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ABSTRACT 

Introduction: Patients with hand and wrist trauma are frequently 
diagnosed in the emergency department. Deep learning algorithms 
could potentially become powerful tools to diagnose fractures from X-
ray wrist images. This study aims to assess the diagnostic 
performance of a deep learning algorithm in detecting wrist fractures 
that are difficult to detect through radiographs. 
 
Methods: This retrospective study included adult patients with 
hand/wrist trauma who undergo CT imaging. CT imaging of injured 
areas, interpreted by an expert radiologist were considered as “ground 
truth” (GT). There were 313 cases, a total of 121 fractures (82 radius, 
39 carpal bones) were identified as GT from CT images. Using the 
algorithm, fracture detection procedure was performed on dataset of 
hand and wrist X-ray images. The same datasets were evaluated by 
four emergency medicine doctors. Diagnostic performances such as 
accuracy, area under curve, sensitivity, precision and F1 score were 
calculated. Agreement (Kappa coefficient (κ)) between GT, observers 
and deep learning algorithm was determined. 
 
Results: The algorithm showed 69.6% accuracy, 57% sensitivity and 
61.6% precision. Emergency medicine doctors showed better 
diagnostic performance with higher accuracy, sensitivity and precision 
and AUC values. The interobserver agreement among four EM 
doctors was moderate whereas the agreement with the algorithm was 
only fair. 
 
Conclusions: The Deep learning algorithm demonstrated an 
accurate detection of fractures in wrist X-rays and it had capabilities 
that were comparable to those of emergency medicine physicians, 
but the algorithm mentioned needs to be further improved to produce 
better outcome. 
 

Keywords: Deep learning, neural networks, fractures, carpal bones, 
radius fractures 
 

 ÖZET 

Giriş: Acil serviste sıklıkla el ve bilek travması olan hastalara tanı 
konur. Derin öğrenme algoritmaları, X-ışını bilek görüntülerinden 
kırıkları teşhis etmek için güçlü araçlar haline gelebilir. Bu çalışma, 
radyografilerle tespit edilmesi zor olan bilek kırıklarını tespit etmede 
derin öğrenme algoritmasının tanı performansını değerlendirmeyi 
amaçlamaktadır. 

Yöntemler: Bu retrospektif çalışma, BT görüntülemesi yapılan el/bilek 
travması olan yetişkin hastaları içermektedir. Uzman bir radyolog 
tarafından yorumlanan yaralı bölgelerin BT görüntüleri "temel gerçek" 
(TG) olarak kabul edildi. 313 vaka çalışmaya dahil edildi, toplam 121 
kırık (82 radius 39 karpal kemik) BT görüntülerinden TG olarak 
tanımlandı. Algoritma kullanılarak, el ve bilek X-ışını görüntülerinden 
oluşan veri setinde kırık tespit prosedürü gerçekleştirildi. Aynı veri 
setleri dört acil tıp doktoru tarafından değerlendirildi. Doğruluk, eğri 
altında kalan alan, duyarlılık, kesinlik ve F1 skoru gibi tanı 
performansları hesaplandı. TG, gözlemciler ve derin öğrenme 
algoritması arasındaki uyum (Kappa katsayısı (κ)) belirlendi. 
 
Bulgular: Algoritma %69,6 doğruluk, %57 duyarlılık ve %61,6 kesinlik 
gösterdi. Acil tıp doktorları daha yüksek doğruluk, duyarlılık ve kesinlik 
ve AUC değerleriyle daha iyi tanı performansı gösterdi. Dört acil tıp 
doktoru arasındaki gözlemciler arası uyum orta düzeydeyken 
algoritmayla uyum yalnızca orta düzeydeydi. 
 
Sonuç: Derin öğrenme algoritması, bilek röntgenlerinde kırıkları 
doğru bir şekilde tespit etti ve acil tıp doktorlarınınkine benzer 
yeteneklere sahipti, ancak daha iyi sonuçlar elde etmek için 
bahsedilen algoritmanın daha da iyileştirilmesi gerekiyor. 
 
 
 
Anahtar Kelimeler: Derin öğrenme, sinir ağları, kırıklar, karpal 
kemikler, Radius kırıkları  

INTRODUCTION 
The wrist, main functional joint involved in daily life 

activities is frequently exposed to traumatic injuries (1). Wrist 
trauma consist of distal radius, distal ulna and carpal bones 

fractures and represent 14 to 30 % of all traumas 
encountered in the emergency department (2-4). The 
anatomical complexity of the wrist may result in misdiagnosis 
or errors in interpretation. Radiographic evaluation plays an  
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Figure 1. Flowchart of the study population 

Abb. CT: computerized tomography, AP: antero-posterior 
 
essential role in subsequent management of an injured wrist, 
serving as the standard imaging technique for fracture 
detection after trauma. However, wrist fractures can be 
overlooked using this modality. Furthermore, clinical signs 
may be subtle and both physical examination and standard 
X-ray inconclusive. When a wrist injury is initially evaluated, 
first, plain radiographs are typically ordered (5). 
Unrecognized fractures, often missed on initial radiographs 
may lead to complications such as malunion, nonunion, 
osteoarthritis and osteonecrosis, resulting in persistent pain 
and functional impairment (2). Moreover, in the busy setting 
of the emergency department (ED), failure to identify 
fractures is the most common diagnostic error (6). 
Conventional X-rays may be non-diagnostic and computed 
tomography (CT) may be required for prompt diagnosis, 
particularly when evaluating carpal bones. If initial finding are 
inconclusive and suspicion remains, a CT may be helpful for 
detecting occult or subtle fractures. However, CT is 
associated with additional costs, ionization radiation 
exposure and longer ED length of stay (7). In busy clinical 
settings where clinicians experience excessive workload, an 
accurate and efficient fracture detection method could assist 
and guide clinicians in avoiding misdiagnosis. In this context, 
deep learning algorithms (DLA) aim to facilitate clinician 
tasks and support clinical decision-making. Clinical studies 
have demonstrated the successful interpretation capabilities 
of DLA in various medical fields , including oncology and 
gastroenterology (8-11). In recent years, DLAs have 
achieved remarkable results in automatically detecting 
fractures in different body parts (4, 12). Nevertheless, DLA 
still encounter difficulties in identifying certain fractures such 
as scaphoid fractures, which are obvious to human 
observers(12).  

This study aims to investigate the diagnostic performance 
of a DLA in detecting wrist bone fractures that are 
challenging to identify on antero-posterior and lateral plain 
radiographs. We then compare the diagnostic performance 

of the algorithm with that of emergency medicine (EM) 
doctors. 

 
METHODS 
Study design and population 

This retrospective study was reviewed and approved by 
the Ankara University Research Ethics Review Board 
(approval number: 2021000367). The requirement for 
written informed consent was waived due to the 
retrospective nature of this study. Adult patients presenting 
with wrist injuries who underwent wrist or/and hand CT in the 
ED between 2019 and 2022 were reviewed. Patients with 
more than one fracture on CT, those who did not have three 
views of plain radiographs (antero-posterior, lateral, oblique) 
and those who had obvious fractures (displacement, 
fragmentation) on radiographs were excluded (Figure 1). 
Patient images were anonymized and stripped of any 
identifying clinical information. 

 
Bone fracture Computer Aided Diagnosis (CAD) 

Model Pipeline (Initial dataset) 
The proposed pipeline in this study consists of two 

models. The first model is a U-Net model, designed for 
foreground segmentation. In radius region images, 
background elements such as text annotations indicating the 
radius location may interfere fracture detection. Additionally, 
bilateral radius images may be appeared together, making it 
necessary to first isolate  the foreground region (Figure 2). 

U-Net is a convolutional neural network with the encoder-
decoder structure. The encoder compresses the image into 
a low-resolution abstract representation, while the decoder 
reconstructs this encoded information to the original image 
resolution (13, 14). Skip connections between encoder and 
decode layers of the same resolution enable the integration 
of semantic information with precise spatial details. Finally, 
The model outputs the probability of each pixel belonging to 
the foreground or background. 

The second model in the pipeline is Faster Region-based 
Convolutional Neural Network (Faster R-CNN)(15). Using 
the segmentation results, the foreground region is extracted 
from the original image and cropped to fill the field of view, 
and then resampled for model input. Feature extraction is 
performed by the Resnet-50 backbone, and multi-scale 
feature integration is achieved via a Feature Pyramid 
Network (FPN), which fuses spatial location information from 
lower layers with semantic information from higher layers 
(16). The Region Proposal Network (RPN) predicts 
candidate fracture bounding boxes based on these feature 
maps. Finally, proposals and corresponding features are 
passed through fully connected layers to classify fractures 
and refine bounding box coordinates for precise localization 
(Figure 3). 

The U-Net model was trained on a dataset of 14,509 full-
body digital radiography (DR) images for training and 1,196 
images for validation. To enhance model robustness and 
generalization, a variety of data augmentation techniques 
were employed, including Random Gamma, Horizontal Flip, 
Random Brightness and Contrast, Elastic Transform, and 
Random Sized Crop. Key training parameters included an 
AdamW optimizer, a base learning rate of 3e-4, a weight 
decay of 0.0005, and a batch size of 16. The model was 
trained for 40,000 iterations with input images resized to 
512x512 pixels. For the fracture detection task, the Faster R-
CNN model was trained on a dedicated dataset of limb  
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fractures. The training set consisted of 29,254 images 
(63.49% positive cases), and the validation set contained 
2,037 images (50% positive cases). The data augmentation 
pipeline included Random Brightness, Random Contrast, 
Random Crop, Random Extent, Random Flip, Random 
Gamma, Random Saturation, and Random Lighting. The 
model was trained for 40,000 iterations using a Stochastic 
Gradient Descent (SGD) optimizer with a base learning rate 
of 0.001, momentum of 0.9, and a weight decay of 0.0001. 
A batch size of 16 was used, and input images were resized 
to have a minimum side of 800 pixels and a maximum side 
of 1333 pixels. During testing, a Non-Maximum Suppression 
(NMS) threshold of 0.1 was used. 
 
Figure 3. Bone fracture Computer Aided Diagnosis- Model 
Pipeline a) U-Net Model for bone segmentation. B)Faster 
Region-based Convolutional Neural Network (Faster R-CNN), 
Faster R-CNN Model for fracture detection 

Abb. FPN: feature pyramid network, RPN: region proposal network, ROU: 
region of interest, Reg: regression, Cls: classification 
 
Evaluation dataset and ground truth 

In this study, the evaluation dataset comprised plain 
radiographs of patients over than 18 years of age presenting 
with hand injuries. The plain radiographs (antero-posterior, 
lateral and oblique) were retrieved from the Radiology 
Information System/Picture Archiving and Communication 
System (RIS/PACS; Centricity 5.0 RIS-i, GE Healthcare, 
Milwaukee, WI, USA) of Ankara University School of 
Medicine for fracture identification in order to identify the 
fractures. Only complete and adequate image series were 
included; —specifically, those consisting of all three 
standard views, free from plaster cast artifacts, and 

accompanied by corresponding CT images. All radiographs 
were provided in Digital Imaging and Communications in 
Medicine (DICOM) format and anonymized prior to 
evaluation. The dataset included only cases with a single 
fracture; patients with multiple or simultaneous fractures 
were excluded. CT images were obtained using a 64-slice 
scanner (Toshiba Aquilion 64, Otawara, Japan) with the 
following parameters: 0.5 mm detector collimation, 120 kVp 
tube voltage, 0.5 s gantry rotation time, 1 mm reconstructed 
section thickness, and 1 mm reconstruction intervals. The 
“ground truth” (GT) for each CT image was determined by a 
board-certified radiologist with eight years of experience. 
The radiologist was blinded to patients’ clinical conditions 
and prior CT reports. Four emergency medicine physicians 
(Expert 1, Expert 2, Expert 3, Expert 4), each with at least 
two years of clinical experience, independently analyzed the 
plain radiograph dataset. While they were aware that each 
patient had exactly one fracture to identify, they were blinded 
to the total number of fracture and non-fracture cases. Each 
reader annotated the fractures and their locations on the 
radiographs at individual workstations, without time 
constraints. The readers were blinded to the CT images, CT 
reports, and each other's assessments. 

 
 
Evaluation method and model performance 

Each image was analyzed using the DLA algorithm. The 
findings from the GT and algorithm analysis for all cases 
were compared. The model performance was evaluated 
using the Confusion Matrix. The metrics used to assess the 
performance of the fracture detection model were as follows: 
True Positive (TP): the number of accurate detected 
fractures; False Positive (FP): the number of detected 
fractures even though there were no fractures; False 
Negative (FN): the number of fractures not detected. The 
performance metrics of the model were determined 
according to the formulas using TP, FP, and FN, as follows: 
Accuracy= (TP + TN) / (TP + TN + FP + FN); Sensitivity 
(Recall, True positive rate (TPR)= TP / (TP + FN); Precision 
(Positive predictive value (PPV))= TP / (TP + FP); F1 Score= 
2TP / (2TP + FP + FN). From these formulas, accuracy, 
sensitivity, precision and F1 scores for all radius and carpal 
fractures were determined. F1 score is defined as the 
harmonic mean of sensitivity and precision. 

 
Statistical Analysis 

Continuous variables were reported with mean and 
standard deviation (SD) and categorical variables with 
frequencies and percentages (%). We assessed the 
diagnostic performance of DLA and the four experts using a 
receiver operating curve (ROC). ROC curves were used to 

Figure 2. The overview of Model architectıre 
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compare the diagnostics performance of DLA and the four 
experts. An area under curve (AUC) equal to 1.00 represents 
perfect classification, and an AUC of 0.5 indicates a 
prediction equal to chance. The difference between GT and 
DLA, and the four EM doctors, in terms of categorical 
variables, was tested by McNemar test. Cohen's kappa 
coefficient (κ) analysis was performed to determine the 
agreement between GT, DLA and the four EM doctors. 
Fleiss’ generalized kappa coefficient was used to measure 
the degree of interobserver agreement among the four EM 
doctors. The degree of agreement was defined according to 
the value of the κ as follows: between 0.00 and 0.20 slight, 
between 0.21 and 0.40 fair, between 0.41 and 0.60 
moderate, 0.61 and 0.80 substantial, and 0.81 to 1.00 almost 
perfect. A P-value less than 0.05 was considered significant.   

 
 

Figure 4. Fracture of radius bone on plain radiographs and 
computerized tomography images 
 

 
 
RESULTS  

A total of 313 patients with wrist trauma who underwent 
CT were included. There were 155 female (49.5%) and 158 
male (50.5%) patients. The mean age of the study 
population was 43.1±19.5 years old. After radiologic 
evaluation (GT), a total of 121 fractures was identified 
(38.7%), 82 patients were diagnosed with a radius fracture 
and 39 patients with a carpal bone fracture (Figure 4). The 
remaining 192 patients  (61.3%) with no fractures were 
assigned to the control group According to DLA, 112 
fractures were detected (35.8%) whereas no fracture was 
detected in 201 of the patients (64.2%). The final 
demographic and clinical characteristics of the patients and 
diagnosis based on GT and DLA are provided in Table 1.  
 
Table 1. Characteristics of the study group 

Gender, n (%) 

Female 155 (49.5) 

Male 158 
(50.5) 

Age, (years old) 
Mean±SD 

 43.1±19.5 

Fracture 
according to GT, 
n (%) 

No 192 (61.3) 

Yes 121 (38.7) 

Radius fracture 82 (26.2) 

Carpal bone fracture 39 (12.5) 

Fracture 
according to DLA, 
n (%) 

No 201 (64.2) 

 Yes 112 (35.8) 

Abb. DLA: deep learning algorithm; GT: Ground truth; SD: Standard 
deviation 

DLA results were compared with GT; 52 false negatives, 
43 false positives and 149 true negatives and 69 true 
positives were determined. According to these results, the 
sensitivity of DLA was calculated as 57% and the precision 
as 61.6% in detecting fractures in hand and wrist traumas. 
The DLA had an AUC of 0.673±0.032 while the diagnostic 
performances of the four EM doctors were higher with AUC 
values of 0.822±0.027, 0.726±0.029, 0.807±0.027, 
0.808±0.028, respectively (Figure 5). The DLA correctly 
detected 69 out of the total fractures while 43 of 192 patients 
confirmed as having no fracture were incorrectly diagnosed 
as having a fracture. The accuracy of the DLA was 
calculated as 69.6% (95% CI 64.2% to 74.5%). Accuracy, 
sensitivity, precision and F1 score favored the four EM 
doctors over DLA (Table 2). 
 
Figure 5. The diagnostic performances of DLA and emergency 
medicine doctors in detecting hand and wrist traumas were 
compared with the area under the receiver operating curves 
(AUC) 
 

 
Abb. DLA: deep learning algorithm 

 
The diagnostic performance of DLA was lower than that of 

expert 1, 3 and 4 (p<0.001 for all comparisons). There was 
no statistically significant difference between diagnostic 
performance of DLA and Expert 2 (p= 0.110) (upper diagonal 
of the Table 3). EM experts’ agreements with each other 
were higher than with DLA (lower diagonal of the Table 3). 

The generalized kappa coefficient among four experts 
was indicated substantial agreement with a κ= 0.624±0.023, 
(95% CI: 0.579-0.670, p<0.001). There was a significantly 
fair agreement between GT and DLA. All four experts 
showed a better agreement with GT than DLA. Expert 1, 3 
and 4 demonstrated substantial agreement with DLA. A 
moderate agreement between GT and Expert 2 was 
detected (Table 4). 

When considering accuracy according to anatomic sites 
of fractures, DLA and all four experts were better at 
diagnosing radius fractures than carpal ones (p<0.001) 
(Table 5). 

For detecting radius fractures, there were statistically 
significant differences between DLA and the four experts (p= 
0.004, p= 0.004, p= 0.027 and p= 0.008 respectively).  
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DLA Expert 1 Expert 2 Expert 3 Expert 4 

Normal Fracture Normal Fracture Normal Fracture Normal Fracture Normal Fracture 

GT 
Normal 149 43 176 16 128 64 164 28 177 15 

Fracture 52 69 33 88 26 95 29 92 37 84 

Total 201 112 209 104 154 159 193 120 214 99 

p value <0.001 <0.001 <0.001 <0.001 <0.001 

Accuracy 
 (95% CI) 0.696 (0.642-0.745) 0.843 (0.798-0.880) 0.712 (0.659-0.760) 0.818 (0.771-0.857) 0.834 (0.788-0.872) 

AUC 
(95% CI) 

0.673 (0.618-0.725) 
(p<0.001) 

0.822 (0.775-0.863) 
(p<0.001) 

0.726 (0.673-0.775) 
(p<0.001) 

0.807 (0.759-0.849) 
(p<0.001) 

0.808 (0.760-0.850) 
(p<0.001) 

Sensitivity 
(95% CI) 0.570 (0.481-0.655) 0.727 (0.642-0.799) 0.785 (0.704-0.849) 0.760 (0.677- 0.828) 0.694 (0.607-0.769) 

Precision 
(95% CI) 0.616 (0.524-0.701) 0.846 (0.765-0.903) 0.597 (0.520-0.671) 0.767 (0.683-0.833) 0.848 (0.765-0.906) 

F1 Score 
(95% CI) 0.592 (0.536-0.646) 0.782(0.732-0.825) 0.679(0.625-0.729) 0.763(0.712-0.708) 0.764(0.713-0.808) 

Abb. DLA: deep learning algorithm; GT: Ground truth
 
Significance with DLA versus Expert 1, 2, 3, and 4 was seen 
for detecting carpal fractures (p= 0.125, p= 0.008, p= 0.002, 
and p= 0.648, respectively), total fractures (p= 0.001, 
p<0.001, p<0.001, and p= 0.020, respectively) and normal 
radiographs (p<0.001, p= 0.020, p= 0.063, and p<0.001 
respectively). 
 
Table 3. Pairwise comparison of ROC curves (upper 
diagonal) and inter-observer agreement for evaluations 
(lower diagonal) 
 

 DLA Expert 1 Expert 2 Expert 3 Expert 4 

DLA  0.149±0.0

28 

p<0.001 

0.053±0.0

33 

p=0.110 

0.134±0.0

30 

p<0.001 

0.135±0.03

0 

p<0.001 

Expe

rt 1 

0.449±0.0

53 

p<0.001 

 0.096±0.0

21 

p<0.001 

0.015±0.0

18 

p=0.417 

0.014±0.02

3 

p=0.552 

Expe

rt 2 

0.268±0.0

52 

p<0.001 

0.625±0.0

41 

p<0.001 

 0.081±0.0

23 

p=0.001 

0.082±0.02

7 

p=0.003 

Expe

rt 3 

0.370±0.0

54 

p<0.001 

0.806±0.0

35 

p<0.001 

0.637±0.0

42 

p<0.001 

 0.0008±0.0

24 

p=0.973 

Expe

rt 4 

0.379±0.0

55 

p<0.001 

0.657±0.0

46  

p<0.001 

0.428±0.0

47 

p<0.001 

0.630±0.0

46 

p<0.001 

 

Abb. DLA: deep learning algorithm; kappa coefficients (κ±Standard Error) were given at 
the lower diagonal of the table; ΔArea Under the Curve±Standard Error were given at 
the upper diagonal of the table, 

 
DISCUSSION 

In emergency medicine settings, the high volume of 
patients and substantial workload, often necessitate rapid 
evaluation of patients and X-rays. The lack of dedicated time 
for reading radiographs should not lead doctors to 
misinterpretation of results, as misdiagnosis of 
musculoskeletal injuries can have undesirable outcomes 
such as disability, restriction of range of motion and similar 
complications (17, 18). Therefore, a deep learning algorithm 
designed to interpret plain radiographs for orthopedic injuries 

could potentially improve diagnostic accuracy for extremity 
injuries and enhance patient management. In this 
retrospective study of 313 patients, we assessed the 
diagnostic performance of DLA and four emergency 
medicine doctors in detecting wrist bone fractures. Our 
findings indicate that the diagnostic ability of DLA was not as 
accurate as that of the EM doctors with the DLA’s sensitivity 
(57%) being lower than that of the EM physicians (72.7%, 
78.5%, 76%, 69.4%) in detecting wrist bone fractures. 
Furthermore, our DLA exhibited lower accuracy, sensitivity 
and specificity compared to the four EM  doctors, as 
indicated by its lowest AUC. These results suggest that the 
DLA may not be sufficient to replace human doctors.  
However, the potential for artificial intelligence-assisted 
diagnosis lies not in replacement, but in conjunction with 
physicians to enhance their capabilities and facilitate clinical 
integrations. An algorithm, despite its stand-alone limitations 
observed in this study, could be highly useful as a triage tool 
to prompt further imaging when suspicion persists, 
particularly in busy settings like emergency departments.  
 
Table 4. Agreement between ground truth, deep learning 
algorithm and emergency medicine experts 
 

Abb. DLA: deep learning algorithm 
 
 

 Kappa (versus 
GT) 
(κ±Standard 
Error) 

95% 
Confidence 
Interval 

p value 

DLA 
 

0.351±0.054 0.245-0.458 <0.001 

Expert 1 
 

0.661±0.044 0.575-0.747 <0.001 

Expert 2 
 

0.427±0.050 0.330-0.524 <0.001 

Expert 3 
 

0.615±0.046 0.526-0.705 <0.001 

Expert 4 
 

0.638±0.045 0.549-0.726 <0.001 

Table 2. Diagnostic performances of deep learning algorithm and four emergency medicine experts 
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 Radius bone n (%) Carpal bone n (%) Fracture n (%) Normal n (%) Total n (%) 

 Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

DLA 
 

60 
(73.2) 

22 
(26.8) 

9 
(23.1) 

30 
(76.9) 

69 
(57.0) 

52 
(43.0) 

149 
(77.6) 

43 
(22.4) 

218 
(69.6) 

95 
(30.4) 

Expert 1 74 
(90.2) 

8 
(9.8) 

14 
(35.9) 

25 
(64.1) 

88 
(72.7) 

33 
(27.3) 

176 
(91.7) 

16 
(8.3) 

264 
(84.3) 

49 
(15.7) 

Expert 2 74 
(90.2) 

8 
(9.8) 

21 
(53.8) 

18 
(46.2) 

95 
(78.5) 

26 
(21.5) 

128 
(66.7) 

64 
(33.3) 

223 
(71.2) 

90 
(28.8) 

Expert 3 71 
(86.6) 

11 
(13.4) 

21 
(53.8) 

18 
(46.2) 

92 
(76.0) 

29 
(24.0) 

164 
(85.4) 

28 
(14.6) 

256 
(81.8) 

57 
(18.2) 

Expert 4 72 
(87.8) 

10 
(12.2) 

12 
(30.8) 

27 
(69.2) 

84 
(69.4) 

37 
(30.6) 

177 
(92.2) 

15 
(7.8) 

261 
(83.4) 

52 
(16.6) 

Abb. DLA: deep learning algorithm

 
 
Previous studies have shown that artificial intelligence (AI) 

led to an improvement in the diagnostic performance of both 
radiologists and EM physicians when evaluating trauma 
radiographs [19, 20]. Nehrer et al. also showed that the 
accurate diagnosis of knee osteoarthritis could be 
ameliorated with the aid of AI, especially when compared to 
stand-alone AI or physician-alone performances (21). The 
integration of AI as a decision support tool  can help 
clinicians avoid misdiagnosis in settings with extensive 
workload acting as an accurate and efficient fracture 
detection method. Our study found that the DLA detected 
112 fractures, while 121 fractures were identified according 
to GT. These findings indicate that DLA underestimated the 
number of fractures.   

Similar to our results, Langerhuizen et al. demonstrated 
the failure of a DLA in identifying hand fractures on 
radiographs; showing lower accuracy, sensitivity and 
specificity compared to surgeons (12). In our study, the 
performance of DLA and human observers differed 
significantly depending on anatomical area. Both DLA and 
EM experts were more effective at detecting radius bone 
fractures than carpal ones. Similarly, in Cohen et al.’s study, 
among all missed fractures, AI missed radius fractures 
(38%) less frequently than carpal ones (58%)(22). It is widely 
acknowledged that diagnosing carpal bone fractures using 
plain radiographs is challenging for physicians due to  their 
complex anatomical structures (23). Like human readers, the 
DLA encountered some difficulties analyzing carpal bone 
fractures suggesting that future algorithms should be 
specially trained to recognize these challenging injuries. 
Despite these challenges, the collaborative use of AI with 
physicians holds significant promise 

For instance, Nguyen et al demonstrated that AI 
assistance significantly increased the detection of non-
obvious and difficult pediatric fractures, such as Salter or 
greenstick fractures, by 14.32 points, even though their 
stand-alone AI performed better than human observers in 
that specific context. This highlights AI's potential to 
complement human expertise, particularly in identifying 
subtle findings that might otherwise be overlooked (24).   

For successful clinical integration, several factors must be 
considered. Firstly, AI programs for fracture detection have 
the potential to reduce the burden on EM doctors, leading to 
benefits such as decreased emergency  department length  
 

 
 
of stay, fewer unnecessary CT orders, and reduced costs. 
(25,26).     

 This highlights the efficiency gains AI can bring. 
Secondly, AI can serve as a valuable training tool in the era 
of digitalization. It is crucial for both junior and senior medical 
doctors to familiarize themselves with the clinical practice of 
these technologies. However, it is paramount that junior 
doctors with less experience do not base all diagnostic 
decisions solely on AI, emphasizing the need for physician 
oversight and critical evaluation (27). One of the strengths of 
our study is the establishment of GT through CT images 
whicih provides a more definitive reference compaed to  
many studies that rely on plain radiographs interpreted by 
expert radiologists or orthopedic surgeons (24, 28). This 
robust GT is essential for accurately evaluating AI 
performance.  

Our study had some limitations. First, the retrospective 
nature of this study did not allow the readers to examine the 
patient and focus on a specific anatomical area. Examining 
the patient’s injured area before viewing the radiograph 
improves the final diagnostic decision (20, 29). Similarly, 
incorporating demographics or injury signs may improve the 
algorithm performance. As the study population was 
restricted to one single institution with a small number of 
patients, having larger cohorts might have enhanced the 
results. 

Transformative change in medical practice occurs over 
time; however, AI, as one of the most important technologies 
ever developed in recent decades, must ensure safety and 
benefit for the long-term future. It is generally believed that 
AI tools will primarily facilitate and enhance human work, 
rather than replace the work of physicians and other 
healthcare staff.  While AI in emergency radiology is still in 
its early stages and necessitates investment in research and 
development, particularly for subtle findings like wrist 
fractures where training data can be challenging to acquire, 
the synergistic potential of AI and human expertise is 
undeniable. 

AI’s application in orthopedic imaging can integrate past 
clinical experiences and a vast amount of knowledge to 
guide physicians in making more accurate diagnostic and 
therapeutic decisions, thus making the diagnosis and 
treatment of orthopedic diseases more efficient, 
standardized, and automated (30). 

Table 5. Diagnostic accuracy of DLA and emergency medicine experts 
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Continued research, innovation, and interdisciplinary 
collaboration are important to unlock the full potential of AI in 
healthcare. With successful integration, AI is anticipated to 
revolutionize healthcare, leading to improved patient 
outcomes, enhanced efficiency, and better access to 
personalized treatment and quality care (31). 
 
CONCLUSION 

In conclusion, our study demonstrated that while the DLA 
accurately detected radius fractures in wrist X-rays with 
capabilities comparable to emergency medicine physicians, 
the algorithm requires further improvement, especially for 
carpal bone injuries. The findings underscore that AI-
assisted diagnosis, when integrated thoughtfully, can serve 
as a valuable adjunct to physician expertise, particularly in 
busy emergency settings, by enhancing efficiency, providing 
decision support, and acting as a robust triage tool. 
Continued research and development are crucial to refine AI 
algorithms, ensuring their reliability, and seamless 
integration into clinical workflows to ultimately improve 
patient outcomes through a collaborative human-AI 
approach. 
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