

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2025; 14(4), 1447-1461

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: muhammet.basarslan@medeniyet.edu.tr (M. S. Başarslan)
Geliş / Received: 07.05.2025 Kabul / Accepted: 03.09.2025 Yayımlanma / Published: 15.10.2025

doi: 10.28948/ngumuh.1694988

1447

The effect of text representation and model selection on classification

performance: A comprehensive comparison of TF-IDF, Bow and Transformer-

based methods on the Covid19-FNIR dataset

Metin temsili ve model seçiminin sınıflandırma performansına etkisi: Covid19-

FNIR veri seti üzerinde TF-IDF, BoW ve Transformatör tabanlı yöntemlerin

kapsamlı bir karşılaştırması

Muhammet Sinan Başaraslan1,* , Fatih Bal2

1 Istanbul Medeniyet University, Computer Engineering Department, 34700, Istanbul Türkiye
2 Kırklareli University, Software Engineering Department, 39010, Kırklareli, Türkiye

Abstract Öz

This study evaluates the performance of various machine

learning (ML) models on a dataset split into 80% training

and 20% testing using Term Frequency-Inverse Document

Frequency (TF-IDF) and Bag of Words (BoW) text

vectorization. Transformer-based models like DistilBERT,

RoBERTa, and alBERT were integrated with classical ML

algorithms and ensemble methods such as Stacking, Hard

Voting, and Soft Voting. Stacking achieved the highest

performance with both methods—92.62% Accuracy (Acc)

and 92.51% F1-score (F1) with TF-IDF, and 92.29% Acc

and 92.41% F1 with BoW. Hard Voting with BoW yielded

the highest Recall (95.23%). Classical models like Logistic

Regression (LR) and Support Vector Machine (SVM)

performed better with BoW, reaching 90.98% and 90.51%

Acc, respectively. Overall, TF-IDF produced balanced

outcomes, while BoW offered higher Recall and Precision

in specific cases. These results highlight the significance of

both model and text representation choices in achieving

optimal classification performance.

 Bu çalışmada, Terim Frekansı-Ters Doküman Frekansı

(TF-IDF) ve Bag of Words (BoW) metin vektörleştirmesi

kullanılarak %80 eğitim ve %20 teste ayrılmış bir veri

kümesi üzerinde çeşitli makine öğrenimi (ML)

modellerinin performansı değerlendirilmiştir. DistilBERT,

RoBERTa ve alBERT gibi dönüştürücü tabanlı modeller,

klasik makine öğrenimi algoritmaları ve Stacking, Hard

Voting ve Soft Voting gibi topluluk yöntemleriyle entegre

edilmiştir. Yığınlama her iki yöntemle de en yüksek

performansı elde etmiştir- TF-IDF ile %92.62 Doğruluk ve

%92.51 F1, BoW ile %92.29 Doğruluk ve %92.41 F1. BoW

ile Hard Voting en yüksek geri çağırmayı (%95,23)

vermiştir. Lojistik Regresyon ve DVM gibi klasik modeller

BoW ile daha iyi performans göstererek sırasıyla %90.98

ve %90.51 Doğruluğa ulaşmıştır. Genel olarak, TF-IDF

dengeli sonuçlar üretirken, BoW belirli durumlarda daha

yüksek geri çağırma ve kesinlik sunmuştur. Bu sonuçlar,

optimum sınıflandırma performansına ulaşmada hem

model hem de metin temsili seçimlerinin önemini

vurgulamaktadır.

Keywords: Fake news, ML, Text Representation, Pre-

trained

 Anahtar kelimeler: Sahte haber, ML, Metin Gösterimi,

Önceden eğitilmiş

1 Introduction

The COVID-19 pandemic has not only led to a major

global health crisis but has also triggered an unprecedented

surge in the spread of misinformation on online platforms.

As social media has become the primary source of real-time

information, the line between verified facts and misleading

claims has become increasingly blurred. The rapid spread of

fake news about treatments, vaccines and infection rates has

led to widespread confusion, public panic and, in some cases,

harmful behavior. There is therefore an urgent need to

develop robust methods to detect and prevent the spread of

such misinformation.

In recent years, the field of Natural Language Processing

(NLP) has witnessed a major transformation with the

emergence of deep learning (DL) and transducer-based

language models. Traditional approaches to fake news

detection often rely on statistical representations of text such

as TF-IDF and BoW, which, while effective to some extent,

often fail to capture the semantic and contextual nuances of

language. On the other hand, transducer-based models such

as BERT, RoBERTa, aLBERT, and DistilBERT have shown

remarkable success in a wide range of NLP tasks due to their

ability to learn deep contextual representations from large-

scale corpora.

In this work, we aim to evaluate the effectiveness of both

traditional ML methods and modern transducer-based

architectures for the task of COVID-19 fake news detection.

For this purpose, we use the CoVID19-FNIR dataset, a

carefully curated corpus containing fact-checked real and

fake news related to the pandemic [1]. The dataset includes

posts collected from verified Twitter accounts and sources

https://orcid.org/0000-0002-7996-9169
https://orcid.org/0000-0002-7179-1634

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1448

such as Poynter, covering various regions including India,

the USA, and Europe between February and June 2020.

We compare the performance of models using both TF-

IDF/BoW representations and contextual embeddings

derived from transformative models. Our goal is to analyze

how different text representation techniques affect

classification performance and identify the most effective

model setup for detecting misinformation related to COVID-

19. This research not only contributes to the growing

literature on fake news detection but also provides practical

insights for building reliable misinformation monitoring

systems during global crises.

Section 2 presents the related work and Section 3

presents the technical background including data source, text

representation, classification models, pre-trained models.

Section 4 presents the experimental setup and results.

Section 5 presents the results and discussion.

2 Related works

Several recent studies have utilized the CoVID-19 Fake

News and Infodemic Research (CoVID19-FNIR) dataset to

detect misinformation during the pandemic. These works

vary in terms of the learning models and text representation

techniques employed.

Sikosana et al. [2] evaluated both traditional ML

algorithms such as Naive Bayes (NB), SVM, and Random

Forest (RF), and DL models including Convolutional Neural

Networks (CNN), Long Short-Term Memory (LSTM), and

a hybrid CNN+LSTM. In addition, they experimented with

transformer-based pre-trained language models such as

DistilBERT and RoBERTa. Their best results were achieved

with a CNN+LSTM model using Word2Vec embeddings,

yielding 99.21% Acc and 99.17% F1.

Vinay et al. [3] focused on ML approaches including NB,

SVM, Decision Trees (DT), RF, and LR, and employed TF-

IDF as a representation method. Their RF model achieved

the highest performance with 99.14% Acc and 99.14% F1-

score.

Qadess and Hannan [4] reported moderate results by

comparing NB, Gradient Boosting, SVM, DT, RF, and LR

models. Their highest F1-score was 91.0%.

Bozuyla and Özçift [5] applied both DL architectures

(LSTM, Bi-LSTM) and transformer-based models (BERT,

RoBERTa, BerTURK) adapted for Turkish texts. They

obtained their best result using BerTURK, with 98.5% aCC

and 98.4% F1-score, demonstrating the effectiveness of

domain-specific transformers.

These studies confirm that the CoVID19-FNIR dataset

enables high-Acc classification using a variety of

approaches. However, most previous research has focused

either on a single model category or has not systematically

compared multiple representation methods across ML and

DL architectures.

3 Material methods

This section describes the technical background,

including data source, text representation, classification

models, pre-trained models.

3.1 Data source

The CoVID19-FNIR dataset is a curated collection of

news content related to the COVID-19 pandemic,

specifically designed for fake news detection tasks. It

includes fact-checked fake news obtained from the Poynter

Institute and authentic news sourced from the verified

Twitter accounts of credible news organizations. The dataset

comprises samples gathered from various regions including

India, the United States, and parts of Europe, covering online

social media activity between February and June 2020. To

ensure data quality and consistency, preprocessing steps

such as the removal of special characters and irrelevant

content have been applied. The overall class distribution

within the dataset is illustrated in Figure 1.

Figure 1. Class distribution of the dataset

According to the class distribution given in Figure 1, the

dataset is balanced. Figure 2 shows the word cloud of the

dataset

Although the dataset used in the study is open source and

pre-processed, it has been reprocessed. In case these

transactions are listed.

• HTML tags have been removed,

• special expressions such as URL and email have

been removed,

• numbers have been removed,

• extra spaces between words have been removed,

• punctuation has been removed,

• it has been broken down into tokens,

• all text data has been converted to lower case so that

words are in a single format,

• Stopwords were removed.

• Each word was lemmatized to its root form to reduce

inflectional forms and improve semantic

consistency.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1449

Figure 2. Dataset word cloud.

The wordcloud in Figure 2 reflects the prominent topics

in public discourse during the COVID-19 pandemic,

particularly centered in India. Various dimensions are

prominently represented, such as the spread of the pandemic

(“coronavirus”, “covid”, “case”), its social impact

(“lockdown”, “people”), its impact on the healthcare system

(“hospital”, “patient”), and government responses

(“government”, “state”).

3.2 Text representation

Text representation methods, also known as language

models, are probability distributions over groups of words

that attempt to make sense of text in a context. Various

statistical and probabilistic techniques are used to determine

the probability of a given sequence of words occurring in a

sentence. Language models are used in various NLP

applications such as text classification, machine translation,

etc.

In order to process textual data, the data must first be

made understandable to machines. Text representation

methods are used to do this. Text representation methods are

a language modelling technique. In this technique, words are

digitized into vectors and represented in vector space.

Another name for this technique is text vectorization.

Text representation methods are classified as follows.

• Frequency-based methods,

• Prediction-based methods,

• Transformer methods.

In this study, BoW and TF-IDF are used as predictive

methods and RoBERTa, DilstilBERT, alBERT is used as

pre-trained transformative methods.

3.2.1 Frequency based methods

The methods used in this study, which are based on the

occurrence of words in sentences, are TF-IDF and BOW.

This section describes TF-IDF and BOW.

3.2.1.1 Term Frequency-Inverse Document Frequency

TF-IDF works by determining the relative frequency of

words in each document and the inverse ratio of these words

in the dataset. It is a statistically calculated weighting factor

that indicates the importance of a term in a document [6]. TF

is the work of Luhn [7] and IDF is the work of Jones [8]. TF

is a technique used to determine the importance of a word

within a specific document. It is calculated by dividing the

frequency of a term by the total number of terms in the same

document. This normalization helps account for document

length and emphasizes terms that appear more frequently

relative to the document size. The formula representing the

TF calculation is given in Equation (1).

𝑇𝐹(𝑖, 𝑗)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡𝑒𝑟𝑚 𝑖 𝑎𝑝𝑝𝑒𝑟𝑠 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑗

(1)

IDF is obtained by dividing the total number of

documents by the number of documents in which the word

occurs. As the value obtained as a result of this process

approaches zero, it is understood that the word occurs in

many places. If it is close to one, it is understood that it

occurs less frequently. This indicates the IDF value, which is

the importance of the word in the document. The IDF is

shown in Equation (2) [9]. The TF-IDF score is calculated as

given in Equation (3).

𝐼𝐷𝐹(𝑖)

= 𝑙𝑜𝑔 (
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑒𝑢𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑖
)

(2)

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗) = 𝑇𝐹(𝑖, 𝑗)𝑥 𝐼𝐷𝐹(𝑖) (3)

In this study, version 1.0.2 of the Python sci-kit learn [10]

library was used for the TF-IDF method.

Table 1. Examples from the dataset

Original data After preprocessing

Breaking News! Visit https://covid-info.com

for more info. Stay safe! Email us at

info@covid.org

break news visit info
stay safe email

COVID-19 vaccines are 95% effective!!!

#pandemic #vaccine2021

covid vaccine effective

pandemic vaccine

3.2.1.2 Bag of Words

BoW is a commonly used approach in natural language

processing that represents text based on word frequency,

disregarding the order or grammar of the words in the

document. Instead of considering the sequence of terms,

BoW focuses solely on how often each word appears. This

technique transforms documents into fixed-length feature

vectors by counting the occurrences of known words across

the dataset. These frequency-based vectors are then utilized

by ML algorithms during the model training process [11,12].

3.2.2 Transformer text representation methods

Waswasi et al [13] developed a new text representation

method called Transformer based on Attention network. In

Transformers, the training time is reduced as the text

representation process is performed in parallel.

Transformer architecture is a closed system consisting of

six Encoders and Decoders.

The six Encoders and six Decoders used in this

architecture are identical. The only difference is the word

embedding at the bottom, which converts the sentences

received by the Encoder into word vectors. There is also a

parameter called position-embedding that converts the

position of the words in the sentences into numerical code.

This vector is the same length as the word embedding vector.

mailto:info@covid.org

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1450

In this way, the position information of the words collected

with word embedding vectors is known [13].

3.3 Classification models

In this section of the study, information on the models

whose performance was evaluated for classification is

presented.

3.3.1 Logistic regression

LR is a statistical model that examines the relationship

between one or more independent variables and the

independent variable [14]. The LR model transforms linear

combinations of independent variables into a value between

0 and 1 by predicting the probability of an event using a

logistic function [15]. The main purpose of the LR is to

enable interpretation of the effect of variables on the

outcome, with the coefficients reflecting the effect of a one-

unit increase in the independent variables on the log-

likelihood of the dependent variable [16].

3.3.2 Naive bayes

NB is a model that performs efficient and probabilistic

classification using Bayes' Theorem [17]. The term “naive”

means that the model assumes conditional independence

between attributes and that each attribute contributes

independently to the class probability [18]. This

independence assumption allows NB to calculate

probabilities efficiently, allowing for effective classification.

3.3.3 Decision tree

The DT model, which works by subdividing the dataset

according to feature conditions, is based on a tree structure

where each internal node represents an attribute test, each

branch represents a test result, and each leaf node represents

a class label or prediction [19]. This tree structure simplifies

the decision-making process and enables effective

monitoring and interpretation of results.

3.3.4 K-nearest neighbor

KNN is a simple and efficient model used in regression

and classification models. Based on instance-based learning,

this nonparametric algorithm classifies a data point

according to the majority class of its KNN in the feature

space; it is flexible and adaptive to different types of data as

it makes no assumptions about the data distribution [20]. The

most common class among these neighbors is selected as the

predicted class for the new instance in classification tasks

[21].

3.3.5 Support vector machine

SVM, developed by Vladimir Vapnik and colleagues,

performs classification by creating an optimal hyperplane

that separates data points of different classes in a high-

dimensional space [22]. The main goal of SVM is to

maximize the margin between the support vectors, which are

the closest data points of each class, so that the model can

perform strong generalization on new and unseen data [23].

SVM, which works on the principle of finding the

optimal hyperplane separating classes with the largest

margin, provides a robust and effective solution to

overfitting in high-dimensional data where the number of

dimensions exceeds the number of samples [24].

3.3.6 Adaptive boosting

Adaptive Boosting (AdaBoost) is a tree-based model that

aims to create a strong classification model by combining

weak and inaccurate prediction trees [25]. AdaBoost is

basically a sequential modeling approach in which each

subsequent weak classifier is trained on examples that were

misclassified in previous steps [26]. AdaBoost starts by

initially giving equal weight to all instances; after each weak

classifier, it increases the weights of the misclassified

instances, allowing subsequent classifiers to focus on these

instances, gradually increasing the overall Acc of the model

[27].

3.3.7 Stacking

It is a technique that combines multiple models to realize

the classification result more efficiently. By combining the

outputs of different base learners through a meta-model, this

method utilizes the strengths of each algorithm to create a

superior prediction model; the stacking approach can be

applied with homogeneous or heterogeneous learners and

generally provides high Acc [28]. The basis of stacking is a

multi-layer structure consisting of a first layer with multiple

base classifiers and a meta-model that learns the outputs of

these models and makes the final prediction; algorithms such

as DT, SVM and neural networks can be used in the base

layer, while the second layer combines these predictions to

form a powerful learning model [29].

3.3.8 Hard and Soft Voting

Voting classifiers are ensemble learning methods that

aim to improve classification performance by combining the

predictions of multiple models. There are two basic types of

voting: Hard Voting and Soft Voting. Hard Voting, or

majority voting, is an ensemble method where each model

votes for only one class label and the class with the most

votes is the final prediction [30]. The Hard Voting approach

shows improved classification performance, especially when

predictions from several classifiers that complement each

other's strengths are combined [31]. In contrast to Hard

Voting, Soft Voting considers not only the class labels of the

models but also the probability distributions they provide for

each class. These probabilities are averaged and the class

with the highest average probability is selected as the final

prediction [32]. This method provides a more precise

combination of predictions by considering the confidence

levels of different classifiers, which usually results in higher

overall Acc.

3.3.9 Extreme gradient boosting

Extreme Gradient Boosting (XGBoost) is an optimized

model of classical gradient boosting techniques, offering

computational efficiency, performance, additional

regularization methods and innovative tree learning

strategies in predictive modeling [33].

XGBoost is a gradient boosting-based method that

minimizes a loss function with a gradient descent algorithm,

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1451

forming an ensemble of DT where each tree corrects the

errors of previous trees, resulting in high prediction Acc [34].

3.4 Pre-trained models

A pre-trained model is an AI model that has been trained

on large data sets pre-task and has learned the general

features of the language. It is then retrained and used for a

specific task.

Pre-trained models are AI models that have been pre-

trained on large datasets. Since these models have learned

the general structure and statistical properties of the

language, they can show high performance with much less

data by fine-tuning for a specific task. Thus, both the training

time is shortened, and the generalization ability of the model

is increased [35]. In this study, comparative performance

analysis was performed on text classification tasks using the

pre-trained language models RoBERTa, DistilBERT and

alBERT.

3.4.1 RoBERTa

RoBERTa (A Robustly Optimized BERT Pretraining

Approach) is a version of the BERT architecture proposed

by Liu et al. that further optimizes the training process and is

trained on large datasets [36].

3.4.2 DistilBERT

DistilBERT is a smaller and faster version of BERT

developed by Sanh et al. using the knowledge distillation

technique to reduce model size and computational cost [37]

3.4.3 alBERT

aLBERT (A Lite BERT) is an architecture proposed by

Lan et al. that aims to reduce the size of the model through

strategies such as parameter sharing and embedding

factorization [38]. These models are characterized by high

Acc and representativeness in NLP tasks.

4 Experimental setup and results

In this study, experiments were conducted to detect fake

news using both traditional and transformer-based NLP

approaches. For traditional models, text data was vectorized

using TF-IDF and BoW methods, which were then provided

as input to classical ML algorithms such as NB, LR, DT,

SVM, and KNN.

In parallel, contextual embeddings were derived from

pre-trained transformer models — specifically DistilBERT,

RoBERTa, and aLBERT — to capture deeper semantic

information. Each sentence was tokenized using the Hugging

Face tokenizer, and the [CLS] token embedding was

extracted from the final hidden state of the transformer

model. These fixed-size embeddings were not fine-tuned but

used as static feature vectors. These vectors were then passed

as input to classifiers including LR, SVM, KNN, DT,

AdaBoost, and XGBoost, which were trained on top of the

extracted embeddings. This pipeline allowed evaluation of

traditional classifiers using transformer-derived features.

All experiments were conducted using the CoVID19-

FNIR dataset with 80% training and 20% testing split.

Preprocessing steps such as removal of special characters,

lowercasing, and tokenization were applied prior to model

input.

Hyperparameter tuning was performed using

GridSearchCV for classifiers such as LR, XGBoost, DT,

KNN, and SVM, and the configuration details are provided

in Table 2.

Table 2. Parameter optimization table.

 Parameter Values

LR
C 0.1, 1, 10, 100

penalty l1, l2

XGB
n_estimator 50, 100, 200

max_depth 3, 4, 5

DT max_depth 5, 10, 20

KNN n_neighbor 1 to 20; 7

SVM C 0.1, 1,2,3,4,5,6,7,8,910

* Selected parameter is in bold

After the TF-IDF process, the training and test data were

separated into 80% and 20% respectively, and the results of

the confusion matrix are presented in Table 3. The Acc, F1,

Precision, Recall, and Specificity metrics are presented in

Table 4. The confusion matrix results for the same

representation method using 5-fold cross-validation

separation are given in Table 5, alongside the metrics

obtained from this matrix in Table 6.

Table 3. Confusion matrix results of models with TF-IDF

after 80%-20%.

Model Predicted

Values

Real Values

0 1

LR
0 676 67

1 88 687

NB

0 661 121

1 103 633

DT
0 656 70
1 108 684

KNN

0 709 470

1 55 284

SVM

0 696 90

1 68 664

AdaBoost

0 546 54

1 218 700

Stacking

0 693 44

1 71 710

Hard Voting
0 698 63

1 66 691

Soft Voting
0 673 36
1 91 718

XGBoost
0 666 42

1 98 712

According to the results of the confusion matrix

presented in Table 3, the Stacking model with TF-IDF

representation was the most successful. This model stood out

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1452

due to its high Acc and balanced TP and TN values. Soft

Voting yielded the highest recall, while the LR and SVM

models also demonstrated stable performance.

In contrast, the KNN and AdaBoost models exhibited

inferior performance due to their elevated error rates.

Overall, ensemble methods delivered stronger results when

combined with the TF-IDF representation.

Table 4. Performance results of models with TF-IDF after

80%-20%.
Model Acc F1 Precision Recall Specificity

LR 0.8972 0.8986 0.8865 0.9111 0.8845

NB 0.8523 0.8490 0.8590 0.8393 0.8657

DT 0.8825 0.8848 0.8636 0.9071 0.8585

KNN 0.6540 0.5194 0.8378 0.8376 0.9279

SVM 0.8959 0.8932 0.9066 0.8801 0.9110

AdaBoost 0.8205 0.8375 0.7627 0.9284 0.7141

Stacking 0.9262 0.9251 0.9091 0.9417 0.9071

Hard

Voting

0.9163 0.9146 0.9128 0.9164 0.9136

Soft Voting 0.9084 0.9107 0.8791 0.9443 0.8715

XGBoost 0.9165 0.9189 0.8875 0.9517 0.8809

Table 5. Confusion matrix results of models with TF-IDF

after 5-fold.

Model Predicted

Values

Real Values

0 1

LR 0 887 88
1 868 159

NB 0 861 92
1 931 617

DT 0 914 118
1 717 71

KNN 0 910 58

1 916 83

SVM 0 883 47
1 874 55

AdaBoost 0 887 88

1 868 159

Stacking 0 861 92
1 931 617

Hard Voting 0 914 118

1 717 71

Soft Voting 0 910 58
1 916 83

XGBoost 0 883 47

1 874 55

According to Table 4, the Stacking model achieved the

highest Acc and F1 using the TF-IDF representation (92.62%

Acc, 92.51% F1). This was followed by the XGBoost, Hard

Voting and Soft Voting models. Notably, the XGBoost

model achieved the highest recall value of 95.17%, making

it the most effective at discriminating between positive

classes. Conversely, the KNN model showed the lowest

performance in all metrics. These findings suggest that

ensemble methods with TF-IDF offer stronger classification

performance.

According to the results in Table 5, the most successful

models in the confusion matrices obtained using the BoW

vectorization method with an 80:20 training-test split are

Stacking and Hard Voting. The Stacking model

demonstrated a balanced and robust performance with 617

TP and only 92 FN. The Hard Voting model was similarly

successful in distinguishing positive classes, with 617 TP

and 118 FN. The Soft Voting model showed a more

moderate performance, with 583 TP and 47 FN, but its false

positive values were higher compared to Stacking and Hard

Voting. On the other hand, the KNN model showed the

weakest performance with 142 FP and 103 FN, revealing its

sensitivity to the data structure. Similarly, the AdaBoost

model also failed to distinguish positive classes and showed

a remarkably low performance, particularly with 218 FN.

Overall, the results demonstrate the effectiveness of the

TF-IDF method in identifying positive classes within certain

models, particularly when ensemble methods are employed.

Table 6. Performance results of models with TF-IDF after

5-fold.
Model Acc F1 Precision Recall Specificity

LR 0.8976 0.8984 0.9111 0.8861 0.9097

NB 0.8525 0.8497 0.8394 0.8602 0.8452

DT 0.8826 0.8847 0.9071 0.8635 0.9035

KNN 0.6543 0.5199 0.3768 0.8382 0.6014

SVM 0.8961 0.8939 0.8808 0.9074 0.8857

AdaBoost 0.8209 0.8374 0.9283 0.7627 0.9099

Stacking 0.9242 0.9251 0.9414 0.9093 0.9401

Hard
Voting

0.9147 0.9143 0.9162 0.9125 0.9169

Soft Voting 0.9166 0.919 0.9525 0.8878 0.9495

XGBoost 0.9076 0.9103 0.9444 0.8786 0.9408

According to the results in the Table 6, the Stacking

method showed the best performance among the models

trained with TF-IDF. This model outperformed all other

methods in terms of Acc (0.9242), F1 (0.9251), and precision

(0.9414).

 The Soft Voting model achieved the highest success in

terms of specificity (0.9495), excelling in distinguishing

negative classes. Among the single models, XGBoost

attracted attention with its high precision (0.9444), but its

sensitivity remained relatively low (0.8786). LR and SVM

showed balanced and strong performance, while Naive

Bayes and Decision Tree yielded more average results. The

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1453

weakest model was KNN, with Acc (0.6543) and F1

(0.5199) values.

Overall, ensemble methods were found to be much more

successful than individual models, with the Stacking model

in particular delivering the most balanced and highest results

across all metrics.

After BoW, the training and test data were split in an 80-

20 ratio, and the confusion matrix results are presented in

Table 7. The Acc, F1, Precision, Recall, and Specificity

metrics are presented in Table 8.

The confusion matrix results for the same representation

method with 5-fold cross-validation are presented in Table

9, and the results of the metrics obtained from this matrix are

presented in Table 10.

Table 7. Confusion matrix results of models with BoW after

80%-20%.

Model
Predicted
Values

Real Values

0 1

LR
0 675 49
1 89 705

NB
0 646 76

1 118 678

DT
0 655 67

1 109 687

KNN
0 661 142

1 103 612

SVM
0 679 59

1 85 695

AdaBoost
0 546 54

1 218 700

Stacking
0 689 42

1 75 712

Hard Voting
0 672 36
1 92 718

Soft Voting
0 695 56

1 69 698

XGBoost
0 668 40

1 96 714

According to the results in Table 7, Stacking, Hard

Voting, and XGBoost emerged as the most successful

models in the confusion matrices obtained using the BoW

vectorization method with an 80:20 training-test split.

Stacking demonstrated balanced and strong performance,

achieving 712 true positives (TP) and only 75 false negatives

(FN), while also keeping false positives low.

Hard Voting achieved the highest recall, with 718 TP and

just 36 FN, highlighting its strong capability to distinguish

positive classes. Similarly, XGBoost also performed

impressively, with 714 TP and 40 FN, confirming its

robustness. Soft Voting was competitive as well, achieving

698 TP and 56 FN, but performed slightly behind Hard

Voting and XGBoost.

Conversely, the KNN model showed weak performance,

with 142 false positives (FP) and 103 false negatives (FN),

indicating its sensitivity to the data structure. Likewise, the

AdaBoost model underperformed in identifying positive

classes, producing a very high number of false negatives

(218) despite achieving a reasonable number of true

positives.

Table 8. Performance results of models with BoW after

%80-%20.
Model Acc F1 Precision Recall Specificity

LR 0.9098 0.9109 0.8879 0.9350 0.8836

NB 0.8722 0.8748 0.8518 0.8992 0.8455

DT 0.8841 0.8865 0.8631 0.9111 0.8573

KNN 0.8386 0.8332 0.8559 0.8117 0.8652

SVM 0.9051 0.9061 0.891 0.9218 0.8887

AdaBoost 0.8208 0.8373 0.7625 0.9284 0.7147

Stacking 0.9229 0.9241 0.9047 0.9443 0.9018

Hard

Voting

0.9157 0.9182 0.8864 0.9523 0.8796

Soft

Voting

0.9177 0.9178 0.91 0.9257 0.9097

XGBoost 0.9104 0.913 0.8815 0.9469 0.8743

Table 9. Confusion matrix results of models with BoW after

after 5-Fold Cross validation

Model
Predicted
Values

Real Values

0 1

LR 0 886 64
1 848 100

NB 0 860 88

1 868 186

DT 0 891 77

1 717 71

KNN 0 904 55

1 882 47

SVM 0 912 74
1 877 52

AdaBoost 0 886 64
1 848 100

Stacking 0 860 88

1 868 186

Hard Voting 0 891 77

1 717 71

Soft Voting 0 904 55

1 882 47

XGBoost 0 912 74

1 877 52

According to the performance results in Table 8, the

Stacking model produced the best results with the BoW

representation, achieving 92.29% Acc and a 92.41% F1

score. Hard Voting performed best at detecting positive

classes, achieving the highest recall of 95.23%. Soft Voting

and XGBoost also performed well, achieving balance and

high performance.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1454

Classical models such as LR and SVM produced strong

results, achieving over 90% Acc. By contrast, the AdaBoost

and KNN models performed relatively poorly, particularly in

terms of specificity and precision. Overall, ensemble models

with BoW vectorization provided the most consistent, high-

quality performance.

Table 9 shows the classification trends of the models

after 5-fold cross-validation using the BoW representation.

Notably, the Stacking and NB models achieved relatively

high TP values (186 for both), indicating stronger

performance in identifying positive classes and thus higher

recall. Conversely, models such as KNN, Soft Voting, and

XGBoost were more successful at predicting the negative

class correctly, as reflected in their lower numbers of false

positives. The SVM model demonstrated balanced

prediction ability, achieving 912 TN and 52 FN, which

indicates stable and reliable performance across both classes.

Overall, these results confirm that the choice of model

and the representation method significantly affect

classification performance in the 5-fold cross-validation

setting, with ensemble and probabilistic methods excelling

in recall, while distance-based models like KNN performed

better in controlling false positives.

Table 10. Performance results of models with BoW after 5-

Fold Cross validation

Model Acc F1 Precision Recall Specificity

LR 0.9091 0.9109 0.9353 0.8877 0.9326

NB 0.8721 0.8747 0.899 0.8517 0.8945

DT 0.8841 0.8865 0.9111 0.8632 0.9072

KNN 0.8389 0.8334 0.8119 0.8561 0.8235

SVM 0.9051 0.9061 0.9221 0.8906 0.9205

AdaBoost 0.8209 0.8374 0.9283 0.7627 0.9099

Stacking 0.9232 0.9243 0.9444 0.905 0.9426

Hard
Voting

0.9157 0.9181 0.9525 0.8862 0.9494

Soft

Voting
0.9172 0.9174 0.9253 0.9096 0.9249

XGBoost 0.9106 0.9133 0.9474 0.8815 0.944

When Table 9 and Table 10 are evaluated together, the

Stacking model demonstrated the best overall performance

after 5-fold cross-validation with BoW representation. This

model stood out with its high true positive values and low

false negative rate, and also outperformed all other models

with the highest Acc and F1 score. Hard Voting stood out

with the highest precision and specificity values, making it

the most successful method in reducing false positives.

The Soft Voting model also showed balanced

performance, yielding results closest to Stacking with

91.72% Acc and strong Recall. XGBoost showed strong

performance with high Precision and Specificity, but lagged

behind Stacking and Soft Voting due to its relatively lower

recall. Among the classic models, LR and SVM achieved

strong results with Acc and F1 scores above 90%, while DT

and NB showed moderate performance. In contrast, KNN

achieved lower success, and AdaBoost was insufficient in

distinguishing positive classes, particularly due to its low

recall value. Overall, the results clearly show that ensemble

methods with BoW representation offer more balanced and

superior performance compared to classical models.

After the DistilBERT training, the data was split into

training and test sets at a ratio of 80:20, and the results of the

confusion matrix are presented in Table 11. The Acc, F1,

Precision, Recall, and Specificity metrics are presented in

Table 12.

The confusion matrix results for the same representation

method using 5-fold cross-validation are given in Table 13,

and the metrics obtained from this matrix are given in Table

14.

Table 11. Confusion matrix results of models with

DistilBERT after 80%-20%.

Model
Predicted
Values

Real Values

0 1

LR 0 1070 79
1 110 1018

NB 0 981 183
1 199 914

DT 0 879 238
1 301 859

KNN 0 926 90

1 254 1007

SVM 0 1013 62
1 167 1035

AdaBoost 0 1021 186

1 159 911

Stacking 0 1074 78

1 106 1019

Hard Voting 0 1040 57

1 140 1040

Soft Voting 0 1045 94
1 135 1003

XGBoost 0 1047 81

1 133 1016

According to the results in Table 11, the models trained

using the DistilBERT representation achieved high

classification performance with a training-to-test separation

of 80:20. Notably, the Stacking model achieved high correct

prediction rates for both classes. Ensemble methods such as

Hard Voting and Soft Voting also produced balanced results

and achieved high positive class recognition rates. XGBoost

and SVM models also demonstrated high Acc and consistent

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1455

performance. In contrast, NB and DT models performed less

well, particularly in negative class predictions.

Overall, models integrated with DistilBERT produced

more stable and robust results than classical representations,

and ensemble methods successfully balanced the two classes

using this representation method.

Table 12. Performance results of models with DistilBert

after 80%-20%.

Model Acc F1 Precision Recall Specificity

LR 0.9170 0.9188 0.9068 0.9312 0.9105

NB 0.8322 0.8271 0.8212 0.8332 0.8314

DT 0.7633 0.7612 0.7405 0.7830 0.7449

KNN 0.8489 0.8541 0.7986 0.9180 0.7847

SVM 0.8994 0.9004 0.8611 0.9435 0.8585

AdaBoost 0.8485 0.8408 0.8514 0.8304 0.8653

Stacking 0.9192 0.9172 0.9058 0.9289 0.9102

Hard
Voting

0.9135 0.9135 0.8814 0.9480 0.8814

Soft

Voting
0.8994 0.8975 0.8814 0.9143 0.8856

XGBoost 0.9060 0.9047 0.8842 0.9262 0.8873

According to the performance results of the models based

on the DistilBERT representation in Table 12, which have an

80%-20% training test ratio.The Stacking model was the

most successful overall, achieving the highest Acc (Acc =

91.92%) and a very high F1 (91.72%). The LR and Hard

Voting models also performed well, achieving high Acc and

balanced F1, precision and recall values. SVM was

particularly successful in correctly predicting positive

classes, achieving a high recall of 94.35%, while Hard

Voting improved upon this metric, reaching 94.80%. This

demonstrates the effectiveness of these models in reducing

false negatives. Conversely, some models, such as NB and

DT, had lower Acc and balance metrics, indicating that these

models are less adaptive to transformer-based vector

representations.Overall, DistilBERT provided more

consistent and higher performance than traditional text

representation methods for many models, particularly when

used with ensemble methods and DL integrations.

Table 13 results show that the most successful models

with DistilBERT representation are SVM, XGBoost, and

Soft Voting. These models stand out with high true positive

values and low false negative rates. In contrast, some

methods such as DT and Hard Voting have been weaker in

capturing positive classes, while NB and Stacking have

shown inconsistent performance.

 Overall, ensemble methods and robust classical models

(especially SVM and XGBoost) provide more reliable

performance with DistilBERT.

Table 13. Confusion matrix results of models with

DistilBERT after 5-Fold cross validation

Model
Predicted
Values

Real Values

0 1

LR 0 1404 104

1 1288 240

NB 0 1154 312

1 1215 118

DT 0 1330 81
1 1340 244

KNN 0 1410 102

1 1365 75

SVM 0 1372 123

1 1374 106

AdaBoost 0 1404 104

1 1288 240

Stacking 0 1154 312
1 1215 118

Hard Voting 0 1330 81

1 1340 244

Soft Voting 0 1410 102

1 1365 75

XGBoost 0 1372 123

1 74 938

Table 14. Performance results of models with DistilBert

after 5-Fold cross validation.

Model Acc F1 Precision Recall Specificity

LR 0.917 0.9151 0.9278 0.9027 0.931

NB 0.8324 0.8273 0.8333 0.8214 0.8429

DT 0.7634 0.7612 0.7832 0.7405 0.7872

KNN 0.8491 0.8543 0.9181 0.7988 0.9115

SVM 0.8996 0.9005 0.9437 0.8611 0.9426

AdaBoost 0.8484 0.8408 0.8306 0.8512 0.846

Stacking 0.9193 0.9173 0.9291 0.9058 0.9325

Hard

Voting

0.9133 0.9133 0.9479 0.8812 0.9479

Soft

Voting

0.8996 0.8977 0.9145 0.8814 0.9177

XGBoost 0.906 0.9047 0.9264 0.884 0.9284

When Table 13 and Table 14 are evaluated together, the

Stacking, Hard Voting, Soft Voting, and XGBoost models

achieved the most successful results after 5-fold cross-

validation with the DistilBERT representation. The Stacking

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1456

model stood out with its high number of true positives and

low false negative rate and also led in overall performance

with the highest Acc and F1.

Hard Voting was the method that best reduced false

positives, particularly with the highest Precision and

specificity values, while Soft Voting and XGBoost also

attracted attention with their balanced and strong results.

Among classical models, LR showed strong performance

with 91.7% Acc and the highest precision value, while SVM

also demonstrated consistent success. In contrast, DT, NB,

KNN, and AdaBoost models performed poorly with lower

Acc and F1 values. Overall, the results reveal that ensemble

methods stand out under the DistilBERT representation and

offer the most consistent performance.

After RoBERTa training, the data was split into training

and test sets at a ratio of 80:20, and the results of the

confusion matrix are presented in Table 15. The Acc, F1,

Precision, Recall, and Specificity metrics are presented in

Table 16. The confusion matrix results for the same

representation method using 5-fold cross-validation are

given in Table 17, and the metrics obtained from this matrix

are given in Table 18.

Table 15. Confusion matrix results of models with

RoBERTa after %80-%20.

Model
Predicted

Values

Real Values

0 1

LR
0 1009 96

1 171 1001

NB
0 954 212

1 226 885

DT
0 909 237

1 271 860

KNN
0 1050 125

1 130 972

SVM
0 936 142

1 244 955

AdaBoost
0 999 172

1 181 925

Stacking
0 1027 90

1 153 1007

Hard Voting
0 977 113

1 203 984

Soft Voting
0 984 142

1 196 955

XGBoost
0 1052 69

1 128 1028

Table 15 shows the classification performance of the

models trained using the RoBERTa representation, with 80%

of the data used for training and 20% for testing. XGBoost is

particularly notable as the most successful model, achieving

a high number of correct predictions in both the negative

(1052) and positive (1,028) classes. The Stacking and LR

models also produced balanced and robust results with high

Acc. Conversely, the NB and DT models performed poorly

in recognising the negative class, resulting in more

misclassifications. Ensemble models such as Hard Voting

and Soft Voting performed strongly in distinguishing

positive classes. Overall, models working with the

RoBERTa representation demonstrated high levels of Acc,

Recall and stability, and more advanced methods were more

successful with this representation.

Table 16 shows the performance results for the models

trained using the RoBERTa representation on the test set

with an 80:20 training-testing split. The results show the

Acc, F1, Precision, Recall, and Specificity metrics. The most

successful model was XGBoost, achieving 91.22% Acc and

a 91.26% F1. This was followed by Stacking, which also

demonstrated high levels of Acc and Rec. While the KNN

and NB models produced balanced results, others such as the

DT and SVM models performed relatively poorly.

The ensemble models Hard Voting and Soft Voting

produced good results, particularly in terms of precision;

however, their overall Acc was lower than that of XGBoost

and Stacking. These results demonstrate that models based

on the RoBERTa representation offer a robust foundation for

text classification and that achieving high-performance

hinges on selecting the right model.

Table 16. Performance results of models with RoBERTa

after %80-%20.

Model Acc F1 Precision Recall Specificity

LR 0.8825 0.8559 0.8537 0.9125 0.8821

NB 0.8827 0.8832 0.855 0.9131 0.854

DT 0.7770 0.7703 0.7605 0.7839 0.7720

KNN 0.8875 0.8898 0.8821 0.8861 0.8841

SVM 0.8302 0.7932 0.7965 0.8705 0.8317

AdaBoost 0.8448 0.8466 0.8366 0.8431 0.8398

Stacking 0.8914 0.8922 0.8680 0.9180 0.8704

Hard
Voting

0.8633 0.8616 0.8291 0.8970 0.8279

Soft

Voting
0.8547 0.8496 0.8297 0.8705 0.8347

XGBoost 0.9122 0.9126 0.8892 0.9371 0.8915

According to the results in Table 17, after 5-fold cross-

validation with RoBERTa representation, the most

successful models were KNN and Soft Voting. Both models

demonstrated strong performance in distinguishing positive

classes, with 148 true positives and 118 false negatives.

LR and AdaBoost produced similar results, showing

balanced performance with 278 true positives and 126 false

negatives. DT and Hard Voting remained at an intermediate

level with 226 true positives and 186 false negatives, while

NB and Stacking models showed poor performance with 164

true positives and 311 false negatives due to high error rates.

On the other hand, SVM and XGBoost were the models with

the lowest performance in capturing the positive class, with

only 91 true positives and 186 false negatives.

Overall, Soft Voting and KNN stood out under the

RoBERTa representation, while some models were found to

be inadequate, particularly in identifying positive classes.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1457

Table 17. Confusion matrix results of models with

RoBERTa after 5-fold cross validation.

model
Predicted
Values

Real Values

0 1

LR 0 1324 126

1 1252 278

NB 0 1193 311

1 1378 164

DT 0 1228 186

1 1311 226

KNN 0 1348 118
1 1282 148

SVM 0 1292 186

1 1381 91

AdaBoost 0 1324 126
1 1252 278

Stacking 0 1193 311

1 1378 164

Hard Voting 0 1228 186
1 1311 226

Soft Voting 0 1348 118
1 1282 148

XGBoost 0 1292 186
1 1381 91

Table 18. Performance results of models with RoBERTa

after 5-fold cross validation.

Model Acc F1 Precision Recall Specificity

LR 0.8829 0.8825 0.9125 0.8544 0.9131

NB 0.8076 0.8017 0.8069 0.7964 0.8183

DT 0.7768 0.772 0.784 0.7603 0.7932

KNN 0.8879 0.884 0.8861 0.8818 0.8936

SVM 0.8306 0.832 0.8707 0.7966 0.8685

AdaBoost 0.8448 0.8396 0.8431 0.8361 0.853

Stacking 0.8933 0.8923 0.9181 0.868 0.9195

Hard

Voting

0.8614 0.8619 0.8972 0.8293 0.8965

Soft

Voting

0.8517 0.8498 0.8707 0.8298 0.8742

XGBoost 0.9133 0.9124 0.9368 0.8893 0.9382

According to the results in Table 18, XGBoost is the most

successful model after 5-fold cross-validation with

RoBERTa representation. XGBoost achieved the highest

Acc, F1, and Precision values, and also strongly

distinguished both positive and negative classes with Recall

and Specificity results. Stacking also performed strongly,

producing balanced results with an Acc of 0.8933 and an F1

score of 0.8923. The KNN and SVM models showed

moderate success, with KNN being one of the best classical

models, achieving 88.79% Acc and an F1 score of 0.884. LR

also offered balanced performance with 0.8829 Acc and

0.8825 F1 scores. In contrast, DT and NB showed lower

performance, while AdaBoost remained at an intermediate

level.

Overall, the results in Table 18 show that XGBoost

delivered the strongest performance under the RoBERTa

representation, followed by Stacking and KNN, while LR

and SVM stood out among the classical methods.

After the alBERT training and test data were separated

by 80% and 20%, respectively, the results of the confusion

matrix are presented in Table 19.

The Acc, F1, Precision, Recall, and Specificity metrics

are presented in Table 20. The results of the confusion matrix

for the 5-fold cross-validation separation using the same

representation method are given in Table 21, alongside the

metrics obtained from this matrix in Table 22.

Table 19. Confusion matrix results of models with alBERT

after %80-%20.

Model
Predicted

Values

Real Values

0 1

LR

0 1052 132

1 128 965

NB

0 824 356

1 356 741

DT

0 899 301

1 281 796

KNN

0 939 227

1 241 870

SVM

0 1001 102

1 179 985

AdaBoost

0 932 203

1 248 894

Stacking
0 1049 110

1 131 987

Hard Voting

0 1042 95

1 138 1002

Soft Voting

0 1054 125

1 126 972

XGBoost
0 1036 121
1 144 976

Table 19 shows the classification performance of the

models trained with the aLBERT representation, after the

data was separated into 80% for training and 20% for testing.

Notably, the Stacking, Hard Voting and XGBoost models

achieved high correct prediction rates in both the negative

and positive classes. For instance, the Stacking model

achieved a balanced outcome by correctly predicting 1049

negative and 987 positive examples. Similarly, the Soft

Voting model achieved high success in predicting the

positive class (TP = 972). Conversely, the NB and DT

models demonstrated lower Acc, particularly in the negative

classes, suggesting that they are less well adapted to the

aLBERT representation.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1458

Overall, the transformer-based alBERT representation,

when combined with ensemble and DL-based models,

produced robust and balanced classification results.

Table 20. Performance results of models with aLBERT after

%80-%20.

Model Acc F1 Precision Recall Specificity

LR 0.8856 0.8812 0.8830 0.8795 0.8915

NB 0.6873 0.6755 0.6755 0.6755 0.6983

DT 0.7444 0.7323 0.7391 0.7256 0.7619

KNN 0.7945 0.7880 0.7831 0.7931 0.7958

SVM 0.8766 0.8763 0.8475 0.907 0.8483

AdaBoost 0.8019 0.7986 0.7828 0.8149 0.7898

Stacking 0.8942 0.8912 0.8828 0.8997 0.8890

Hard

Voting
0.8977 0.8958 0.8789 0.9134 0.8831

Soft

Voting
0.8898 0.8805 0.8714 0.8897 0.8780

XGBoost 0.8836 0.8856 0.8852 0.8861 0.8932

As shown in Table 20, the results demonstrate the

classification performance of the models trained using the

aLBERT representation with an 80:20 training-testing

separation. The Hard Voting model achieves the highest Acc

(89.77%) and F1 (89.58%). This is closely followed by the

Stacking and Soft Voting models, which also achieved a very

balanced, high performance. Stacking stands out, achieving

89.42% Acc and 89.12% F1, while XGBoost demonstrates

balanced performance in terms of both Precision (88.52%)

and Sensitivity (88.61%). Conversely, the NB and DT

models showed lower performance than the other models.

These results demonstrate the effectiveness and

reliability of ensemble methods and advanced ML models

combined with the aLBERT representation for text

classification tasks.

Table 21 shows the confusion matrices obtained in the 5-

fold cross-validation process using the aLBERT

representation. These results are important for evaluating

general trends and the success of the models' classification.

Notably, the KNN, Soft Voting and XGBoost models

demonstrate high rates of correct prediction in both positive

and negative classes. These models have a low

misclassification rate and are well balanced. For instance, the

SVM model correctly classified 1,054 negative samples and

made 121 correct predictions in the positive class.

Conversely, models such as NB, LR and AdaBoost

produced more incorrect predictions, particularly in the

positive class, resulting in weaker performance compared to

the other models. The same is true of the Stacking model: the

low number of correct predictions in the positive class limits

the model's overall performance.

Overall, this table shows that, with the aLBERT

representation, the KNN, SVM, Soft Voting and XGBoost

models are more stable and perform better in cross-

validation.

Table 21. Confusion matrix results of models with alBERT

after 5-fold cross validation.

Model
Predicted

Values

Real Values

0 1

LR 0 1052 132

1 824 356

NB 0 899 301

1 939 227

DT 0 1001 102

1 932 203

KNN 0 1049 110

1 1042 95

SVM 0 1054 125

1 1036 121

AdaBoost 0 1052 132

1 824 356

Stacking 0 899 301

1 939 227

Hard Voting 0 1001 102

1 932 203

Soft Voting 0 1049 110

1 1042 95

XGBoost 0 1054 125
1 1036 121

Table 22. Performance results of models with aLBERT after

5-fold cross validation.

Model Acc F1 Precision Recall Specificity

LR 0.8858 0.8813 0.8797 0.8829 0.8885

NB 0.6873 0.6755 0.6755 0.6755 0.6983

DT 0.7444 0.7323 0.7256 0.7391 0.7492

KNN 0.7945 0.788 0.7931 0.7831 0.8053

SVM 0.876 0.8752 0.9062 0.8462 0.9075

AdaBoost 0.8019 0.7986 0.8149 0.7828 0.8211

Stacking 0.8942 0.8912 0.8997 0.8828 0.9051

Hard
Voting

0.8977 0.8958 0.9134 0.8789 0.9164

Soft

Voting
0.8898 0.8856 0.8861 0.8852 0.894

XGBoost 0.8836 0.8805 0.8897 0.8714 0.8954

Table 22 shows the performance metrics of each model

at the end of the 5-fold cross-validation process using the

aLBERT representation.

The Hard Voting model was the most successful,

achieving 89.77% Acc, 89.58% F1, 91.34% precision and

87.89% recall. The Stacking and Soft Voting models showed

similarly balanced and high performance, with Stacking

achieving success in negative classes with 90.51%

specificity.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1459

The SVM model effectively classified the positive

classes with 90.62% precision, whereas the other classical

models (NB and DT) had lower success rates.

These findings demonstrate that models based on the

aLBERT representation offer more stable and superior

performance, particularly when combined with ensemble

methods. They also emphasise the importance of robust

evaluation methods, such as accurate text representation,

cross-validation and model selection.

The study comparatively evaluates the various ML and

DL models and text representation methods (TF-IDF, BoW,

DistilBERT, RoBERTa and aLBERT) used. Transformer-

based representations, particularly DistilBERT, RoBERTa,

and aLBERT, generally produced higher Acc, F1 and Rec

values than classical methods such as TF-IDF and BoW.

Across all representations, ensemble models such as

Stacking, Hard Voting and Soft Voting demonstrate the

strongest and most consistent performance. Notably,

Stacking achieves the highest success rates with both

classical and transformative representations. Conversely,

simpler models such as NB and DT performed poorly, with

generally low precision and recall values. The results

demonstrate that the choice of representation method directly

impacts model performance, and that ensemble methods,

particularly when combined with robust text representations,

can significantly enhance classification performance.

5 Conclusion and discussion

This study assessed the classification performance of

various ML and DL models on the CoVID19-FNIR dataset

for the detection of false information related to the SARS-

CoV-2 pandemic. Two widely used text vectorization

techniques, TF-IDF and BoW, were employed. The dataset

was split into 80% for training and 20% for testing.

In addition to classical ML algorithms such as LR and

SVM, transformer-based models (DistilBERT, RoBERTa,

aLBERT) and ensemble approaches (Stacking, Hard Voting,

Soft Voting) were integrated. The results revealed that both

the choice of model and text representation method

significantly influence classification performance. Among

all approaches, the Stacking ensemble model delivered the

highest performance with both vectorization techniques —

achieving 92.62% Acc and 92.51% F1 with TF-IDF, and

92.29% Acc and 92.41% F1 with BoW. Notably, the Hard

Voting model, combined with BoW, achieved an impressive

recall of 95.23%, highlighting its strength in correctly

identifying positive samples.

Furthermore, LR and SVM showed improved

performance with BoW compared to TF-IDF, reaching

90.98% and 90.51% Acc, respectively. While TF-IDF

yielded more balanced performance across metrics, BoW

stood out with higher precision and recall in several models

— suggesting that word frequency-based representations

may be more compatible with traditional and ensemble

models.

Overall, the findings emphasize that optimal

performance in fake news detection depends on the careful

selection of both the model and the feature representation.

Future work will focus on evaluating domain-specific

pre-trained BERT variants, exploring multilingual datasets

for broader applicability, and testing model robustness in

open-world scenarios. In addition, the explainability of

model decisions will be investigated through explainable

artificial intelligence techniques to enhance model

transparency and user trust.

Conflict of interest

The authors declare, to the best of their knowledge, that

there are no conflicts of interest or affiliations with any

individual, institution, or organization that could influence

the impartial evaluation of this manuscript.

Similarity rate(iThenticate): %18

References

[1] J. A. Saenz, S. R. Kalathur Gopal and D. Shukla,

Covid-19 fake news infodemic research dataset

(CoVID19-FNIR Dataset), IEEE Dataport, 2021.

https://dx.doi.org/10.21227/b5bt-5244
[2] M. Sikosana, O. Ajao and S. Maudsley-Barton, A

comparative study of hybrid models in health

misinformation text classification. OASIS ’24: 4th Int.

Workshop on Open Challenges in Online Social

Networks, pp. 18–25. Poznań, Poland, 9-13 October

2024. https://doi.org/10.1145/3677117.3685007

[3] R. Vinay, B. Premjith, D. Shukla, and K. P. Soman,

Feature engineering and selection for the identification

of fake news in social media, 2nd Int. Conf. on Signal

and Data Processing, Bhopal, India, 10-11 June 2022.

https://doi.org/10.1007/978-981-99-1410-4_24.

[4] M. Qadees and A. Hannan, Cross comparison of

COVID-19 fake news detection machine learning

models, 17th Int. Conf. on Open Source Systems and

Technologies, Lahore, Pakistan, pp. 1–7, 20–21

December2023.https://doi.org/10.1109/ICOSST60641

.2023.10414227

[5] M. Bozuyla and A. Özçift, Developing a fake news

identification model with advanced deep language

transformers for Turkish COVID-19 misinformation

data, Turkish Journal of Electrical Engineering and

Computer Sciences, 30, 3, 908–926, 2022,

https://doi.org/10.55730/1300-0632.3818.

[6] S. N. Başa and M. S. Basarslan, Sentiment analysis

using machine learning techniques on IMDB dataset,

7th Int. Symp. on Multidisciplinary Studies and

Innovative Technologies (ISMSIT), Ankara, Turkey,

pp. 1–5, 26-28 October, 2023,

https://doi.org/10.1109/ISMSIT58785.2023.10304923

[7] H. P. Luhn, A statistical approach to mechanized

encoding and searching of literary information, IBM

Journal of Research and Development, 1, 4, 309–317,

October 1957, https://doi.org/10.1147/rd.14.0309.
[8] M. B. Çaki and M. Sinan Başarslan, Classification of

fake news using machine learning and deep learning,

Journal of Artificial Intelligence and Data Science, 4,

1, 22–32, 2024, https://dergipark.org.tr/pub/jaida

[9] R. Sjögren, K. Stridh, T. Skotare, and J. Trygg,

Multivariate patent analysis—Using chemometrics to

https://doi.org/10.1145/3677117.3685007

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1460

analyze collections of chemical and pharmaceutical

patents, Journal of Chemometrics, 34, 1, 2020,

https://doi.org/10.1002/cem.3041.

[10] D. Cournapeau, Scikit-Learn, https://scikit-

learn.org/stable/about.html, Accessed 1 March 2003

[11] M. Tezgider, B. Yildiz, and G. Aydin, Improving word

representation by tuning Word2Vec parameters with

deep learning model, 2018 Int. Conf. on Artificial

Intelligence and Data Processing (IDAP 2018),

Malatya, Turkey, pp. 1–7, 28–30 September 2018,

https://doi.org/10.1109/IDAP.2018.8620919

[12] A. Onan, Mining opinions from instructor evaluation

reviews: A deep learning approach, Computer

Applications in Engineering Education, 28, 1, 117–138,

2020, https://doi.org/10.1002/cae.22179.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

Attention is all you need, Advances in Neural

Information Processing Systems 30 (NeurIPS 2017),

Long Beach, California, USA, pp. 5999–6010, 4–9

December 2017.

[14] D. M. A. S. Elkahwagy, C. J. Kiriacos, and M.

Mansour, Logistic regression and other statistical tools

in diagnostic biomarker studies, Clinical and

Translational Oncology, 26, 9, 2172–2180, 2024,

https://doi.org/10.1007/s12094-024-03413-8.

[15] H. Mu and H. Nie, Research on the evaluation and

enhancement strategies of college students’ health

human capital in ‘Healthy Hunan’ under the

background of big data, Applied Mathematics and

Nonlinear Sciences, 9 (1), 2024,

https://doi.org/10.2478/amns-2024-0400.

[16] W. Mao et al., Power transformers fault diagnosis using

graph neural networks based on dissolved gas data,

Journal of Physics: Conference Series, 2387, 1,

012029, November, 2022,

https://doi.org/10.1088/1742-6596/2387/1/012029.

[17] Ö. Bezek Güre, Classification of liver disorders

Diagnosis using Naïve Bayes method, Bitlis Eren

Üniversitesi Fen Bilimleri Dergisi, 13(1), 153–160,

2024, https://doi.org/10.17798/bitlisfen.1361016.

[18] F. F. Hasibuan, M. H. Dar, and G. J. Yanris,

Implementation of the Naïve Bayes method to

determine the Level of Consumer Satisfaction,

SinkrOn, 8 (2), 1000–1011, 2023,

https://doi.org/10.33395/sinkron.v8i2.12349.

[19] H. A. Abdulqader and A. M. Abdulazeez, Review on

Decision Tree Algorithm in Healthcare Applications,

Indonesian Journal of Computer Science, vol. 13, no. 3,

Jun. 2024, https://doi.org/10.33022/ijcs.v13i3.4026.
[20] R. Rahim and A. S. Ahmar, Cross-Validation and

Validation Set Methods for Choosing K in KNN

Algorithm for Healthcare Case Study, JINAV: Journal

of Information and Visualization, 3(1), 57–61, 2022,

https://doi.org/10.35877/454RI.jinav1557.

[21] F. Aldi, I. Nozomi, and S. Soeheri, Comparison of Drug

Type Classification Performance Using KNN

Algorithm, SinkrOn, 7(3), 1028–1034, 2022,

https://doi.org/10.33395/sinkron.v7i3.11487.

[22] C. Cortes and V. Vapnik, Support-vector networks,

Machine Learning, 20, (3) 273–297, 1995,

https://doi.org/10.1007/BF00994018.

[23] T. S. Eswar and V. Karthick, Realtime visual object

recognition using support vector machine comparing

with K-Nearest Neighbor algorithm for improving

accuracy, Journal of Pharmaceutical Negative Results,

13(SO4),2022,https://doi.org/10.47750/pnr.2022.13.S

04.097.

[24] J. Cai, M. Wang, and Y. Wu, Research on pedestrian

crossing decision models and predictions based on

machine learning, Sensors, 24 (1), 258, 2024,

https://doi.org/10.3390/s24010258.

[25] M. A. M. Mohammed and F. Türk, A Research:

investigation of financial applications with blockchain

technology, Hittite Journal of Science and Engineering,

11 (1), 33–40, 2024,

https://doi.org/10.17350/HJSE19030000329.

[26] Y. Chen, S. Chen, Y. Yang, and S. Lu, Comparison of

decision tree and ensemble algorithms, Applied and

Computational Engineering, 55 (1), 241–248, 2024,

https://doi.org/10.54254/2755-2721/55/20241535.

[27] M. Riansyah, S. Suwilo, and M. Zarlis, Improved

accuracy in data mining decision tree classification

using adaptive boosting, SinkrOn, 8 (2), 617–622,

2023, https://doi.org/10.33395/sinkron.v8i2.12055.

[28] A. AlMohimeed, H. Saleh, S. Mostafa, R. M. A. Saad,

and A. S. Talaat, Cervical cancer diagnosis using

stacked ensemble model and optimized feature

selection: an explainable artificial intelligence

approach, Computers, 12 (10), 200, 2023,

https://doi.org/10.3390/computers12100200.

[29] S. Imangaliyev, J. Schlötterer, F. Meyer, and C. Seifert,

Diagnosis of inflammatory bowel disease and

colorectal cancer through multi-view stacked

generalization applied on gut microbiome data,

Diagnostics, 12 (10), 2514, 2022.

https://doi.org/10.3390/diagnostics12102514.
[30] M. Hasanah, R. A. Putri, M. A. R. Putra, and T. Ahmad,

Analysis of Weight-Based Voting Classifier for

Intrusion Detection System, International Journal of

Intelligent Engineering and Systems, 17 (2), 190–200.

2024, https://doi.org/10.22266/ijies2024.0430.17.

[31] B. Fieri and D. Suhartono, Offensive language

detection using soft voting ensemble model, Mendel,

29 (1), 1–6, 2023.

https://doi.org/10.13164/mendel.2023.1.001.

[32] O. Octavian, A. Badruzzaman, Muhammand Yusuf

Ridho, and B. D. Trisedya, Enhancing Weighted

Averaging for CNN Model Ensemble in Plant Diseases

Image Classification, Jurnal Resti, 8 (2), 272–279,

2024, https://doi.org/10.29207/resti.v8i2.5669.

[33] B. Hasan, Zubair, S. A. Shaikh, A. Khaliq, and G.

Nadeem, Data-Driven decision-making: accurate

customer churn prediction with Cat-Boost, The Asian

Bulletin of Big Data Management, 4 (02), 2024.

https://doi.org/10.62019/abbdm.v4i02.175.
[34] T. Suresh, T. A. Assegie, S. Ganesan, R. L. Tulasi, R.

Mothukuri, and A. O. Salau, Explainable extreme

https://scikit-learn.org/stable/about.html
https://scikit-learn.org/stable/about.html
https://doi.org/10.1109/IDAP.2018.8620919

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2025; 14(4), 1447-1461

M. S. Başarslan, F. Bal

1461

boosting model for breast cancer diagnosis,

International Journal of Electrical and Computer

Engineering, 13(5), 5764, 2023.

https://doi.org/10.11591/ijece.v13i5.pp5764-5769.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,

BERT: Pre-training of deep bidirectional transformers

for language understanding, 2019 Conf. of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pp. 4171–4186, Minnesota, USA, 2-7

June 2019.

[36] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O.

Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,

RoBERTa: A robustly optimized BERT pretraining

approach, arXiv preprint arXiv:1907.11692, July 26,

2019. https://doi.org/10.48550/arXiv.1907.11692

[37] V. Sanh, L. Debut, J. Chaumond, and T. Wolf,

DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter, arXiv preprint

arXiv:1910.01108, October 2, 2019.

https://doi.org/10.48550/arXiv.1910.01108

[38] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,

and R. Soricut, ALBERT: A Lite BERT for self-

supervised learning of language representations, arXiv

preprint arXiv:1909.11942, September 26, 2019.

https://doi.org/10.48550/arXiv.1909.11942

https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.48550/arXiv.1910.01108

	1 Introduction
	2 Related works
	3 Material methods
	3.1 Data source
	3.2 Text representation
	3.2.1 Frequency based methods
	3.2.1.1 Term Frequency-Inverse Document Frequency
	3.2.1.2 Bag of Words

	3.2.2 Transformer text representation methods

	3.3 Classification models
	3.3.1 Logistic regression
	3.3.2 Naive bayes
	3.3.3 Decision tree
	3.3.4 K-nearest neighbor
	3.3.5 Support vector machine
	3.3.6 Adaptive boosting
	3.3.7 Stacking
	3.3.8 Hard and Soft Voting
	3.3.9 Extreme gradient boosting

	3.4 Pre-trained models
	3.4.1 RoBERTa
	3.4.2 DistilBERT
	3.4.3 alBERT

	4 Experimental setup and results
	5 Conclusion and discussion
	Conflict of interest
	Similarity rate(iThenticate): %18
	References

