balanced and strong performance, while Naive 

Bayes and Decision Tree yielded more average results. The 
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weakest model was KNN, with Acc (0.6543) and F1 

(0.5199) values.  

Overall, ensemble methods were found to be much more 

successful than individual models, with the Stacking model 

in particular delivering the most balanced and highest results 

across all metrics. 

After BoW, the training and test data were split in an 80-

20 ratio, and the confusion matrix results are presented in 

Table 7. The Acc, F1, Precision, Recall, and Specificity 

metrics are presented in Table 8.   

The confusion matrix results for the same representation 

method with 5-fold cross-validation are presented in Table 

9, and the results of the metrics obtained from this matrix are 

presented in Table 10. 

 

Table 7. Confusion matrix results of models with BoW after 

80%-20%. 

Model 
Predicted  
Values 

Real Values 

0 1 

LR 
0 675 49 
1 89 705 

NB 
0 646 76 

1 118 678 

DT 
0 655 67 

1 109 687 

KNN 
0 661 142 

1 103 612 

SVM 
0 679 59 

1 85 695 

AdaBoost 
0 546 54 

1 218 700 

Stacking 
0 689 42 

1 75 712 

Hard Voting 
0 672 36 
1 92 718 

Soft Voting 
0 695 56 

1 69 698 

XGBoost 
0 668 40 

1 96 714 

 

According to the results in Table 7, Stacking, Hard 

Voting, and XGBoost emerged as the most successful 

models in the confusion matrices obtained using the BoW 

vectorization method with an 80:20 training-test split. 

Stacking demonstrated balanced and strong performance, 

achieving 712 true positives (TP) and only 75 false negatives 

(FN), while also keeping false positives low.  

Hard Voting achieved the highest recall, with 718 TP and 

just 36 FN, highlighting its strong capability to distinguish 

positive classes. Similarly, XGBoost also performed 

impressively, with 714 TP and 40 FN, confirming its 

robustness. Soft Voting was competitive as well, achieving 

698 TP and 56 FN, but performed slightly behind Hard 

Voting and XGBoost.   

Conversely, the KNN model showed weak performance, 

with 142 false positives (FP) and 103 false negatives (FN), 

indicating its sensitivity to the data structure. Likewise, the 

AdaBoost model underperformed in identifying positive 

classes, producing a very high number of false negatives 

(218) despite achieving a reasonable number of true 

positives. 

 

Table 8. Performance results of models with BoW after 

%80-%20. 
Model Acc F1 Precision Recall Specificity 

LR 0.9098 0.9109 0.8879 0.9350 0.8836 

NB 0.8722 0.8748 0.8518 0.8992 0.8455 

DT 0.8841 0.8865 0.8631 0.9111 0.8573 

KNN 0.8386 0.8332 0.8559 0.8117 0.8652 

SVM 0.9051 0.9061 0.891 0.9218 0.8887 

AdaBoost 0.8208 0.8373 0.7625 0.9284 0.7147 

Stacking 0.9229 0.9241 0.9047 0.9443 0.9018 

Hard 

Voting 

0.9157 0.9182 0.8864 0.9523 0.8796 

Soft 

Voting 

0.9177 0.9178 0.91 0.9257 0.9097 

XGBoost 0.9104 0.913 0.8815 0.9469 0.8743 

 

Table 9. Confusion matrix results of models with BoW after 

after 5-Fold Cross validation 

Model 
Predicted  
Values 

Real Values 

0 1 

LR 0 886 64 
1 848 100 

NB 0 860 88 

1 868 186 

DT 0 891 77 

1 717 71 

KNN 0 904 55 

1 882 47 

SVM 0 912 74 
1 877 52 

AdaBoost 0 886 64 
1 848 100 

Stacking 0 860 88 

1 868 186 

Hard Voting 0 891 77 

1 717 71 

Soft Voting 0 904 55 

1 882 47 

XGBoost 0 912 74 

1 877 52 

 

According to the performance results in Table 8, the 

Stacking model produced the best results with the BoW 

representation, achieving 92.29% Acc and a 92.41% F1 

score. Hard Voting performed best at detecting positive 

classes, achieving the highest recall of 95.23%. Soft Voting 

and XGBoost also performed well, achieving balance and 

high performance.  
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Classical models such as LR and SVM produced strong 

results, achieving over 90% Acc. By contrast, the AdaBoost 

and KNN models performed relatively poorly, particularly in 

terms of specificity and precision. Overall, ensemble models 

with BoW vectorization provided the most consistent, high-

quality performance. 

Table 9 shows the classification trends of the models 

after 5-fold cross-validation using the BoW representation. 

Notably, the Stacking and NB models achieved relatively 

high TP values (186 for both), indicating stronger 

performance in identifying positive classes and thus higher 

recall. Conversely, models such as KNN, Soft Voting, and 

XGBoost were more successful at predicting the negative 

class correctly, as reflected in their lower numbers of false 

positives. The SVM model demonstrated balanced 

prediction ability, achieving 912 TN and 52 FN, which 

indicates stable and reliable performance across both classes. 

Overall, these results confirm that the choice of model 

and the representation method significantly affect 

classification performance in the 5-fold cross-validation 

setting, with ensemble and probabilistic methods excelling 

in recall, while distance-based models like KNN performed 

better in controlling false positives. 

 

Table 10. Performance results of models with BoW after 5-

Fold Cross validation 

Model Acc F1 Precision Recall Specificity 

LR 0.9091 0.9109 0.9353 0.8877 0.9326 

NB 0.8721 0.8747 0.899 0.8517 0.8945 

DT 0.8841 0.8865 0.9111 0.8632 0.9072 

KNN 0.8389 0.8334 0.8119 0.8561 0.8235 

SVM 0.9051 0.9061 0.9221 0.8906 0.9205 

AdaBoost 0.8209 0.8374 0.9283 0.7627 0.9099 

Stacking 0.9232 0.9243 0.9444 0.905 0.9426 

Hard 
Voting 

0.9157 0.9181 0.9525 0.8862 0.9494 

Soft 

Voting 
0.9172 0.9174 0.9253 0.9096 0.9249 

XGBoost 0.9106 0.9133 0.9474 0.8815 0.944 

 

When Table 9 and Table 10 are evaluated together, the 

Stacking model demonstrated the best overall performance 

after 5-fold cross-validation with BoW representation. This 

model stood out with its high true positive values and low 

false negative rate, and also outperformed all other models 

with the highest Acc and F1 score. Hard Voting stood out 

with the highest precision and specificity values, making it 

the most successful method in reducing false positives.  

The Soft Voting model also showed balanced 

performance, yielding results closest to Stacking with 

91.72% Acc and strong Recall. XGBoost showed strong 

performance with high Precision and Specificity, but lagged 

behind Stacking and Soft Voting due to its relatively lower 

recall. Among the classic models, LR and SVM achieved 

strong results with Acc and F1 scores above 90%, while DT 

and NB showed moderate performance. In contrast, KNN 

achieved lower success, and AdaBoost was insufficient in 

distinguishing positive classes, particularly due to its low 

recall value. Overall, the results clearly show that ensemble 

methods with BoW representation offer more balanced and 

superior performance compared to classical models. 

After the DistilBERT training, the data was split into 

training and test sets at a ratio of 80:20, and the results of the 

confusion matrix are presented in Table 11. The Acc, F1, 

Precision, Recall, and Specificity metrics are presented in 

Table 12.  

The confusion matrix results for the same representation 

method using 5-fold cross-validation are given in Table 13, 

and the metrics obtained from this matrix are given in Table 

14. 

 

Table 11. Confusion matrix results of models with 

DistilBERT after 80%-20%. 

Model 
Predicted  
Values 

Real Values 

0 1 

LR 0 1070 79 
1 110 1018 

NB 0 981 183 
1 199 914 

DT 0 879 238 
1 301 859 

KNN 0 926 90 

1 254 1007 

SVM 0 1013 62 
1 167 1035 

AdaBoost 0 1021 186 

1 159 911 

Stacking 0 1074 78 

1 106 1019 

Hard Voting 0 1040 57 

1 140 1040 

Soft Voting 0 1045 94 
1 135 1003 

XGBoost 0 1047 81 

1 133 1016 

 

According to the results in Table 11, the models trained 

using the DistilBERT representation achieved high 

classification performance with a training-to-test separation 

of 80:20. Notably, the Stacking model achieved high correct 

prediction rates for both classes. Ensemble methods such as 

Hard Voting and Soft Voting also produced balanced results 

and achieved high positive class recognition rates. XGBoost 

and SVM models also demonstrated high Acc and consistent 
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performance. In contrast, NB and DT models performed less 

well, particularly in negative class predictions.  

Overall, models integrated with DistilBERT produced 

more stable and robust results than classical representations, 

and ensemble methods successfully balanced the two classes 

using this representation method. 

 

Table 12. Performance results of models with DistilBert 

after 80%-20%. 

Model Acc F1 Precision Recall Specificity 

LR 0.9170 0.9188 0.9068 0.9312 0.9105 

NB 0.8322 0.8271 0.8212 0.8332 0.8314 

DT 0.7633 0.7612 0.7405 0.7830 0.7449 

KNN 0.8489 0.8541 0.7986 0.9180 0.7847 

SVM 0.8994 0.9004 0.8611 0.9435 0.8585 

AdaBoost 0.8485 0.8408 0.8514 0.8304 0.8653 

Stacking 0.9192 0.9172 0.9058 0.9289 0.9102 

Hard 
Voting 

0.9135 0.9135 0.8814 0.9480 0.8814 

Soft 

Voting 
0.8994 0.8975 0.8814 0.9143 0.8856 

XGBoost 0.9060 0.9047 0.8842 0.9262 0.8873 

 

According to the performance results of the models based 

on the DistilBERT representation in Table 12, which have an 

80%-20% training test ratio.The Stacking model was the 

most successful overall, achieving the highest Acc (Acc = 

91.92%) and a very high F1 (91.72%). The LR and Hard 

Voting models also performed well, achieving high Acc and 

balanced F1, precision and recall values. SVM was 

particularly successful in correctly predicting positive 

classes, achieving a high recall of 94.35%, while Hard 

Voting improved upon this metric, reaching 94.80%. This 

demonstrates the effectiveness of these models in reducing 

false negatives. Conversely, some models, such as NB and 

DT, had lower Acc and balance metrics, indicating that these 

models are less adaptive to transformer-based vector 

representations.Overall, DistilBERT provided more 

consistent and higher performance than traditional text 

representation methods for many models, particularly when 

used with ensemble methods and DL integrations. 

Table 13 results show that the most successful models 

with DistilBERT representation are SVM, XGBoost, and 

Soft Voting. These models stand out with high true positive 

values and low false negative rates. In contrast, some 

methods such as DT and Hard Voting have been weaker in 

capturing positive classes, while NB and Stacking have 

shown inconsistent performance. 

 Overall, ensemble methods and robust classical models 

(especially SVM and XGBoost) provide more reliable 

performance with DistilBERT. 

 

Table 13. Confusion matrix results of models with 

DistilBERT after 5-Fold cross validation 

Model 
Predicted  
Values 

Real Values 

0 1 

LR 0 1404 104 

1 1288 240 

NB 0 1154 312 

1 1215 118 

DT 0 1330 81 
1 1340 244 

KNN 0 1410 102 

1 1365 75 

SVM 0 1372 123 

1 1374 106 

AdaBoost 0 1404 104 

1 1288 240 

Stacking 0 1154 312 
1 1215 118 

Hard Voting 0 1330 81 

1 1340 244 

Soft Voting 0 1410 102 

1 1365 75 

XGBoost 0 1372 123 

1 74 938 

 

Table 14. Performance results of models with DistilBert 

after 5-Fold cross validation. 

Model Acc F1 Precision Recall Specificity 

LR 0.917 0.9151 0.9278 0.9027 0.931 

NB 0.8324 0.8273 0.8333 0.8214 0.8429 

DT 0.7634 0.7612 0.7832 0.7405 0.7872 

KNN 0.8491 0.8543 0.9181 0.7988 0.9115 

SVM 0.8996 0.9005 0.9437 0.8611 0.9426 

AdaBoost 0.8484 0.8408 0.8306 0.8512 0.846 

Stacking 0.9193 0.9173 0.9291 0.9058 0.9325 

Hard 

Voting 

0.9133 0.9133 0.9479 0.8812 0.9479 

Soft  

Voting 

0.8996 0.8977 0.9145 0.8814 0.9177 

XGBoost 0.906 0.9047 0.9264 0.884 0.9284 

 

When Table 13 and Table 14 are evaluated together, the 

Stacking, Hard Voting, Soft Voting, and XGBoost models 

achieved the most successful results after 5-fold cross-

validation with the DistilBERT representation. The Stacking 
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model stood out with its high number of true positives and 

low false negative rate and also led in overall performance 

with the highest Acc and F1.  

Hard Voting was the method that best reduced false 

positives, particularly with the highest Precision and 

specificity values, while Soft Voting and XGBoost also 

attracted attention with their balanced and strong results. 

Among classical models, LR showed strong performance 

with 91.7% Acc and the highest precision value, while SVM 

also demonstrated consistent success. In contrast, DT, NB, 

KNN, and AdaBoost models performed poorly with lower 

Acc and F1 values. Overall, the results reveal that ensemble 

methods stand out under the DistilBERT representation and 

offer the most consistent performance. 

After RoBERTa training, the data was split into training 

and test sets at a ratio of 80:20, and the results of the 

confusion matrix are presented in Table 15. The Acc, F1, 

Precision, Recall, and Specificity metrics are presented in 

Table 16. The confusion matrix results for the same 

representation method using 5-fold cross-validation are 

given in Table 17, and the metrics obtained from this matrix 

are given in Table 18. 

 

Table 15. Confusion matrix results of models with 

RoBERTa after %80-%20. 

Model 
Predicted 

Values 

Real Values 

0 1 

LR 
0 1009 96 

1 171 1001 

NB 
0 954 212 

1 226 885 

DT 
0 909 237 

1 271 860 

KNN 
0 1050 125 

1 130 972 

SVM 
0 936 142 

1 244 955 

AdaBoost 
0 999 172 

1 181 925 

Stacking 
0 1027 90 

1 153 1007 

Hard Voting 
0 977 113 

1 203 984 

Soft Voting 
0 984 142 

1 196 955 

XGBoost 
0 1052 69 

1 128 1028 

 

Table 15 shows the classification performance of the 

models trained using the RoBERTa representation, with 80% 

of the data used for training and 20% for testing. XGBoost is 

particularly notable as the most successful model, achieving 

a high number of correct predictions in both the negative 

(1052) and positive (1,028) classes. The Stacking and LR 

models also produced balanced and robust results with high 

Acc. Conversely, the NB and DT models performed poorly 

in recognising the negative class, resulting in more 

misclassifications. Ensemble models such as Hard Voting 

and Soft Voting performed strongly in distinguishing 

positive classes. Overall, models working with the 

RoBERTa representation demonstrated high levels of Acc, 

Recall and stability, and more advanced methods were more 

successful with this representation. 

Table 16 shows the performance results for the models 

trained using the RoBERTa representation on the test set 

with an 80:20 training-testing split. The results show the 

Acc, F1, Precision, Recall, and Specificity metrics. The most 

successful model was XGBoost, achieving 91.22% Acc and 

a 91.26% F1. This was followed by Stacking, which also 

demonstrated high levels of Acc and Rec. While the KNN 

and NB models produced balanced results, others such as the 

DT and SVM models performed relatively poorly.  

The ensemble models Hard Voting and Soft Voting 

produced good results, particularly in terms of precision; 

however, their overall Acc was lower than that of XGBoost 

and Stacking. These results demonstrate that models based 

on the RoBERTa representation offer a robust foundation for 

text classification and that achieving high-performance 

hinges on selecting the right model. 

 

Table 16. Performance results of models with RoBERTa 

after %80-%20. 

Model Acc F1 Precision Recall Specificity 

LR 0.8825 0.8559 0.8537 0.9125 0.8821 

NB 0.8827 0.8832 0.855 0.9131 0.854 

DT 0.7770 0.7703 0.7605 0.7839 0.7720 

KNN 0.8875 0.8898 0.8821 0.8861 0.8841 

SVM 0.8302 0.7932 0.7965 0.8705 0.8317 

AdaBoost 0.8448 0.8466 0.8366 0.8431 0.8398 

Stacking 0.8914 0.8922 0.8680 0.9180 0.8704 

Hard 
Voting 

0.8633 0.8616 0.8291 0.8970 0.8279 

Soft 

Voting 
0.8547 0.8496 0.8297 0.8705 0.8347 

XGBoost 0.9122 0.9126 0.8892 0.9371 0.8915 

 

According to the results in Table 17, after 5-fold cross-

validation with RoBERTa representation, the most 

successful models were KNN and Soft Voting. Both models 

demonstrated strong performance in distinguishing positive 

classes, with 148 true positives and 118 false negatives. 

LR and AdaBoost produced similar results, showing 

balanced performance with 278 true positives and 126 false 

negatives. DT and Hard Voting remained at an intermediate 

level with 226 true positives and 186 false negatives, while 

NB and Stacking models showed poor performance with 164 

true positives and 311 false negatives due to high error rates. 

On the other hand, SVM and XGBoost were the models with 

the lowest performance in capturing the positive class, with 

only 91 true positives and 186 false negatives. 

Overall, Soft Voting and KNN stood out under the 

RoBERTa representation, while some models were found to 

be inadequate, particularly in identifying positive classes. 
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Table 17. Confusion matrix results of models with 

RoBERTa after 5-fold cross validation. 

model 
Predicted  
Values 

Real Values 

0 1 

LR 0 1324 126 

1 1252 278 

NB 0 1193 311 

1 1378 164 

DT 0 1228 186 

1 1311 226 

KNN 0 1348 118 
1 1282 148 

SVM 0 1292 186 

1 1381 91 

AdaBoost 0 1324 126 
1 1252 278 

Stacking 0 1193 311 

1 1378 164 

Hard Voting 0 1228 186 
1 1311 226 

Soft Voting 0 1348 118 
1 1282 148 

XGBoost 0 1292 186 
1 1381 91 

 

Table 18. Performance results of models with RoBERTa 

after 5-fold cross validation. 

Model Acc F1 Precision Recall Specificity 

LR 0.8829 0.8825 0.9125 0.8544 0.9131 

NB 0.8076 0.8017 0.8069 0.7964 0.8183 

DT 0.7768 0.772 0.784 0.7603 0.7932 

KNN 0.8879 0.884 0.8861 0.8818 0.8936 

SVM 0.8306 0.832 0.8707 0.7966 0.8685 

AdaBoost 0.8448 0.8396 0.8431 0.8361 0.853 

Stacking 0.8933 0.8923 0.9181 0.868 0.9195 

Hard 

Voting 

0.8614 0.8619 0.8972 0.8293 0.8965 

Soft 

Voting 

0.8517 0.8498 0.8707 0.8298 0.8742 

XGBoost 0.9133 0.9124 0.9368 0.8893 0.9382 

 

According to the results in Table 18, XGBoost is the most 

successful model after 5-fold cross-validation with 

RoBERTa representation. XGBoost achieved the highest 

Acc, F1, and Precision values, and also strongly 

distinguished both positive and negative classes with Recall 

and Specificity results. Stacking also performed strongly, 

producing balanced results with an Acc of 0.8933 and an F1 

score of 0.8923. The KNN and SVM models showed 

moderate success, with KNN being one of the best classical 

models, achieving 88.79% Acc and an F1 score of 0.884. LR 

also offered balanced performance with 0.8829 Acc and 

0.8825 F1 scores. In contrast, DT and NB showed lower 

performance, while AdaBoost remained at an intermediate 

level. 

Overall, the results in Table 18 show that XGBoost 

delivered the strongest performance under the RoBERTa 

representation, followed by Stacking and KNN, while LR 

and SVM stood out among the classical methods. 

After the alBERT training and test data were separated 

by 80% and 20%, respectively, the results of the confusion 

matrix are presented in Table 19.  

The Acc, F1, Precision, Recall, and Specificity metrics 

are presented in Table 20. The results of the confusion matrix 

for the 5-fold cross-validation separation using the same 

representation method are given in Table 21, alongside the 

metrics obtained from this matrix in Table 22. 

 

Table 19. Confusion matrix results of models with alBERT 

after %80-%20. 

Model 
Predicted 

Values 

Real Values 

0 1 

LR 

0 1052 132 

1 128 965 

NB 

0 824 356 

1 356 741 

DT 

0 899 301 

1 281 796 

KNN 

0 939 227 

1 241 870 

SVM 

0 1001 102 

1 179 985 

AdaBoost 

0 932 203 

1 248 894 

Stacking 
0 1049 110 

1 131 987 

Hard Voting 

0 1042 95 

1 138 1002 

Soft Voting 

0 1054 125 

1 126 972 

XGBoost 
0 1036 121 
1 144 976 

 

Table 19 shows the classification performance of the 

models trained with the aLBERT representation, after the 

data was separated into 80% for training and 20% for testing. 

Notably, the Stacking, Hard Voting and XGBoost models 

achieved high correct prediction rates in both the negative 

and positive classes.  For instance, the Stacking model 

achieved a balanced outcome by correctly predicting 1049 

negative and 987 positive examples. Similarly, the Soft 

Voting model achieved high success in predicting the 

positive class (TP = 972). Conversely, the NB and DT 

models demonstrated lower Acc, particularly in the negative 

classes, suggesting that they are less well adapted to the 

aLBERT representation.  



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461 

M. S. Başarslan, F. Bal 

 

1458 

Overall, the transformer-based alBERT representation, 

when combined with ensemble and DL-based models, 

produced robust and balanced classification results. 

 

Table 20. Performance results of models with aLBERT after 

%80-%20. 

Model Acc F1 Precision Recall Specificity 

LR 0.8856 0.8812 0.8830 0.8795 0.8915 

NB 0.6873 0.6755 0.6755 0.6755 0.6983 

DT 0.7444 0.7323 0.7391 0.7256 0.7619 

KNN 0.7945 0.7880 0.7831 0.7931 0.7958 

SVM 0.8766 0.8763 0.8475 0.907 0.8483 

AdaBoost 0.8019 0.7986 0.7828 0.8149 0.7898 

Stacking 0.8942 0.8912 0.8828 0.8997 0.8890 

Hard 

Voting 
0.8977 0.8958 0.8789 0.9134 0.8831 

Soft 

Voting 
0.8898 0.8805 0.8714 0.8897 0.8780 

XGBoost 0.8836 0.8856 0.8852 0.8861 0.8932 

 

As shown in Table 20, the results demonstrate the 

classification performance of the models trained using the 

aLBERT representation with an 80:20 training-testing 

separation. The Hard Voting model achieves the highest Acc 

(89.77%) and F1 (89.58%). This is closely followed by the 

Stacking and Soft Voting models, which also achieved a very 

balanced, high performance. Stacking stands out, achieving 

89.42% Acc and 89.12% F1, while XGBoost demonstrates 

balanced performance in terms of both Precision (88.52%) 

and Sensitivity (88.61%). Conversely, the NB and DT 

models showed lower performance than the other models. 

These results demonstrate the effectiveness and 

reliability of ensemble methods and advanced ML models 

combined with the aLBERT representation for text 

classification tasks. 

Table 21 shows the confusion matrices obtained in the 5-

fold cross-validation process using the aLBERT 

representation. These results are important for evaluating 

general trends and the success of the models' classification. 

Notably, the KNN, Soft Voting and XGBoost models 

demonstrate high rates of correct prediction in both positive 

and negative classes. These models have a low 

misclassification rate and are well balanced. For instance, the 

SVM model correctly classified 1,054 negative samples and 

made 121 correct predictions in the positive class. 

Conversely, models such as NB, LR and AdaBoost 

produced more incorrect predictions, particularly in the 

positive class, resulting in weaker performance compared to 

the other models. The same is true of the Stacking model: the 

low number of correct predictions in the positive class limits 

the model's overall performance. 

Overall, this table shows that, with the aLBERT 

representation, the KNN, SVM, Soft Voting and XGBoost 

models are more stable and perform better in cross-

validation. 

 

Table 21. Confusion matrix results of models with alBERT 

after 5-fold cross validation. 

Model 
Predicted 

Values 

Real Values 

0 1 

LR 0 1052 132 

1 824 356 

NB 0 899 301 

1 939 227 

DT 0 1001 102 

1 932 203 

KNN 0 1049 110 

1 1042 95 

SVM 0 1054 125 

1 1036 121 

AdaBoost 0 1052 132 

1 824 356 

Stacking 0 899 301 

1 939 227 

Hard Voting 0 1001 102 

1 932 203 

Soft Voting 0 1049 110 

1 1042 95 

XGBoost 0 1054 125 
1 1036 121 

 

Table 22. Performance results of models with aLBERT after 

5-fold cross validation. 

Model Acc F1 Precision Recall Specificity 

LR 0.8858 0.8813 0.8797 0.8829 0.8885 

NB 0.6873 0.6755 0.6755 0.6755 0.6983 

DT 0.7444 0.7323 0.7256 0.7391 0.7492 

KNN 0.7945 0.788 0.7931 0.7831 0.8053 

SVM 0.876 0.8752 0.9062 0.8462 0.9075 

AdaBoost 0.8019 0.7986 0.8149 0.7828 0.8211 

Stacking 0.8942 0.8912 0.8997 0.8828 0.9051 

Hard 
Voting 

0.8977 0.8958 0.9134 0.8789 0.9164 

Soft 

Voting 
0.8898 0.8856 0.8861 0.8852 0.894 

XGBoost 0.8836 0.8805 0.8897 0.8714 0.8954 

 

Table 22 shows the performance metrics of each model 

at the end of the 5-fold cross-validation process using the 

aLBERT representation. 

The Hard Voting model was the most successful, 

achieving 89.77% Acc, 89.58% F1, 91.34% precision and 

87.89% recall. The Stacking and Soft Voting models showed 

similarly balanced and high performance, with Stacking 

achieving success in negative classes with 90.51% 

specificity. 
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The SVM model effectively classified the positive 

classes with 90.62% precision, whereas the other classical 

models (NB and DT) had lower success rates. 

These findings demonstrate that models based on the 

aLBERT representation offer more stable and superior 

performance, particularly when combined with ensemble 

methods. They also emphasise the importance of robust 

evaluation methods, such as accurate text representation, 

cross-validation and model selection. 

The study comparatively evaluates the various ML and 

DL models and text representation methods (TF-IDF, BoW, 

DistilBERT, RoBERTa and aLBERT) used. Transformer-

based representations, particularly DistilBERT, RoBERTa, 

and aLBERT, generally produced higher Acc, F1 and Rec 

values than classical methods such as TF-IDF and BoW. 

Across all representations, ensemble models such as 

Stacking, Hard Voting and Soft Voting demonstrate the 

strongest and most consistent performance. Notably, 

Stacking achieves the highest success rates with both 

classical and transformative representations. Conversely, 

simpler models such as NB and DT performed poorly, with 

generally low precision and recall values. The results 

demonstrate that the choice of representation method directly 

impacts model performance, and that ensemble methods, 

particularly when combined with robust text representations, 

can significantly enhance classification performance. 

5 Conclusion and discussion 

This study assessed the classification performance of 

various ML and DL models on the CoVID19-FNIR dataset 

for the detection of false information related to the SARS-

CoV-2 pandemic. Two widely used text vectorization 

techniques, TF-IDF and BoW, were employed. The dataset 

was split into 80% for training and 20% for testing. 

In addition to classical ML algorithms such as LR and 

SVM, transformer-based models (DistilBERT, RoBERTa, 

aLBERT) and ensemble approaches (Stacking, Hard Voting, 

Soft Voting) were integrated. The results revealed that both 

the choice of model and text representation method 

significantly influence classification performance. Among 

all approaches, the Stacking ensemble model delivered the 

highest performance with both vectorization techniques — 

achieving 92.62% Acc and 92.51% F1 with TF-IDF, and 

92.29% Acc and 92.41% F1 with BoW. Notably, the Hard 

Voting model, combined with BoW, achieved an impressive 

recall of 95.23%, highlighting its strength in correctly 

identifying positive samples. 

Furthermore, LR and SVM showed improved 

performance with BoW compared to TF-IDF, reaching 

90.98% and 90.51% Acc, respectively. While TF-IDF 

yielded more balanced performance across metrics, BoW 

stood out with higher precision and recall in several models 

— suggesting that word frequency-based representations 

may be more compatible with traditional and ensemble 

models. 

Overall, the findings emphasize that optimal 

performance in fake news detection depends on the careful 

selection of both the model and the feature representation. 

Future work will focus on evaluating domain-specific 

pre-trained BERT variants, exploring multilingual datasets 

for broader applicability, and testing model robustness in 

open-world scenarios. In addition, the explainability of 

model decisions will be investigated through explainable 

artificial intelligence techniques to enhance model 

transparency and user trust. 
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