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Abstract

This study evaluates the performance of various machine
learning (ML) models on a dataset split into 80% training
and 20% testing using Term Frequency-Inverse Document
Frequency (TF-IDF) and Bag of Words (BoW) text
vectorization. Transformer-based models like DistilBERT,
RoBERTa, and alBERT were integrated with classical ML
algorithms and ensemble methods such as Stacking, Hard
Voting, and Soft Voting. Stacking achieved the highest
performance with both methods—92.62% Accuracy (Acc)
and 92.51% F1-score (F1) with TF-IDF, and 92.29% Acc
and 92.41% F1 with BoW. Hard Voting with BoW yielded
the highest Recall (95.23%). Classical models like Logistic
Regression (LR) and Support Vector Machine (SVM)
performed better with BoW, reaching 90.98% and 90.51%
Acc, respectively. Overall, TF-IDF produced balanced
outcomes, while BoW offered higher Recall and Precision
in specific cases. These results highlight the significance of
both model and text representation choices in achieving
optimal classification performance.

Keywords: Fake news, ML, Text Representation, Pre-
trained

1 Introduction

The COVID-19 pandemic has not only led to a major
global health crisis but has also triggered an unprecedented
surge in the spread of misinformation on online platforms.
As social media has become the primary source of real-time
information, the line between verified facts and misleading
claims has become increasingly blurred. The rapid spread of
fake news about treatments, vaccines and infection rates has
led to widespread confusion, public panic and, in some cases,
harmful behavior. There is therefore an urgent need to
develop robust methods to detect and prevent the spread of
such misinformation.

In recent years, the field of Natural Language Processing
(NLP) has witnessed a major transformation with the
emergence of deep learning (DL) and transducer-based

Oz

Bu caligmada, Terim Frekansi-Ters Dokiiman Frekansi
(TF-IDF) ve Bag of Words (BoW) metin vektdrlestirmesi
kullanilarak %80 egitim ve %20 teste ayrilmis bir veri
kiimesi iizerinde c¢esitli makine Ogrenimi (ML)
modellerinin performansi degerlendirilmistir. DistilBERT,
RoBERTa ve alBERT gibi donistiiriicii tabanli modeller,
klasik makine 6grenimi algoritmalar1 ve Stacking, Hard
Voting ve Soft Voting gibi topluluk yontemleriyle entegre
edilmistir. Yiginlama her iki yontemle de en yiiksek
performansi elde etmistir- TF-IDF ile %92.62 Dogruluk ve
%92.51 F1, BoW ile %92.29 Dogruluk ve %92.41 F1. BoW
ile Hard Voting en yiiksek geri ¢agirmay1 (%95,23)
vermistir. Lojistik Regresyon ve DVM gibi klasik modeller
BoW ile daha iyi performans gostererek sirastyla %90.98
ve %90.51 Dogruluga ulasmistir. Genel olarak, TF-IDF
dengeli sonuglar iiretirken, BoW belirli durumlarda daha
yiiksek geri ¢agirma ve kesinlik sunmustur. Bu sonuglar,
optimum simiflandirma performansina ulasmada hem
model hem de metin temsili secimlerinin Onemini
vurgulamaktadir.

Anahtar kelimeler: Sahte haber, ML, Metin Gosterimi,
Onceden egitilmis

language models. Traditional approaches to fake news
detection often rely on statistical representations of text such
as TF-IDF and BoW, which, while effective to some extent,
often fail to capture the semantic and contextual nuances of
language. On the other hand, transducer-based models such
as BERT, RoBERTa, aLBERT, and DistilBERT have shown
remarkable success in a wide range of NLP tasks due to their
ability to learn deep contextual representations from large-
scale corpora.

In this work, we aim to evaluate the effectiveness of both
traditional ML methods and modern transducer-based
architectures for the task of COVID-19 fake news detection.
For this purpose, we use the CoVID19-FNIR dataset, a
carefully curated corpus containing fact-checked real and
fake news related to the pandemic [1]. The dataset includes
posts collected from verified Twitter accounts and sources
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such as Poynter, covering various regions including India,
the USA, and Europe between February and June 2020.

We compare the performance of models using both TF-
IDF/BoW representations and contextual embeddings
derived from transformative models. Our goal is to analyze
how different text representation techniques affect
classification performance and identify the most effective
model setup for detecting misinformation related to COVID-
19. This research not only contributes to the growing
literature on fake news detection but also provides practical
insights for building reliable misinformation monitoring
systems during global crises.

Section 2 presents the related work and Section 3
presents the technical background including data source, text
representation, classification models, pre-trained models.
Section 4 presents the experimental setup and results.
Section 5 presents the results and discussion.

2 Related works

Several recent studies have utilized the CoVID-19 Fake
News and Infodemic Research (CoVID19-FNIR) dataset to
detect misinformation during the pandemic. These works
vary in terms of the learning models and text representation
techniques employed.

Sikosana et al. [2] evaluated both traditional ML
algorithms such as Naive Bayes (NB), SVM, and Random
Forest (RF), and DL models including Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM), and
a hybrid CNN+LSTM. In addition, they experimented with
transformer-based pre-trained language models such as
DistilBERT and RoBERTa. Their best results were achieved
with a CNN+LSTM model using Word2Vec embeddings,
yielding 99.21% Acc and 99.17% F1.

Vinay et al. [3] focused on ML approaches including NB,
SVM, Decision Trees (DT), RF, and LR, and employed TF-
IDF as a representation method. Their RF model achieved
the highest performance with 99.14% Acc and 99.14% F1-
score.

Qadess and Hannan [4] reported moderate results by
comparing NB, Gradient Boosting, SVM, DT, RF, and LR
models. Their highest F1-score was 91.0%.

Bozuyla and Ozgift [5] applied both DL architectures
(LSTM, Bi-LSTM) and transformer-based models (BERT,
RoBERTa, BerTURK) adapted for Turkish texts. They
obtained their best result using BerTURK, with 98.5% aCC
and 98.4% Fl-score, demonstrating the effectiveness of
domain-specific transformers.

These studies confirm that the CoVID19-FNIR dataset
enables high-Acc classification using a variety of
approaches. However, most previous research has focused
either on a single model category or has not systematically
compared multiple representation methods across ML and
DL architectures.

3 Material methods

This section describes the technical background,
including data source, text representation, classification
models, pre-trained models.

3.1 Data source

The CoVID19-FNIR dataset is a curated collection of
news content related to the COVID-19 pandemic,
specifically designed for fake news detection tasks. It
includes fact-checked fake news obtained from the Poynter
Institute and authentic news sourced from the verified
Twitter accounts of credible news organizations. The dataset
comprises samples gathered from various regions including
India, the United States, and parts of Europe, covering online
social media activity between February and June 2020. To
ensure data quality and consistency, preprocessing steps
such as the removal of special characters and irrelevant
content have been applied. The overall class distribution
within the dataset is illustrated in Figure 1.
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Figure 1. Class distribution of the dataset

According to the class distribution given in Figure 1, the
dataset is balanced. Figure 2 shows the word cloud of the
dataset

Although the dataset used in the study is open source and
pre-processed, it has been reprocessed. In case these
transactions are listed.

. HTML tags have been removed,

. special expressions such as URL and email have
been removed,

. numbers have been removed,

*  extra spaces between words have been removed,

*  punctuation has been removed,

. it has been broken down into tokens,

. all text data has been converted to lower case so that
words are in a single format,

. Stopwords were removed.

*  Each word was lemmatized to its root form to reduce

inflectional forms and improve semantic
consistency.
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Figure 2. Dataset word cloud.

The wordcloud in Figure 2 reflects the prominent topics
in public discourse during the COVID-19 pandemic,
particularly centered in India. Various dimensions are
prominently represented, such as the spread of the pandemic
“coronavirus”, “covid”, ‘“case”), its social impact
(“lockdown”, “people™), its impact on the healthcare system
(“hospital”, “patient”), and government responses
(“government”, “state”).

3.2 Text representation

Text representation methods, also known as language
models, are probability distributions over groups of words
that attempt to make sense of text in a context. Various
statistical and probabilistic techniques are used to determine
the probability of a given sequence of words occurring in a
sentence. Language models are used in various NLP
applications such as text classification, machine translation,
etc.

In order to process textual data, the data must first be
made understandable to machines. Text representation
methods are used to do this. Text representation methods are
a language modelling technique. In this technique, words are
digitized into vectors and represented in vector space.
Another name for this technique is text vectorization.

Text representation methods are classified as follows.

e Frequency-based methods,
e Prediction-based methods,
e  Transformer methods.

In this study, BoW and TF-IDF are used as predictive
methods and RoBERTa, DilstilBERT, alBERT is used as
pre-trained transformative methods.

3.2.1 Frequency based methods

The methods used in this study, which are based on the
occurrence of words in sentences, are TF-IDF and BOW.
This section describes TF-IDF and BOW.

3.2.1.1 Term Frequency-Inverse Document Frequency

TF-IDF works by determining the relative frequency of
words in each document and the inverse ratio of these words
in the dataset. It is a statistically calculated weighting factor
that indicates the importance of a term in a document [6]. TF
is the work of Luhn [7] and IDF is the work of Jones [8]. TF
is a technique used to determine the importance of a word
within a specific document. It is calculated by dividing the
frequency of a term by the total number of terms in the same
document. This normalization helps account for document
length and emphasizes terms that appear more frequently

relative to the document size. The formula representing the
TF calculation is given in Equation (1).

TF(i,))
Number of terms i in document j (1)

"~ Number of times term i appers in document j

IDF is obtained by dividing the total number of
documents by the number of documents in which the word
occurs. As the value obtained as a result of this process
approaches zero, it is understood that the word occurs in
many places. If it is close to one, it is understood that it
occurs less frequently. This indicates the IDF value, which is
the importance of the word in the document. The IDF is
shown in Equation (2) [9]. The TF-IDF score is calculated as
given in Equation (3).

IDF (i)
Total number of doceument )

=lo
g (Number of documents containing termi

TF — IDF(i,)) = TF(i, j)x IDF (i) 3)

In this study, version 1.0.2 of the Python sci-kit learn [10]
library was used for the TF-IDF method.

Table 1. Examples from the dataset

Original data
Breaking News! Visit https://covid-info.com
for more info. Stay safe! Q Email us at

info@covid.org
COVID-19 vaccines are 95% effective!!!

#pandemic #vaccine2021 @

After preprocessing

break news visit info
stay safe email

covid vaccine effective
pandemic vaccine

3.2.1.2 Bag of Words

BoW is a commonly used approach in natural language
processing that represents text based on word frequency,
disregarding the order or grammar of the words in the
document. Instead of considering the sequence of terms,
BoW focuses solely on how often each word appears. This
technique transforms documents into fixed-length feature
vectors by counting the occurrences of known words across
the dataset. These frequency-based vectors are then utilized
by ML algorithms during the model training process [11,12].

3.2.2 Transformer text representation methods

Waswasi et al [13] developed a new text representation
method called Transformer based on Attention network. In
Transformers, the training time is reduced as the text
representation process is performed in parallel.

Transformer architecture is a closed system consisting of
six Encoders and Decoders.

The six Encoders and six Decoders used in this
architecture are identical. The only difference is the word
embedding at the bottom, which converts the sentences
received by the Encoder into word vectors. There is also a
parameter called position-embedding that converts the
position of the words in the sentences into numerical code.
This vector is the same length as the word embedding vector.
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In this way, the position information of the words collected
with word embedding vectors is known [13].

3.3 Classification models

In this section of the study, information on the models
whose performance was evaluated for classification is
presented.

3.3.1 Logistic regression

LR is a statistical model that examines the relationship
between one or more independent variables and the
independent variable [14]. The LR model transforms linear
combinations of independent variables into a value between
0 and 1 by predicting the probability of an event using a
logistic function [15]. The main purpose of the LR is to
enable interpretation of the effect of variables on the
outcome, with the coefficients reflecting the effect of a one-
unit increase in the independent variables on the log-
likelihood of the dependent variable [16].

3.3.2 Naive bayes

NB is a model that performs efficient and probabilistic
classification using Bayes' Theorem [17]. The term “naive”
means that the model assumes conditional independence
between attributes and that each attribute contributes
independently to the class probability [18]. This
independence assumption allows NB to calculate
probabilities efficiently, allowing for effective classification.

3.3.3 Decision tree

The DT model, which works by subdividing the dataset
according to feature conditions, is based on a tree structure
where each internal node represents an attribute test, each
branch represents a test result, and each leaf node represents
a class label or prediction [19]. This tree structure simplifies
the decision-making process and enables effective
monitoring and interpretation of results.

3.3.4 K-nearest neighbor

KNN is a simple and efficient model used in regression
and classification models. Based on instance-based learning,
this nonparametric algorithm classifies a data point
according to the majority class of its KNN in the feature
space; it is flexible and adaptive to different types of data as
it makes no assumptions about the data distribution [20]. The
most common class among these neighbors is selected as the
predicted class for the new instance in classification tasks
[21].

3.3.5 Support vector machine

SVM, developed by Vladimir Vapnik and colleagues,
performs classification by creating an optimal hyperplane
that separates data points of different classes in a high-
dimensional space [22]. The main goal of SVM is to
maximize the margin between the support vectors, which are
the closest data points of each class, so that the model can
perform strong generalization on new and unseen data [23].

SVM, which works on the principle of finding the
optimal hyperplane separating classes with the largest
margin, provides a robust and -effective solution to

overfitting in high-dimensional data where the number of
dimensions exceeds the number of samples [24].

3.3.6 Adaptive boosting

Adaptive Boosting (AdaBoost) is a tree-based model that
aims to create a strong classification model by combining
weak and inaccurate prediction trees [25]. AdaBoost is
basically a sequential modeling approach in which each
subsequent weak classifier is trained on examples that were
misclassified in previous steps [26]. AdaBoost starts by
initially giving equal weight to all instances; after each weak
classifier, it increases the weights of the misclassified
instances, allowing subsequent classifiers to focus on these
instances, gradually increasing the overall Acc of the model
[27].

3.3.7 Stacking

It is a technique that combines multiple models to realize
the classification result more efficiently. By combining the
outputs of different base learners through a meta-model, this
method utilizes the strengths of each algorithm to create a
superior prediction model; the stacking approach can be
applied with homogeneous or heterogeneous learners and
generally provides high Acc [28]. The basis of stacking is a
multi-layer structure consisting of a first layer with multiple
base classifiers and a meta-model that learns the outputs of
these models and makes the final prediction; algorithms such
as DT, SVM and neural networks can be used in the base
layer, while the second layer combines these predictions to
form a powerful learning model [29].

3.3.8 Hard and Soft Voting

Voting classifiers are ensemble learning methods that
aim to improve classification performance by combining the
predictions of multiple models. There are two basic types of
voting: Hard Voting and Soft Voting. Hard Voting, or
majority voting, is an ensemble method where each model
votes for only one class label and the class with the most
votes is the final prediction [30]. The Hard Voting approach
shows improved classification performance, especially when
predictions from several classifiers that complement each
other's strengths are combined [31]. In contrast to Hard
Voting, Soft Voting considers not only the class labels of the
models but also the probability distributions they provide for
each class. These probabilities are averaged and the class
with the highest average probability is selected as the final
prediction [32]. This method provides a more precise
combination of predictions by considering the confidence
levels of different classifiers, which usually results in higher
overall Acc.

3.3.9 Extreme gradient boosting

Extreme Gradient Boosting (XGBoost) is an optimized
model of classical gradient boosting techniques, offering
computational  efficiency, performance, additional
regularization methods and innovative tree learning
strategies in predictive modeling [33].

XGBoost is a gradient boosting-based method that
minimizes a loss function with a gradient descent algorithm,
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forming an ensemble of DT where each tree corrects the
errors of previous trees, resulting in high prediction Acc [34].

3.4 Pre-trained models

A pre-trained model is an Al model that has been trained
on large data sets pre-task and has learned the general
features of the language. It is then retrained and used for a
specific task.

Pre-trained models are Al models that have been pre-
trained on large datasets. Since these models have learned
the general structure and statistical properties of the
language, they can show high performance with much less
data by fine-tuning for a specific task. Thus, both the training
time is shortened, and the generalization ability of the model
is increased [35]. In this study, comparative performance
analysis was performed on text classification tasks using the
pre-trained language models RoBERTa, DistilBERT and
alBERT.

3.4.1 RoBERTa

RoBERTa (A Robustly Optimized BERT Pretraining
Approach) is a version of the BERT architecture proposed
by Liu et al. that further optimizes the training process and is
trained on large datasets [36].

3.4.2 DistilBERT

DistilBERT is a smaller and faster version of BERT
developed by Sanh et al. using the knowledge distillation
technique to reduce model size and computational cost [37]

3.4.3 alBERT

aLBERT (A Lite BERT) is an architecture proposed by
Lan et al. that aims to reduce the size of the model through
strategies such as parameter sharing and embedding
factorization [38]. These models are characterized by high
Acc and representativeness in NLP tasks.

4 Experimental setup and results

In this study, experiments were conducted to detect fake
news using both traditional and transformer-based NLP
approaches. For traditional models, text data was vectorized
using TF-IDF and BoW methods, which were then provided
as input to classical ML algorithms such as NB, LR, DT,
SVM, and KNN.

In parallel, contextual embeddings were derived from
pre-trained transformer models — specifically DistilBERT,
RoBERTa, and aLBERT — to capture deeper semantic
information. Each sentence was tokenized using the Hugging
Face tokenizer, and the [CLS] token embedding was
extracted from the final hidden state of the transformer
model. These fixed-size embeddings were not fine-tuned but
used as static feature vectors. These vectors were then passed
as input to classifiers including LR, SVM, KNN, DT,
AdaBoost, and XGBoost, which were trained on top of the
extracted embeddings. This pipeline allowed evaluation of
traditional classifiers using transformer-derived features.

All experiments were conducted using the CoVIDI19-
FNIR dataset with 80% training and 20% testing split.
Preprocessing steps such as removal of special characters,

lowercasing, and tokenization were applied prior to model
input.

Hyperparameter tuning was performed using
GridSearchCV for classifiers such as LR, XGBoost, DT,
KNN, and SVM, and the configuration details are provided
in Table 2.

Table 2. Parameter optimization table.

Parameter Values
C 0.1, 1, 10, 100
LR penalty 11,12
n_estimator 50, 100, 200
XGB max_depth 3,4,5
DT max_depth 5,10, 20
KNN n_neighbor 1to20;7
SVM C 0.1, 1,2,3,4,5,6,7,8,910

* Selected parameter is in bold

After the TF-IDF process, the training and test data were
separated into 80% and 20% respectively, and the results of
the confusion matrix are presented in Table 3. The Acc, F1,
Precision, Recall, and Specificity metrics are presented in
Table 4. The confusion matrix results for the same
representation method using 5-fold cross-validation
separation are given in Table 5, alongside the metrics
obtained from this matrix in Table 6.

Table 3. Confusion matrix results of models with TF-IDF
after 80%-20%.

Real Values

Model Predicted
Values 0 1
0 676 67
LR 1 88 687
0 661 121
NB 1 103 633
0 656 70
DT 1 108 684
0 709 470
KNN 1 55 284
0 696 90
SVM 1 68 664
0 546 54
AdaBoost 1 218 700
0 693 44
Stacking 1 71 710
. 0 698 63
Hard Voting 1 66 691
. 0 673 36
SOft VOtlIlg 1 91 718
0 666 42
XGBoost ) 08 712

According to the results of the confusion matrix
presented in Table 3, the Stacking model with TF-IDF
representation was the most successful. This model stood out
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due to its high Acc and balanced TP and TN values. Soft
Voting yielded the highest recall, while the LR and SVM
models also demonstrated stable performance.

In contrast, the KNN and AdaBoost models exhibited
inferior performance due to their elevated error rates.
Overall, ensemble methods delivered stronger results when
combined with the TF-IDF representation.

Table 4. Performance results of models with TF-IDF after
80%-20%.

Model Acc Fl1 Precision  Recall Specificity
LR 0.8972  0.8986  0.8865 09111  0.8845
NB 0.8523  0.8490  0.8590 0.8393  0.8657
DT 0.8825  0.8848  0.8636 09071  0.8585
KNN 0.6540  0.5194  0.8378 0.8376  0.9279
SVM 0.8959  0.8932  0.9066 0.8801  0.9110

AdaBoost 0.8205  0.8375  0.7627 0.9284  0.7141
Stacking 09262 09251  0.9091 0.9417  0.9071

Hard 09163 09146  0.9128 09164 09136
Voting

Soft Voting  0.9084 09107  0.8791 0.9443  0.8715

XGBoost 0.9165 09189  0.8875 0.9517  0.8809

Table 5. Confusion matrix results of models with TF-IDF
after 5-fold.

Real Values

Model Predicted
Values 0 1
LR 0 887 88
1 868 159
NB 0 861 92
1 931 617
DT 0 914 118
1 717 71
KNN 0 910 58
1 916 83
SVM 0 883 47
1 874 55
AdaBoost 0 887 88
1 868 159
Stacking 0 861 92
1 931 617
Hard Voting 0 914 118
1 717 71
Soft Voting 0 910 58
1 916 83
XGBoost 0 883 47
1 874 55

According to Table 4, the Stacking model achieved the
highest Acc and F1 using the TF-IDF representation (92.62%
Acc, 92.51% F1). This was followed by the XGBoost, Hard
Voting and Soft Voting models. Notably, the XGBoost
model achieved the highest recall value of 95.17%, making

it the most effective at discriminating between positive
classes. Conversely, the KNN model showed the lowest
performance in all metrics. These findings suggest that
ensemble methods with TF-IDF offer stronger classification
performance.

According to the results in Table 5, the most successful
models in the confusion matrices obtained using the BoW
vectorization method with an 80:20 training-test split are
Stacking and Hard Voting. The Stacking model
demonstrated a balanced and robust performance with 617
TP and only 92 FN. The Hard Voting model was similarly
successful in distinguishing positive classes, with 617 TP
and 118 FN. The Soft Voting model showed a more
moderate performance, with 583 TP and 47 FN, but its false
positive values were higher compared to Stacking and Hard
Voting. On the other hand, the KNN model showed the
weakest performance with 142 FP and 103 FN, revealing its
sensitivity to the data structure. Similarly, the AdaBoost
model also failed to distinguish positive classes and showed
a remarkably low performance, particularly with 218 FN.

Overall, the results demonstrate the effectiveness of the
TF-IDF method in identifying positive classes within certain
models, particularly when ensemble methods are employed.

Table 6. Performance results of models with TF-IDF after
5-fold.

Model Acc Fl1 Precision  Recall Specificity
LR 0.8976  0.8984 09111 0.8861 0.9097
NB 0.8525  0.8497 0.8394 0.8602 0.8452
DT 0.8826  0.8847 0.9071 0.8635 0.9035
KNN 0.6543  0.5199 0.3768 0.8382 0.6014
SVM 0.8961  0.8939 0.8808 0.9074 0.8857

AdaBoost 0.8209  0.8374 0.9283 0.7627 0.9099

Stacking 0.9242  0.9251 0.9414 0.9093 0.9401

Hard
Voting

Soft Voting  0.9166 0.919 0.9525 0.8878 0.9495

09147  0.9143 0.9162 0.9125 0.9169

XGBoost 0.9076  0.9103 0.9444 0.8786 0.9408

According to the results in the Table 6, the Stacking
method showed the best performance among the models
trained with TF-IDF. This model outperformed all other
methods in terms of Acc (0.9242), F1 (0.9251), and precision
(0.9414).

The Soft Voting model achieved the highest success in
terms of specificity (0.9495), excelling in distinguishing
negative classes. Among the single models, XGBoost
attracted attention with its high precision (0.9444), but its
sensitivity remained relatively low (0.8786). LR and SVM
showed balanced and strong performance, while Naive
Bayes and Decision Tree yielded more average results. The
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weakest model was KNN, with Acc (0.6543) and Fl1
(0.5199) values.

Overall, ensemble methods were found to be much more
successful than individual models, with the Stacking model
in particular delivering the most balanced and highest results
across all metrics.

After BoW, the training and test data were split in an 80-
20 ratio, and the confusion matrix results are presented in
Table 7. The Acc, F1, Precision, Recall, and Specificity
metrics are presented in Table 8.

The confusion matrix results for the same representation
method with 5-fold cross-validation are presented in Table
9, and the results of the metrics obtained from this matrix are
presented in Table 10.

Table 7. Confusion matrix results of models with BoW after
80%-20%.

Predicted Real Values
Model Values
0 1
0 675 29
B ! 89 705
B 646 76
NB 1 118 678
0 655 67
T 1 109 687
0 661 142
KNN | o61 12
0 679 59
SVM 1 o5 .
0 546 54
AdaBoost 1 218 700
- 0 689 4
Stacking ; 75 2
0 672 36
Hard Voting 1 9 18
0 695 56
Soft Voting 1 69 208
0 668 40
XGBoost 1 o o

According to the results in Table 7, Stacking, Hard
Voting, and XGBoost emerged as the most successful
models in the confusion matrices obtained using the BoW
vectorization method with an 80:20 training-test split.
Stacking demonstrated balanced and strong performance,
achieving 712 true positives (TP) and only 75 false negatives
(FN), while also keeping false positives low.

Hard Voting achieved the highest recall, with 718 TP and
just 36 FN, highlighting its strong capability to distinguish
positive classes. Similarly, XGBoost also performed
impressively, with 714 TP and 40 FN, confirming its
robustness. Soft Voting was competitive as well, achieving
698 TP and 56 FN, but performed slightly behind Hard
Voting and XGBoost.

Conversely, the KNN model showed weak performance,
with 142 false positives (FP) and 103 false negatives (FN),
indicating its sensitivity to the data structure. Likewise, the

AdaBoost model underperformed in identifying positive
classes, producing a very high number of false negatives
(218) despite achieving a reasonable number of true
positives.

Table 8. Performance results of models with BoW after
%80-%20.

Model Acc Fl1 Precision  Recall Specificity
LR 0.9098 0.9109  0.8879 0.9350  0.8836
NB 0.8722 0.8748  0.8518 0.8992  0.8455
DT 0.8841 0.8865  0.8631 09111  0.8573
KNN 0.8386 0.8332  0.8559 0.8117  0.8652
SVM 0.9051 0.9061  0.891 0.9218  0.8887

AdaBoost  0.8208 0.8373 0.7625 0.9284  0.7147

Stacking 0.9229 0.9241 0.9047 0.9443 0.9018

Hard 0.9157 09182  0.8864 0.9523  0.8796
Voting
Soft 0.9177 09178 091 0.9257  0.9097
Voting

XGBoost  0.9104 0913 0.8815 0.9469  0.8743

Table 9. Confusion matrix results of models with BoW after
after 5-Fold Cross validation

Predicted Real Values

Model Values
0 1

LR 0 886 o4

1 848 100
NB 0 860 88

1 868 186
DT 0 891 77

1 717 71
KNN 0 904 s

1 882 47
SVM 0 912 24

1 877 52
AdaBoost 0 886 64

1 848 100
Stacking 0 860 88

1 868 186
Hard Voting 0 891 77

1 717 71
Soft Voting 0 904 5

1 882 47
XGBoost 0 912 74

1 877 52

According to the performance results in Table 8, the
Stacking model produced the best results with the BoW
representation, achieving 92.29% Acc and a 92.41% F1
score. Hard Voting performed best at detecting positive
classes, achieving the highest recall of 95.23%. Soft Voting
and XGBoost also performed well, achieving balance and
high performance.
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Classical models such as LR and SVM produced strong
results, achieving over 90% Acc. By contrast, the AdaBoost
and KNN models performed relatively poorly, particularly in
terms of specificity and precision. Overall, ensemble models
with BoW vectorization provided the most consistent, high-
quality performance.

Table 9 shows the classification trends of the models
after 5-fold cross-validation using the BoW representation.
Notably, the Stacking and NB models achieved relatively
high TP wvalues (186 for both), indicating stronger
performance in identifying positive classes and thus higher
recall. Conversely, models such as KNN, Soft Voting, and
XGBoost were more successful at predicting the negative
class correctly, as reflected in their lower numbers of false
positives. The SVM model demonstrated balanced
prediction ability, achieving 912 TN and 52 FN, which
indicates stable and reliable performance across both classes.

Overall, these results confirm that the choice of model
and the representation method significantly affect
classification performance in the 5-fold cross-validation
setting, with ensemble and probabilistic methods excelling
in recall, while distance-based models like KNN performed
better in controlling false positives.

Table 10. Performance results of models with BoW after 5-
Fold Cross validation

Model Acc F1 Precision  Recall  Specificity
LR 0.9091 0.9109 0.9353 0.8877 0.9326
NB 0.8721 0.8747 0.899 0.8517 0.8945
DT 0.8841 0.8865 09111 0.8632 0.9072

KNN 0.8389 0.8334 0.8119 0.8561 0.8235

SVM 0.9051 0.9061 0.9221 0.8906 0.9205

AdaBoost  0.8209 0.8374 0.9283 0.7627 0.9099

Stacking 0.9232 0.9243 0.9444 0.905 0.9426

Hard 09157 09181 09525  0.8862 0.9494
Voting
Soft 09172 09174 09253  0.9096 0.9249
Voting

XGBoost 0.9106 0.9133 0.9474 0.8815 0.944

When Table 9 and Table 10 are evaluated together, the
Stacking model demonstrated the best overall performance
after 5-fold cross-validation with BoW representation. This
model stood out with its high true positive values and low
false negative rate, and also outperformed all other models
with the highest Acc and F1 score. Hard Voting stood out

with the highest precision and specificity values, making it
the most successful method in reducing false positives.

The Soft Voting model also showed balanced
performance, yielding results closest to Stacking with
91.72% Acc and strong Recall. XGBoost showed strong
performance with high Precision and Specificity, but lagged
behind Stacking and Soft Voting due to its relatively lower
recall. Among the classic models, LR and SVM achieved
strong results with Acc and F1 scores above 90%, while DT
and NB showed moderate performance. In contrast, KNN
achieved lower success, and AdaBoost was insufficient in
distinguishing positive classes, particularly due to its low
recall value. Overall, the results clearly show that ensemble
methods with BoW representation offer more balanced and
superior performance compared to classical models.

After the DistilBERT training, the data was split into
training and test sets at a ratio of 80:20, and the results of the
confusion matrix are presented in Table 11. The Acc, FI,
Precision, Recall, and Specificity metrics are presented in
Table 12.

The confusion matrix results for the same representation
method using 5-fold cross-validation are given in Table 13,
and the metrics obtained from this matrix are given in Table
14.

Table 11. Confusion matrix results of models with
DistilBERT after 80%-20%.

Real Values

Model E/r;?;ecsted
0 1

LR 0 1070 79

1 110 1018
NB 0 981 183

1 199 914
DT 0 879 238

1 301 859
KNN 0 926 90

1 254 1007
SVM 0 1013 62

1 167 1035
AdaBoost 0 1021 186

1 159 911
Stacking 0 1074 78

1 106 1019
Hard Voting 0 1040 57

1 140 1040
Soft Voting 0 1045 94

1 135 1003
XGBoost 0 1047 81

1 133 1016

According to the results in Table 11, the models trained
using the DistilBERT representation achieved high
classification performance with a training-to-test separation
of 80:20. Notably, the Stacking model achieved high correct
prediction rates for both classes. Ensemble methods such as
Hard Voting and Soft Voting also produced balanced results
and achieved high positive class recognition rates. XGBoost
and SVM models also demonstrated high Acc and consistent
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performance. In contrast, NB and DT models performed less
well, particularly in negative class predictions.

Overall, models integrated with DistilBERT produced
more stable and robust results than classical representations,
and ensemble methods successfully balanced the two classes
using this representation method.

Table 12. Performance results of models with DistilBert
after 80%-20%.

Model Acc Fl1 Precision  Recall  Specificity
LR 09170  0.9188 0.9068 0.9312 0.9105
NB 0.8322  0.8271 0.8212 0.8332 0.8314
DT 0.7633  0.7612 0.7405 0.7830 0.7449
KNN 0.8489  0.8541 0.7986 0.9180 0.7847
SVM 0.8994  0.9004 0.8611 0.9435 0.8585

AdaBoost 0.8485 0.8408 0.8514 0.8304 0.8653

Stacking 0.9192 09172 0.9058 0.9289 0.9102

Hard 09135 09135 08814 09480  0.8814
Voting
Soft 0.8994  0.8975  0.8814 09143  0.8856
Voting

XGBoost 0.9060  0.9047 0.8842 0.9262 0.8873

According to the performance results of the models based
on the DistilBERT representation in Table 12, which have an
80%-20% training test ratio.The Stacking model was the
most successful overall, achieving the highest Acc (Acc =
91.92%) and a very high F1 (91.72%). The LR and Hard
Voting models also performed well, achieving high Acc and
balanced F1, precision and recall values. SVM was
particularly successful in correctly predicting positive
classes, achieving a high recall of 94.35%, while Hard
Voting improved upon this metric, reaching 94.80%. This
demonstrates the effectiveness of these models in reducing
false negatives. Conversely, some models, such as NB and
DT, had lower Acc and balance metrics, indicating that these
models are less adaptive to transformer-based vector
representations.Overall, DistilBERT  provided more
consistent and higher performance than traditional text
representation methods for many models, particularly when
used with ensemble methods and DL integrations.

Table 13 results show that the most successful models
with DistilBERT representation are SVM, XGBoost, and
Soft Voting. These models stand out with high true positive
values and low false negative rates. In contrast, some
methods such as DT and Hard Voting have been weaker in
capturing positive classes, while NB and Stacking have
shown inconsistent performance.

Overall, ensemble methods and robust classical models
(especially SVM and XGBoost) provide more reliable
performance with DistilBERT.

Table 13. Confusion matrix results of models with
DistilBERT after 5-Fold cross validation

. Real Values
Model E]reldlcted
alues 0 1

LR 0 1404 104

1 1288 240
NB 0 1154 312

1 1215 118
DT 0 1330 81

1 1340 244
KNN 0 1410 102

1 1365 75
SVM 0 1372 123

1 1374 106
AdaBoost 0 1404 104

1 1288 240
Stacking 0 1154 312

1 1215 118
Hard Voting 0 1330 81

1 1340 244
Soft Voting 0 1410 102

1 1365 75
XGBoost 0 1372 123

1 74 938

Table 14. Performance results of models with DistilBert
after 5-Fold cross validation.

Model Acc Fl1 Precision  Recall Specificity
LR 0917 09151 0.9278 0.9027 0.931
NB 0.8324  0.8273 0.8333 0.8214 0.8429
DT 0.7634  0.7612 0.7832 0.7405 0.7872
KNN 0.8491  0.8543 0.9181 0.7988 09115
SVM 0.8996  0.9005 0.9437 0.8611 0.9426

AdaBoost 0.8484  0.8408 0.8306 0.8512 0.846

Stacking 09193  0.9173 0.9291 0.9058 0.9325
Hard 09133 09133 0.9479 0.8812 0.9479
Voting
Soft 0.8996  0.8977 0.9145 0.8814 09177
Voting
XGBoost 0.906 0.9047 0.9264 0.884 0.9284

When Table 13 and Table 14 are evaluated together, the
Stacking, Hard Voting, Soft Voting, and XGBoost models
achieved the most successful results after 5-fold cross-
validation with the DistilBERT representation. The Stacking
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model stood out with its high number of true positives and
low false negative rate and also led in overall performance
with the highest Acc and F1.

Hard Voting was the method that best reduced false
positives, particularly with the highest Precision and
specificity values, while Soft Voting and XGBoost also
attracted attention with their balanced and strong results.
Among classical models, LR showed strong performance
with 91.7% Acc and the highest precision value, while SVM
also demonstrated consistent success. In contrast, DT, NB,
KNN, and AdaBoost models performed poorly with lower
Acc and F1 values. Overall, the results reveal that ensemble
methods stand out under the DistilBERT representation and
offer the most consistent performance.

After RoBERTa training, the data was split into training
and test sets at a ratio of 80:20, and the results of the
confusion matrix are presented in Table 15. The Acc, FI,
Precision, Recall, and Specificity metrics are presented in
Table 16. The confusion matrix results for the same
representation method using 5-fold cross-validation are
given in Table 17, and the metrics obtained from this matrix
are given in Table 18.

Table 15. Confusion matrix results of models with
RoBERTa after %80-%20.

: Real Values

Model Predicted
Values 0 1

0 1009 96
LR

1 171 1001

0 954 212
NB

1 226 885

0 909 237
DT

1 271 860

0 1050 125
KNN

1 130 972

0 936 142
SVM

1 244 955

0 999 172
AdaBoost

1 181 925

0 1027 90
Stacking

1 153 1007

0 977 113
Hard Voting

1 203 984

. 0 984 142

Soft Voting

1 196 955

0 1052 69
XGBoost

1 128 1028

Table 15 shows the classification performance of the
models trained using the RoOBERTa representation, with 80%
of the data used for training and 20% for testing. XGBoost is
particularly notable as the most successful model, achieving
a high number of correct predictions in both the negative
(1052) and positive (1,028) classes. The Stacking and LR
models also produced balanced and robust results with high
Acc. Conversely, the NB and DT models performed poorly

in recognising the negative class, resulting in more
misclassifications. Ensemble models such as Hard Voting
and Soft Voting performed strongly in distinguishing
positive classes. Overall, models working with the
RoBERTa representation demonstrated high levels of Acc,
Recall and stability, and more advanced methods were more
successful with this representation.

Table 16 shows the performance results for the models
trained using the RoBERTa representation on the test set
with an 80:20 training-testing split. The results show the
Acc, F1, Precision, Recall, and Specificity metrics. The most
successful model was XGBoost, achieving 91.22% Acc and
a 91.26% F1. This was followed by Stacking, which also
demonstrated high levels of Acc and Rec. While the KNN
and NB models produced balanced results, others such as the
DT and SVM models performed relatively poorly.

The ensemble models Hard Voting and Soft Voting
produced good results, particularly in terms of precision;
however, their overall Acc was lower than that of XGBoost
and Stacking. These results demonstrate that models based
on the RoOBERTa representation offer a robust foundation for
text classification and that achieving high-performance
hinges on selecting the right model.

Table 16. Performance results of models with RoBERTa
after %80-%20.

Model Acc Fl1 Precision  Recall  Specificity
LR 0.8825  0.8559 0.8537 0.9125 0.8821
NB 0.8827  0.8832 0.855 0.9131 0.854
DT 0.7770  0.7703 0.7605 0.7839 0.7720
KNN 0.8875  0.8898 0.8821 0.8861 0.8841
SVM 0.8302  0.7932 0.7965 0.8705 0.8317

AdaBoost 0.8448 0.8466 0.8366 0.8431 0.8398

Stacking 0.8914 0.8922 0.8680 0.9180 0.8704
Hard
Voting
Soft
Voting
XGBoost 0.9122 0.9126 0.8892 0.9371 0.8915

0.8633 0.8616 0.8291 0.8970 0.8279

0.8547 0.8496 0.8297 0.8705 0.8347

According to the results in Table 17, after 5-fold cross-
validation with RoBERTa representation, the most
successful models were KNN and Soft Voting. Both models
demonstrated strong performance in distinguishing positive
classes, with 148 true positives and 118 false negatives.

LR and AdaBoost produced similar results, showing
balanced performance with 278 true positives and 126 false
negatives. DT and Hard Voting remained at an intermediate
level with 226 true positives and 186 false negatives, while
NB and Stacking models showed poor performance with 164
true positives and 311 false negatives due to high error rates.
On the other hand, SVM and XGBoost were the models with
the lowest performance in capturing the positive class, with
only 91 true positives and 186 false negatives.

Overall, Soft Voting and KNN stood out under the
RoBERTa representation, while some models were found to
be inadequate, particularly in identifying positive classes.
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Table 17. Confusion matrix results of models with
RoBERTa after 5-fold cross validation.

Predicted Real Values
model Values
0 1
LR 0 1324 126
1 1252 278
NB 0 1193 311
1 1378 164
DT 0 1228 186
1 1311 226
KNN 0 1348 118
1 1282 148
SVM 0 1292 186
1 1381 91
AdaBoost 0 1324 126
1 1252 278
Stacking 0 1193 311
1 1378 164
Hard Voting 0 1228 186
1 1311 226
Soft Voting 0 1348 118
1 1282 148
XGBoost 0 1292 186
1 1381 91

Table 18. Performance results of models with RoBERTa
after 5-fold cross validation.

Model Acc F1 Precision Recall  Specificity
LR 0.8829  0.8825 0.9125 0.8544 0.9131
NB 0.8076  0.8017 0.8069 0.7964 0.8183
DT 0.7768 0.772 0.784 0.7603 0.7932
KNN 0.8879 0.884 0.8861 0.8818 0.8936
SVM 0.8306 0.832 0.8707 0.7966 0.8685

AdaBoost 0.8448  0.8396 0.8431 0.8361 0.853

Stacking 0.8933  0.8923 0.9181 0.868 0.9195
Hard 0.8614  0.8619 0.8972 0.8293 0.8965
Voting
Soft 0.8517  0.8498 0.8707 0.8298 0.8742
Voting

XGBoost 0.9133  0.9124 0.9368 0.8893 0.9382

According to the results in Table 18, XGBoost is the most
successful model after 5-fold cross-validation with
RoBERTa representation. XGBoost achieved the highest
Acc, Fl, and Precision values, and also strongly
distinguished both positive and negative classes with Recall
and Specificity results. Stacking also performed strongly,
producing balanced results with an Acc of 0.8933 and an F1
score of 0.8923. The KNN and SVM models showed
moderate success, with KNN being one of the best classical
models, achieving 88.79% Acc and an F1 score of 0.884. LR

also offered balanced performance with 0.8829 Acc and
0.8825 F1 scores. In contrast, DT and NB showed lower
performance, while AdaBoost remained at an intermediate
level.

Overall, the results in Table 18 show that XGBoost
delivered the strongest performance under the RoBERTa
representation, followed by Stacking and KNN, while LR
and SVM stood out among the classical methods.

After the alBERT training and test data were separated
by 80% and 20%, respectively, the results of the confusion
matrix are presented in Table 19.

The Acc, F1, Precision, Recall, and Specificity metrics
are presented in Table 20. The results of the confusion matrix
for the 5-fold cross-validation separation using the same
representation method are given in Table 21, alongside the
metrics obtained from this matrix in Table 22.

Table 19. Confusion matrix results of models with alBERT
after %80-%20.

Model P{f ;ilil(;: d Real Values
0 1
0 1052 132
LR 1 128 965
0 824 356
NB 1 356 741
0 899 301
DT 1 281 796
0 939 227
KNN 1 241 870
0 1001 102
SVM 1 179 985
0 932 203
AdaBoost 1 248 394
. 0 1049 110
Stacking 1 131 987
0 1042 95
Hard Voting 1 138 1002
0 1054 125
Soft Voting 1 126 972
XGBoos 0 103 21

Table 19 shows the classification performance of the
models trained with the aLBERT representation, after the
data was separated into 80% for training and 20% for testing.
Notably, the Stacking, Hard Voting and XGBoost models
achieved high correct prediction rates in both the negative
and positive classes. For instance, the Stacking model
achieved a balanced outcome by correctly predicting 1049
negative and 987 positive examples. Similarly, the Soft
Voting model achieved high success in predicting the
positive class (TP = 972). Conversely, the NB and DT
models demonstrated lower Acc, particularly in the negative
classes, suggesting that they are less well adapted to the
aLBERT representation.
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Overall, the transformer-based alBERT representation,
when combined with ensemble and DL-based models,
produced robust and balanced classification results.

Table 20. Performance results of models with aLBERT after
%80-%20.

Model Acc Fl1 Precision ~ Recall  Specificity
LR 0.8856  0.8812 0.8830 0.8795 0.8915
NB 0.6873  0.6755 0.6755 0.6755 0.6983
DT 0.7444  0.7323 0.7391 0.7256 0.7619
KNN 0.7945  0.7880 0.7831 0.7931 0.7958
SVM 0.8766  0.8763 0.8475 0.907 0.8483

AdaBoost  0.8019  0.7986 0.7828 0.8149 0.7898

Stacking 0.8942  0.8912 0.8828 0.8997 0.8890

Hard 0.8977 0.8958  0.8789  0.9134 0.8831
Voting
Soft
. 0.8898 0.8805  0.8714  0.8897 0.8780
Voting
XGBoost  0.8836 0.8856¢  0.8852  0.8861 0.8932

As shown in Table 20, the results demonstrate the
classification performance of the models trained using the
aLBERT representation with an 80:20 training-testing
separation. The Hard Voting model achieves the highest Acc
(89.77%) and F1 (89.58%). This is closely followed by the
Stacking and Soft Voting models, which also achieved a very
balanced, high performance. Stacking stands out, achieving
89.42% Acc and 89.12% F1, while XGBoost demonstrates
balanced performance in terms of both Precision (88.52%)
and Sensitivity (88.61%). Conversely, the NB and DT
models showed lower performance than the other models.

These results demonstrate the effectiveness and
reliability of ensemble methods and advanced ML models
combined with the aLBERT representation for text
classification tasks.

Table 21 shows the confusion matrices obtained in the 5-
fold cross-validation process wusing the aLBERT
representation. These results are important for evaluating
general trends and the success of the models' classification.

Notably, the KNN, Soft Voting and XGBoost models
demonstrate high rates of correct prediction in both positive
and negative classes. These models have a low
misclassification rate and are well balanced. For instance, the
SVM model correctly classified 1,054 negative samples and
made 121 correct predictions in the positive class.

Conversely, models such as NB, LR and AdaBoost
produced more incorrect predictions, particularly in the
positive class, resulting in weaker performance compared to
the other models. The same is true of the Stacking model: the

low number of correct predictions in the positive class limits
the model's overall performance.

Overall, this table shows that, with the aLBERT
representation, the KNN, SVM, Soft Voting and XGBoost
models are more stable and perform better in cross-
validation.

Table 21. Confusion matrix results of models with alBERT
after 5-fold cross validation.

. Real Values
0 1
LR 0 1052 132
1 824 356
NB 0 899 301
1 939 227
DT 0 1001 102
1 932 203
KNN 0 1049 110
1 1042 95
SVM 0 1054 125
1 1036 121
AdaBoost 0 1052 132
1 824 356
Stacking 0 899 301
1 939 227
Hard Voting 0 1001 102
1 932 203
Soft Voting 0 1049 110
1 1042 95
XGBoost 0 1054 125
1 1036 121

Table 22. Performance results of models with aLBERT after
5-fold cross validation.

Model Acc Fl1 Precision  Recall  Specificity
LR 0.8858  0.8813 0.8797 0.8829 0.8885
NB 0.6873  0.6755 0.6755 0.6755 0.6983
DT 0.7444  0.7323 0.7256 0.7391 0.7492
KNN 0.7945 0.788 0.7931 0.7831 0.8053
SVM 0.876  0.8752 0.9062 0.8462 0.9075

AdaBoost  0.8019  0.7986 0.8149 0.7828 0.8211
Stacking 0.8942  0.8912 0.8997 0.8828 0.9051
Hard

Voting

Soft

Voting

XGBoost 0.8836  0.8805 0.8897 0.8714 0.8954

0.8977  0.8958 0.9134 0.8789 0.9164

0.8898  0.8856 0.8861 0.8852 0.894

Table 22 shows the performance metrics of each model
at the end of the 5-fold cross-validation process using the
aLBERT representation.

The Hard Voting model was the most successful,
achieving 89.77% Acc, 89.58% F1, 91.34% precision and
87.89% recall. The Stacking and Soft Voting models showed
similarly balanced and high performance, with Stacking
achieving success in negative classes with 90.51%
specificity.
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The SVM model effectively classified the positive
classes with 90.62% precision, whereas the other classical
models (NB and DT) had lower success rates.

These findings demonstrate that models based on the
aLBERT representation offer more stable and superior
performance, particularly when combined with ensemble
methods. They also emphasise the importance of robust
evaluation methods, such as accurate text representation,
cross-validation and model selection.

The study comparatively evaluates the various ML and
DL models and text representation methods (TF-IDF, BoW,
DistilBERT, RoBERTa and aLBERT) used. Transformer-
based representations, particularly DistilBERT, RoBERTa,
and aLBERT, generally produced higher Acc, F1 and Rec
values than classical methods such as TF-IDF and BoW.
Across all representations, ensemble models such as
Stacking, Hard Voting and Soft Voting demonstrate the
strongest and most consistent performance. Notably,
Stacking achieves the highest success rates with both
classical and transformative representations. Conversely,
simpler models such as NB and DT performed poorly, with
generally low precision and recall values. The results
demonstrate that the choice of representation method directly
impacts model performance, and that ensemble methods,
particularly when combined with robust text representations,
can significantly enhance classification performance.

5 Conclusion and discussion

This study assessed the classification performance of
various ML and DL models on the CoVID19-FNIR dataset
for the detection of false information related to the SARS-
CoV-2 pandemic. Two widely used text vectorization
techniques, TF-IDF and BoW, were employed. The dataset
was split into 80% for training and 20% for testing.

In addition to classical ML algorithms such as LR and
SVM, transformer-based models (DistilBERT, RoBERTa,
aLBERT) and ensemble approaches (Stacking, Hard Voting,
Soft Voting) were integrated. The results revealed that both
the choice of model and text representation method
significantly influence classification performance. Among
all approaches, the Stacking ensemble model delivered the
highest performance with both vectorization techniques —
achieving 92.62% Acc and 92.51% F1 with TF-IDF, and
92.29% Acc and 92.41% F1 with BoW. Notably, the Hard
Voting model, combined with BoW, achieved an impressive
recall of 95.23%, highlighting its strength in correctly
identifying positive samples.

Furthermore, LR and SVM showed improved
performance with BoW compared to TF-IDF, reaching
90.98% and 90.51% Acc, respectively. While TF-IDF
yielded more balanced performance across metrics, BoW
stood out with higher precision and recall in several models
— suggesting that word frequency-based representations
may be more compatible with traditional and ensemble
models.

Overall, the findings emphasize that optimal
performance in fake news detection depends on the careful
selection of both the model and the feature representation.

Future work will focus on evaluating domain-specific
pre-trained BERT variants, exploring multilingual datasets
for broader applicability, and testing model robustness in
open-world scenarios. In addition, the explainability of
model decisions will be investigated through explainable
artificial intelligence techniques to enhance model
transparency and user trust.
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