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ABSTRACT: The elastic, mechanical, thermodynamic, and ultrasonic properties of Mg₂X (X = Si, Ge, Sn) composite 
semiconducting nanomaterials were systematically investigated using Lennard-Jones potential analysis. This approach 
enabled the evaluation of second- and third-order elastic coefficients. Our findings, corroborated through comparative 
analysis with existing literature, reveal that higher-order elastic constants exhibit a slight initial increase, while subsequent 
values show minimal variation from Mg₂Si to Mg₂Sn. The elastic constants were further employed to assess the mechanical 
behavior of hexagonal Mg₂X nanomaterials via key parameters including Poisson’s ratio, Young’s modulus, bulk modulus, 
and related thermodynamic properties. Notably, the bulk modulus displays a consistent increase across the compositions. 
Despite the similar nanomaterial compositions, the calculated G/B ratio, an indicator of ductility versus brittleness, was found 
to be ~0.976, suggesting predominantly ionic bonding in Mg₂X compounds. Thermal conductivity (k_min) was computed 
across the series, demonstrating a steady increase from Mg₂Si to Mg₂Sn, accompanied by a consistent hardness profile. 
Additionally, ultrasonic attenuation and velocity measurements were conducted, revealing composition-dependent variations. 
The materials exhibit minimum attenuation at initial states, indicating maximum purity, while the lowest attenuation values 
correspond to enhanced ductility. Previous first-principles studies on Mg₂X (X = Si, Ge, Sn) have primarily focused on 
electronic and thermoelectric properties, with limited attention to elastic, mechanical, and ultrasonic behavior at the 
nanoscale. This study fills that gap by providing comprehensive insights into higher-order elastic constants and their impact 
on the mechanical and thermoelectric performance of Mg₂X nanomaterials. 

Keywords: Elastic properties, Mg2X (X=Si, Ge, and Sn) composition, Mechanical properties, Thermal properties, 
Ultrasonic properties. 

I. INTRODUCTION 
The composite semiconducting nanomaterials Mg₂X (X = Si, Ge, Sn) exhibit exceptional properties—such as low electrical 
resistivity, low thermal conductivity, and high Seebeck coefficients [1,2] which make them highly attractive for integration 
into both conventional and next-generation high-performance energy storage systems as battery electrode materials. As 
members of the thermoelectric Mg₂X nanocomposite family, these compounds offer a compelling combination of electrical 
and thermal characteristics suited for advanced energy applications [3–5]. 

In addition, Mg₂X compounds possess relatively low band gaps (0.3–0.6 eV), rendering them suitable for optoelectronic 
applications, including infrared detectors and optical fiber technologies [6]. Magnesium itself is also considered a promising 
material for hydrogen storage, owing to its high hydrogen uptake capacity (7.6 wt.%). More recently, the Mg₂X system, where 
X belongs to group IV(B) of the periodic table (i.e., Si, Ge, Sn), has received growing attention in the search for novel 
intermetallic alloys with enhanced thermodynamic behavior for hydrogen storage, particularly at cryogenic temperatures [7]. 

The Mg₂X (X = Si, Ge, Sn) compounds are known to crystallize in three primary structures: hP6 (hexagonal), cF12 (cubic), 
and cF24 (cubic). Among these, recent studies have predominantly focused on the cubic cF12 phase due to its favorable 
structural and physical properties. Whitten et al. [8] and Chung et al. [9] employed a resonance method as early as 1965 to 
determine the elastic constants of cF12-Mg₂X in the temperature range of 80–300 K. Using these experimentally derived elastic 
constants along with optical data, they further computed the lattice vibrational frequencies. 
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Building on this foundational work, Murtaza et al. [10,11] investigated the thermoelectric, optoelectronic, and elastic 
properties of cF12-Mg₂X. Their findings revealed that as the composition varies, the bulk modulus increases while the lattice 
constant decreases—trends that contribute to the materials' narrow bandgaps and high thermal potential, making them highly 
suitable for optoelectronic and thermoelectric device applications. Furthermore, generalized gradient approximation (GGA) 
calculations of the thermodynamic and elastic parameters indicated that Mg₂Si exhibits superior structural stability, while 
cF12-Mg₂Ge demonstrates the strongest alloying capability among the three compositions [12]. 

Additionally, in cF12-Mg₂X (X = Si, Ge, Sn) compounds, the temperature dependence of the stiffness elastic coefficients 
Cij(T)C_{ij}(T)Cij(T) has been determined by correlating the equilibrium volume as a function of temperature V(T)V(T)V(T) 
with the stiffness coefficients Cij(V)C_{ij}(V)Cij(V), which are derived from volume-dependent phonon calculations [13]. 
First-principles studies on binary magnesium compounds have shown that Mg₂Si exhibits a mixed bonding character, 
incorporating both ionic and covalent components [14]. Specifically, the bonding in cF12-Mg₂Si is characterized by a complex 
interplay of metallic, ionic, and covalent interactions. This hybrid bonding nature contributes to the compound’s structural 
stability and intrinsic brittleness, as revealed through detailed thermodynamic, elastic, and electronic structure analyses [15]. 

The pyroelectric, optoelectronic, and elastic properties of cF12-Mg₂X (X = Si, Ge, Sn, and Pb) reveal that while Mg₂Sn 
exhibits significant elastic anisotropy, both cF12-Mg₂Si and cF12-Mg₂Ge behave as nearly isotropic materials [16]. One of the 
key advantages of thermoelectric solid-state power generators lies in their simple architecture, absence of moving parts, and 
modest efficiency in converting thermal energy directly into electrical power [17]. As early as 1961, Nikitin et al. [18] 
recognized that Mg₂BIV compounds (BIV = Si, Ge, Sn) possessed a favorable combination of chemical and physical 
properties, making them promising candidates for the development of efficient thermoelectric materials. Their structural and 
electronic similarities to elemental group IV semiconductors further support their potential in thermoelectric applications [19, 
20]. 

Among these, magnesium silicide (Mg₂Si), which crystallizes in the antifluorite structure, has been identified as a 
particularly promising material for thermoelectric energy conversion in the temperature range of 500–800 K. It is a narrow 
bandgap semiconductor with an indirect bandgap of approximately 0.77 eV [21, 22]. Moreover, Mg₂Si is abundant in the 
Earth’s crust, non-toxic, and environmentally benign—distinct advantages over conventional thermoelectric materials such as 
PbTe and CoSb₃, which may pose environmental or health risks [23]. 

The anti-fluorite crystal structure (space group Fm3̅m) of semiconducting magnesium silicide (Mg₂Si) and magnesium 
germanide (Mg₂Ge) has positioned these materials as strong candidates for high-performance thermoelectric applications. 
Their remarkable properties—including low electrical resistivity, low thermal conductivity, and high Seebeck coefficients—
make them particularly attractive for energy conversion technologies [24]. Mg₂Si and Mg₂Ge exhibit a broad spectrum of 
temperature-dependent physical behaviors, largely governed by their lattice dynamical properties, making the understanding 
of their vibrational characteristics essential for optimizing performance. 

Among the Mg₂X compounds (X = Si, Ge, Sn), Mg₂Si stands out as the only stoichiometric silicide with stable existence, 
distinguishing it from most other silicides. These materials have attracted significant attention in recent years due to their high 
thermoelectric efficiency, especially in the mid-temperature range of 500–800 K. Their suitability arises from a combination 
of high electrical conductivity and relatively high melting points—1358 K for Mg₂Si, 1030 K for Mg₂Sn, and 1390 K for 
Mg₂Ge—which enhance their thermal and mechanical robustness in demanding applications. Furthermore, Mg₂X compounds 
are lightweight materials exhibiting high specific strength, along with excellent elastic and mechanical properties, particularly 
in their nanocomposite semiconducting forms [25]. 

In this study, we investigate the single-crystal elastic constants—specifically the second-order (SOEC) and third-order 
(TOEC) elastic constants—along with key thermo-physical, ultrasonic, and thermal properties of Mg₂X (X = Si, Ge, and Sn) 
using Lennard-Jones potential analysis. The evaluated parameters include Debye velocity, Debye temperature, ultrasonic 
attenuation coefficient, stiffness constants, thermal relaxation time, Young’s modulus (Y), Poisson’s ratio, bulk modulus (B), 
shear modulus (G), and Pugh’s ratio (B/G). This study aims to deliver a comprehensive understanding of the elastic and 
mechanical properties of Mg₂X nanomaterials, offering valuable insights for their application in next-generation energy storage 
and thermoelectric devices. These comprehensive insights provide valuable guidance for the future design and development of 
Mg₂X-based compositions for advanced functional and thermoelectric applications.   

 
2. COMPUTATIONAL THEORY 
2.1. Second order elastic constant & third-order elastic constant of Mg2X (X=Si, Ge, and Sn) 
To provide a concise description of the material's physical and mechanical properties as well as its anisotropic attenuation 
behavior, several theoretical approaches are available in addition to experimental methods that can be used to examine the 
previously mentioned characteristics through formulation. Among the researchers, the well-known Lennard-Jones interaction 
potential techniques are widely employed because of their high level of accuracy in producing results according to experimental 
standards. This evaluation provides definitions for the additional-order elastic constants, including the experimental material 
referred to as second-order (SOEC) and its third-order (TOEC) value, and this potential model's evaluation technique 
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demonstrates how the second-order elastic constants connected to materials with a hexagonal structure are influenced by the 
lattice parameters.  
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Also the general potantial farmulation for the Lennard-Jones model is well defined by 
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Where,𝑎* = 4𝜀𝜎+, and 𝑏* = 4𝜀𝜎, here m and n are fitting parameters and 𝜀 and 𝜎 are the inter-atomic potential parameters. 

Equations 4 and 5 represent general mathematical simplifications, where the third-order elastic constants (TOECs) are 
decomposed into ten fundamental parametric forms, and the second-order elastic constants (SOECs) into six. This 
decomposition facilitates further simplification processes, enabling precise theoretical evaluation of the material properties 
previously described. These formulations for SOECs and TOECs are detailed in Equations 4 and 5, respectively [26]. 
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Here, where  p = c/a, is an axial ratio for the hexagonal material or compound and  
 

𝐶 ′ = 𝜒	a	/	p3 ,         𝐵𝜓	a0 =/𝑝0,    
𝜒 = (1/8)[{𝑛 −𝑚)}/{	a,4.}],        𝜓 = −𝜒	/{6	a/(𝑚 + 𝑏*	(𝑛𝑛 + 6)} 

 
Is evaluated using integer values, and the Lennard-Jones potential variable, b0, is widely known. Additionally, these 
characteristics may be changed even with a small change in temperature or attenuation because they are incredibly dependent 
on these factors. 
 
 
2.2. Ultrasonic Velocity 
In order to understand the crystallographic behavior of experimental substances, we have calculated the shear velocity (VS2), 
quasishear velocity (VS1), and atomic vibratory pattern contingent Ultrasonic longitudinal velocity (VL) at different propagation 
inclinations along the unique axis (c-axis). Additionally, we have computed the Debye average velocity (VD) and Debye 
temperature (θD) using the SOECs and TOECs, the elastic properties of nanomaterials have been a subject of extensive 
research. For instance, the measurement of elastic properties in epoxy resin/polyvinyl alcohol nanocomposites using ultrasonic 
wave velocities I. oral et al. [27], provides valuable insights into the methodology and applications of elastic property 
measurement, which are relevant to our study. Mathematics is used to figure out the direction and propagational angle-
dependent ultrasonic shear and longitudinal wave velocity (VL and VS) for waves traveling alongside a z-axis in a crystal with 
a hexagonal shape.  
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Also from the previously defined value of elastic constants along various tensor directions, we can also define the value of 
sound velocity in longitudinal and shear direction as [28]. 

      𝑉5 = W8$$
9
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where VS1, VS2, and VL stand for longitudinal, quasi, and shear wave ultrasonic velocities, respectively. where the variables 
(V) stand for the material's density and the angle with the crystal's unique axis, respectively. Also, Vₗ : Longitudinal wave 
velocity, associated with compressional waves. Vₛ : Shear wave velocity, associated with transverse waves. Vᴅ: Debye average 
velocity, derived from Vₗ and Vₛ, and related to the phonon transport and thermal properties of the material. 
 
An essential physical measure for material characterization is the Debye Temperature (TD), which is closely linked to the 
Debye Average Velocity (VD). The formula can be used to determine the density of a material with a hexagonal structure. 

      𝑑 = /:;
0<0'!=>*

	      (9) 

M, NA, and n stand for molecular weight, Avogadro number, and atoms per unit cell, respectively. At the low temperature in 
physics, the associated Debye average velocity is a crucial metric since ultrasonic velocities are dependent on elastic constants. 
It can be described in general as 
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Further, the Deby velocity relative Debye temperature for our experimental hexagonal material can be generally described by 

      		𝑇? = ħ𝑉?
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$
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Where KB: Boltzmann constant, na: atomic concentration; constant 
 Due to the advanced engineering application of experimental HCP material in a temperature and composition limit, it 
becomes important to investigate their thermophysical behavior at those extreme conditions. Utilizing the Debye model of heat 
capacity, we have calculated the thermal energy densities (E0) and heat capacity (CV) [29]. 
Within the scope of these experiments, the period of time taken during thermodynamic phonons to reassemble themselves 
following the propagation of an ultrasonic wave is known to be the corresponding thermal relaxation time (τ). It has a direct 
relationship with specific heat (CV), Debye average velocity, and thermal conductivity (k) [30]. 

    𝜏 = 𝜏7 = 𝜏5/2 =
0D

80@1
!     (12) 

Based on the experimental analysis of the evaluated physical properties, the material’s stability, crystal structure, thermal 
conductivity, mechanical strength, and hardness can be reliably inferred from the calculated second-order elastic constants 
(SOECs). Furthermore, the Voigt–Reuss–Hill (VRH) approximation [31] has been employed to investigate variations in key 
mechanical parameters, including Pugh’s ratio (B/G), Young’s modulus (Y), Poisson’s ratio (σ), bulk modulus (B), and shear 
modulus (G). The standard relationships for these parameters within the VRH framework are expressed below in Equation 
(13): 
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The lattice thermal conductivity (κ) was evaluated by following the Morelli and Slack [32] approach, which is given as equation 
14: 

    𝑘 = 𝐴𝑀𝑇?0𝛿0/𝛾/𝑇𝑛//0	    (14) 
Ma (in amu) is the average atomic mass, θD is the Debye temperature, T is the temperature, δ3 is the amount of volume for 

each atom, γ is the Grüneisen number, and A represents the proportional constant. n is the total number of atoms per unit cell. 
Here the Grüneisien number determines the numerical value for the constant 'A', which is stated as follows.			 

    𝐴 = 2.43 ⨯ 10A2/(1 − *.3-.
J
+ *.//2

J!
)	    (15) 

𝛾 is the Grüneisen number, which can be determined by 𝛾 = 𝛼𝐵/(CVῤ) ,where α is the thermal volume expansion coefficient, 
B is bulk modulus, CV is the heat capacity, and 𝜌 is density of the material.  
 The relative values of the melting temperatures (Tm) of hexagonal crystals [33] Is also dependent on the value of certain 
elastic constants C11 and C33 which are defined as, melting temperatures (Tm)  

    	𝑇+ = 354 + ..3(/8--48$$)
0

        (16) 
Where C11 and C33 are in GPa, and Tm is in K. 

 
2.3. Attenuation 
The ultrasonic attenuations in single crystal solids at high temperatures are mostly due to phonon-phonon interactions 
(Akhiezer loss) and thermoelastic relaxation mechanisms (thermoelastic loss). The formulation for estimating ultrasonic 
attenuation due to phonon-phonon interactions was developed by [34] and is given by: 

     (𝛼/𝑓2)𝐴𝑘ℎ=4𝜋2𝜏𝐸0(𝐷/3)/2𝜌𝑉3     (17) 
The ultrasonic wave frequency is denoted by f, and the thermal energy density is denoted by E0. 

The thermoelastic loss (𝛼 / f 2) Th:  equation as follows 
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The total consequence of ultrasonic attenuation (𝛼/𝑓/)KPT'O, caused by the thermoelastic loss and Akhieser losses exhibited 
in the longitudinal, shear mode of propagation, can be calculated as [35]: 

   (𝛼/𝑓/)KPT'O = (𝛼/𝑓/)KL + (𝛼/𝑓/)5 + (𝛼/𝑓/)7      (21) 

Where(𝛼/𝑓/)KLis the thermoelastic loss, while (𝛼/𝑓/)5and (𝛼/𝑓/)7 are the ultrasonic attenuation coefficients for the 
longitudinal wave and shear wave, correspondingly.  

 
 
3. RESULTS AND DISCUSSION 
3.1. Second order elastic constant & third-order elastic constant of Mg2X (X=Si, Ge, and Sn) 
In the present study on Mg₂X (X = Si, Ge, and Sn) composite semiconducting nanomaterials, we have successfully derived 
accurate values for various elastic coefficients—specifically six second-order elastic constants (SOECs) and ten third-order 
elastic constants (TOECs)—using an interaction potential approach. Based on our theoretical framework and comparative 
analysis, the obtained results show strong agreement with available experimental data, exhibiting minimal deviations and 
confirming the validity of our model. 

Additionally, we have determined the essential lattice parameters for Mg₂X (X = Si, Ge, and Sn), where “a” represents the 
basal plane lattice constant and “p” denotes the axial ratio (p=c/a)(p = c/a)(p=c/a) for the hexagonal close-packed (HCP) 
structure [36]. The composition-dependent lattice constants for Mg₂Si, Mg₂Ge, and Mg₂Sn are found to be 4.629 Å, 4.739 Å, 
and 5.0913 Å, respectively, as illustrated in Figure 1. Corresponding densities of states (DOS) for each composition are also 
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provided. The constant value of Leonard Jones potential constant “b0” is also evaluated with mathematical simulation 
manipulation technique and finally taken at 5.07×e-62,6.37×e-62,1.56×e-66 erg cm3, respectively, for different nanomaterials. 

 
Figure 1. The dedicated value of Lattice constant a (Å), Bessel plane distance c/a, and relative density, with 

nanomaterial composition Mg2X (X=Si, Ge, and Sn) 
 

Additionally, on the basis of the above-mentioned and evaluated data, the evaluated values of the second and third-order 
elastic constants of the Mg2X (X=Si, Ge, and Sn) are depicted in Figure 2 and Figure 3, respectively. 

 
Figure 2.  The variation in the respective values of SOECs with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

 
Figure 3. The variation in the respective values of TOECs with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 
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The above Figure 2 depicts the evaluated variation of SOEC of intrinsic semiconductor material (Si, Ge, and Sn) with the 
moderate band gap conducting material Mg in the composite format. On the basis of data analysis for the particular HCP 
complex material Mg2X (X=Si, Ge, and Sn), we can conclude that the negative values of TOECs indicate the presence of strain 
within the material Mg in composition. This is aligned with previous investigations on materials with hexagonal structures, 
affirming the theoretical framework's accuracy in valuing higher-order elastic coefficients. As a result, the theory used to 
investigate higher-order elastic coefficients is justified using Eqs. 1 and 2. For HCP structure material stability, here the five 
different SOECs (Cij, namely C11, C12, C13, C33, and C44) satisfy Born-Huang's norms [37]. This Mg2X (X=Si, Ge, and Sn) is 
mechanically stable because it is evident that the positive elastic constant values satisfy Born-mechanical Huang's stability 
constraints defined as. 

Ć44 >0, Ć11-| Ć12| > 0 
 

 (Ć11+ Ć12) Ć33 -2 Ć213> 0       (22) 
     

Where Ćjj= Ćjj –P, (P=1, 3, 5).       Ć12=C12+P, Ć13=C13+P 
 
3.2. Mechanical Property 

As the composition varies from Si to Ge and Sn, the density of the Mg-based compounds increases, while their 
corresponding atomic volume decreases, as illustrated in Figure 4. The values of bulk modulus (B), Young’s modulus (Y), and 
shear modulus (G) for Mg₂X (X = Si, Ge, and Sn) are observed to increase progressively with changes in composition. This 
trend reflects an enhancement in the stiffness and bonding strength of the nanomaterials.  

 

 
  Figure 4.  B, G, Y, B/G, σ with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

 
Figure 5.  M, C2 with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 
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Additionally, the G/B ratio, which is 0.97, 0.98, and 0.99 for Mg₂Si, Mg₂Ge, and Mg₂Sn respectively, signifies a predominant 
ionic bonding character within these compounds. This ratio, along with the B/G and Poisson’s ratio (σ), provides valuable 
insights into the mechanical behavior of the materials, particularly in predicting their brittleness or ductility. Materials with 
σ=0.23≤0.26 and B/G=1.52≤1.75 are typically considered brittle, or else they are ductile in nature [38]. Our results for B/G 
indicate that the Mg2X (X=Si, Ge, and Sn) is brittle in nature with nanomaterial composition because they are under their 
critical levels. The value of σ, which should perfectly be less than 0.5 for elastic and stable materials, is found to be within an 
acceptable range for composite. B/G ratio below 1.75 typically signifies brittleness, which is consistent with the behavior 
observed in Mg₂X compositions. In the below section, we have demonstrated the relative values of Voigt–Reus’ constants (M 
and C2), Br (x 1010 Nm-2), Bv (x 1010 Nm-2), Gr (x 1010 Nm-2), Gv (x 1010Nm-2), Y (x 1010Nm-2) for Mg2X (X=Si, Ge, and Sn). 
 

 

Figure 6. Br, Bv, Gv, and Gr, with nanomaterial composition. Mg2X (X=Si, Ge, and Sn) 
                         

In addition to the mechanical properties discussed above, the melting temperature serves as a critical parameter in the 
development of materials with enhanced thermal stability, ductility, and brittleness. The melting temperature (Tm) and 
hardness (Hv) of Mg₂X (X = Si, Ge, and Sn) have been systematically investigated and are presented in Figure 7, illustrating 
their variation as a function of composition. 

 
Figure 7. Hardness (Hv), melting temperature (Tm) with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

Table 1 demonstrates that elastic anisotropy can be effectively described by the unified anisotropic in elasticity may always 
be explained by the unified anisotropic index (AU), percent anisotropic (AB and AG), and shear anisotropy factors (A1, A2, 
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Table 1 shows that under different compositions of Mg2X (X=Si, Ge, and Sn), AB has a higher percentage of anisotropy 
than AG. This suggests that the bulk modulus is less oriented than the shear modulus. A1, A2, and A3 findings with nanomaterial 
are also displayed in Table 1. If A1 = A2 =A3 =1, the substance is an isotropic crystal. According to the findings, composition 
Mg2X (X=Si, Ge, and Sn) is an anisotropic crystal absent in any other circumstances. With nanomaterial, the universal 
anisotropic index (AU) deviates from zero, which is known as the highly single crystal anisotropy [39]. 

Table 1. Various anisotropy constants with their relative poisson’s ratio for nanomaterial composition Mg2X (X=Si, Ge, 
and Sn) 

It is clear form Figure 8 that for all temperature, the values of DS are larger than those of Dl for all composition 
nanomaterials. It indicates that for the shear ultrasonic wave the transformation of ultrasonic energy into thermal energy is less 
than for the longitudinal ultrasonic wave.  

 
Figure 8.  Variation of DL, DS with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

 
Figure 9.  Variation of Eo and Cv with nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

 
3.3. Ultrasonic velocity and allied parameters 
The below Figures 10-13 demonstrate the angular dependency of ultrasonic velocities (VL, Vs1, VS2, VD) with varying 
composition along the z-direction for the Mg2X (X=Si, Ge, and Sn). In Figs. 10 and 11, the z-axis of the Mg2X (X=Si, Ge, and 
Sn) correlates directly to the minima and maxima of the ultrasonic velocities VL and VS1. and the value of VS2 is demonstrated  
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Figure 10.  VL vs. ''ϴ"    for different nanomaterial compositions Mg2X (X=Si, Ge, and Sn) 

 
Figure 11. Vs1 vs ''ϴ" for different nanomaterial compositions Mg2X (X=Si, Ge, and Sn) 

 
Figure 12. Vs2 vs ''ϴ" for different nanomaterial compositions Mg2X (X=Si, Ge, and Sn)  
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in Fig. 12, and it is clear from the see-through that its values rise with the angular spread along the z-direction. The combined 
effects of SOECs and ρ (density) are held responsible in Favor of the uncharacteristic behavior of angle-dependent velocity. 
This effort's discovery of the angle (̟ϴ)-dependent velocity (V) curves is similar to those found for other hcp nanomaterials. 
This justifies the angle dependence of metal velocities [40]. Here, the VD value rises with increasing angle and reaches its 
maximum at 55.0 degrees in figure 13. The relative value of the Debye average velocity is also influenced by the variation in 
the fundamental ultrasonic velocities, VL, VS1, and VS2, which are used to evaluate VD. Additionally, here When the z-axis of 
this crystal is at 55°, the average sound wave velocity shows a maximum. 

 
Figure 13. VD vs ''ϴ" for different nanomaterial compositions Mg2X (X=Si, Ge, and Sn) 

 
In this section, Figure 14 presents a graphical depiction of the calculated thermal relaxation time, illustrating its variation 

with composition across different angular orientations. Here, the reciprocal characteristics of VD, which are relative to	𝜏 ∝
3𝑘/𝐶@𝑉?/ is evaluated, and here we can conclude that the value of thermal relaxation time for the Mg2X (X=Si, Ge, and Sn) is 
highly dependent on the value of the Fermi radius and can be affected by 'k’. The hexagonal structure of the Mg2X (X=Si, Ge, 
and Sn) is explained by the computation. The minimum value of the thermal relaxation time (τ\tauτ) occurs along the wave 
propagation direction at an angle of 55°, indicating the shortest re-establishment time for thermally generated phonons and 
their equilibrium distribution. Consequently, the presence of phonon–phonon (p–p) interactions and the associated thermal 
relaxation give rise to ultrasonic attenuation observed in the material along this direction. 

 
 

Figure 14. Relaxation time vs ''ϴ" with z- axis of crystal for different nanomaterial compositions Mg2X (X=Si, Ge, 
and Sn) 
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3.4. Ultrasonic attenuation due to phonon-phonon interaction and thermal relaxation phenomena 
In analyzing the ultrasonic attenuation, it is assumed that the wave flows along the z-axis of nanomaterial composition Mg2X 
(X=Si, Ge, and Sn). The Attenuation coefficient is alienated over frequency squared for longitudinal wave (𝛼/𝑓/)5and for 
shear wave (𝛼/𝑓/)S under the condition wt<<1 at various compositions is calculated using Eq. 11. The thermo-elastic loss by 
frequency squared (α /f2)th is calculated using Eq. 11, and Table 2 illustrates the ultrasonic attenuation value resulting from the 
thermoelastic relaxation mechanism (α /f2)th . 

It is assumed that the wave propagates down the z-axis of the Mg2X (X=Si, Ge, and Sn) compound when computing 
ultrasonic attenuation (UA). Eqn. 14,15, and 16 is used for calculating the attenuation coefficient divided by frequency squared 
(α/f2) Akh for the wave's longitudinal direction (α/f2) L and for the shear wave (α/f2). Table 2 presented values of the 
composition-dependent longitudinal, shear and total attenuation of the Mg2X (X=Si, Ge, and Sn). Energy losses(𝛼/𝑓/)UDL are 
substantially proportional to D, E0, and V-3 (Eq. 11). Thus, in the nanomaterial composition Mg2X (X=Si, Ge, and Sn), E0 and 
K have a significant impact on Akhieser losses. The thermo-elastic loss for the nanomaterial composition Mg2X (X=Si, Ge, 
and Sn) is to be substantially less than the Akhieser loss, indicating that the p-p interaction mechanism-induced ultrasonic 
attenuation dominates over the thermoelastic loss. Total attenuation is mainly driven by two variables, namely thermal energy 
density and thermal conductivity. Thus, although nano material compositions of Mg2X (X=Si, Ge, and Sn) are the least ductile, 
they show their purest form at for different nanomaterial compositions and show additional ductility, as shown by the minimal 
attenuation. Hence, the nanomaterial composition Mg2X (X=Si, Ge, and Sn) will have the lowest impurity content at ambient 
compositions.   

Table 2. Long. & Shear attenuation for different nanomaterial composition Mg2X (X=Si, Ge, and Sn) 

  
In the present study, it is observed that ultrasonic waves predominantly propagate along the z-axis of the Mg₂X (X = Si, 

Ge, and Sn) compositions. Equations.17 clearly show that the Akh. Types of energy loses (α/f2) Akh proportionate to D, E0, 
τ, and V-3. E0' and V' are rising with composition Mg2X (X=Si, Ge, and Sn), as seen in Figure 9. Therefore, in Mg2X (X=Si, 
Ge, and Sn), Consequently, the Akhieser losses in Mg₂X nanomaterials are strongly influenced by the values of E0 and the 
thermal conductivity k. A reduction in thermal conductivity leads to a notable increase in ultrasonic attenuation (UA). This 
suggests that UA is significantly governed by phonon–phonon (p–p) interaction mechanisms. However, due to the lack of 
sufficient experimental and theoretical data on ultrasonic attenuation in these specific materials, direct comparison and 
validation remain limited. 

As shown in Table 2, the thermo-elastic loss in the nanomaterial composition Mg₂X (X = Si, Ge, and Sn) is significantly 
lower than the Akhieser loss. According to Equation (18), the primary contributor to total ultrasonic attenuation is Akhieser-
type attenuation (UA), which is predominantly governed by phonon–phonon (p–p) interactions for both longitudinal and shear 
waves. The two key factors influencing total attenuation are thermal energy density and thermal conductivity. 

The observed minimum attenuation values suggest that, although Mg₂X compositions are relatively less ductile, they 
exhibit characteristics of high purity. Additionally, ductility improves progressively across the compositions from Si to Sn. As 
a result, the compound with the lowest impurity level at room temperature is inferred to be Mg₂Si. 
Furthermore, Mg₂Si demonstrates the highest ultrasonic velocities among the compositions, indicating superior ductility. Since 
attenuation α	∝	V3, it is expected to reach its maximum in Mg₂Si. The minimal ultrasonic attenuation (UA) values for Mg₂Si 
further confirm the structural stability of its hexagonal phase. 
 
4. CONCLUSIONS 
Based on the comprehensive analysis of the Mg₂X (X = Si, Ge, and Sn) nanomaterial system, the following conclusions have 
been drawn: 

• The standard computational approach used to determine higher-order elastic coefficients for hexagonal nanomaterials, 
based on the Lennard-Jones potential model, has proven effective and applicable to the Mg₂X (X = Si, Ge, and Sn) 
compositions. 

• The evaluated elastic properties confirm that the Mg₂X nanomaterials are mechanically stable across all compositions. 
• Young’s modulus for these nanomaterials demonstrates greater anisotropy compared to the bulk modulus, as indicated 

by various anisotropy indices, suggesting direction-dependent mechanical behavior. 
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• The thermal relaxation time (τ) for all Mg₂X compositions is found to be on the order of 10⁻¹³ seconds, supporting 
their classification as intermetallic nanomaterials. Notably, the minimum value of τ along the wave propagation 
direction at 550 K implies the fastest phonon redistribution in this direction. 

• The G/B ratios for Mg₂Si, Mg₂Ge, and Mg₂Sn were 0.97, 0.98, and 0.99, respectively, confirming their brittle nature. 
• The dominant contribution of p–p interactions to ultrasonic attenuation (U.A.) plays a key role in influencing the 

thermal conductivity of these nanomaterials. 
• Among all compositions, Mg₂Si exhibits superior mechanical properties, with stronger ionic bonding characteristics 

compared to Mg₂Ge and Mg₂Sn. 
• The Mg₂X nanomaterials exhibit their highest purity at the initial Si-based composition and demonstrate enhanced 

ductility, as evidenced by the lowest ultrasonic attenuation values. 

This research could help in computational as well as non-destructive classification of nanomaterials. These findings serve as 
the basis for further research into the major thermo-physical properties of other nanomaterials. 
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