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ABSTRACT

Introduction: Patients with hand and wrist trauma are frequently
diagnosed in the emergency department. Deep learning algorithms
could potentially become powerful tools to diagnose fractures from X-
ray wrist images. This study aims to assess the diagnostic
performance of a deep learning algorithm in detecting wrist fractures
that are difficult to detect through radiographs.

Methods: This retrospective study included adult patients with
hand/wrist trauma who undergo CT imaging. CT imaging of injured
areas, interpreted by an expert radiologist were considered as “ground
truth” (GT). There were 313 cases, a total of 121 fractures (82 radius,
39 carpal bones) were identified as GT from CT images. Using the
algorithm, fracture detection procedure was performed on dataset of
hand and wrist X-ray images. The same datasets were evaluated by
four emergency medicine doctors. Diagnostic performances such as
accuracy, area under curve, sensitivity, precision and F1 score were
calculated. Agreement (Kappa coefficient (k)) between GT, observers
and deep learning algorithm was determined.

Results: The algorithm showed 69.6% accuracy, 57% sensitivity and
61.6% precision. Emergency medicine doctors showed better
diagnostic performance with higher accuracy, sensitivity and precision
and AUC values. The interobserver agreement among four EM
doctors was moderate whereas the agreement with the algorithm was
only fair.

Conclusions: The Deep learning algorithm demonstrated an
accurate detection of fractures in wrist X-rays and it had capabilities
that were comparable to those of emergency medicine physicians,
but the algorithm mentioned needs to be further improved to produce
better outcome.

Keywords: Deep learning, neural networks, fractures, carpal bones,
radius fractures

INTRODUCTION

OZET

Girig: Acil serviste siklikla el ve bilek travmasi olan hastalara tani
konur. Derin 6drenme algoritmalari, X-isini bilek gortntulerinden
kiriklari teshis etmek icin glicli araglar haline gelebilir. Bu ¢alisma,
radyografilerle tespit edilmesi zor olan bilek kiriklarini tespit etmede
derin 6grenme algoritmasinin tani performansini degerlendirmeyi
amaglamaktadir.

Yontemler: Bu retrospektif calisma, BT goruntiilemesi yapilan el/bilek
travmasi olan yetigkin hastalari icermektedir. Uzman bir radyolog
tarafindan yorumlanan yarali bélgelerin BT géruntileri "temel gergek”
(TG) olarak kabul edildi. 313 vaka galismaya dahil edildi, toplam 121
kirik (82 radius 39 karpal kemik) BT goéruntllerinden TG olarak
tanimlandi. Algoritma kullanilarak, el ve bilek X-1sini gérintulerinden
olusan veri setinde kirik tespit prosedurti gergeklestirildi. Ayni veri
setleri dort acil tip doktoru tarafindan degerlendirildi. Dogruluk, egri
altinda kalan alan, duyarlilik, kesinlik ve F1 skoru gibi tani
performanslari hesaplandi. TG, go6zlemciler ve derin 6grenme
algoritmasi arasindaki uyum (Kappa katsayisi (k)) belirlendi.

Bulgular: Algoritma %69,6 dogruluk, %57 duyarlilik ve %61,6 kesinlik
gosterdi. Acil tip doktorlari daha yiiksek dogruluk, duyarlilik ve kesinlik
ve AUC degerleriyle daha iyi tani performansi gosterdi. Dort acil tip
doktoru arasindaki gézlemciler arasi uyum orta diizeydeyken
algoritmayla uyum yalnizca orta diizeydeydi.

Sonug: Derin 6grenme algoritmasi, bilek réntgenlerinde kiriklari
dogru bir sekilde tespit etti ve acil tip doktorlarininkine benzer
yeteneklere sahipti, ancak daha iyi sonuglar elde etmek icin
bahsedilen algoritmanin daha da iyilestiriimesi gerekiyor.

Anahtar Kelimeler: Derin 6grenme, sinir aglari, kiriklar, karpal
kemikler, Radius kiriklari

fractures and represent 14 to 30 % of all traumas
encountered in the emergency department (2-4). The
anatomical complexity of the wrist may result in misdiagnosis
or errors in interpretation. Radiographic evaluation plays an

The wrist, main functional joint involved in daily life
activities is frequently exposed to traumatic injuries (1). Wrist
trauma consist of distal radius, distal ulna and carpal bones
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Figure 1. Flowchart of the study population

Patients who underwent CT (n=656)

Patients who had more than one fracture on CT (n=86)
Patients who did not have 3 views of plain radiographs
radiographs (AP, lateral, oblique) (n=151)

Patients who had allthree views of plainradiographs (AP,
lateral, oblique) (n=419)

Patients who had obvious fractures on radiographs (n=106) }

Patients included (n=313)
- Patients with one fracture (n=121)
- Patients with no fracture (n=192)

Abb. CT: computerized tomography, AP: antero-posterior

essential role in subsequent management of an injured wrist,
serving as the standard imaging technique for fracture
detection after trauma. However, wrist fractures can be
overlooked using this modality. Furthermore, clinical signs
may be subtle and both physical examination and standard
X-ray inconclusive. When a wrist injury is initially evaluated,
first, plain radiographs are typically ordered (5).
Unrecognized fractures, often missed on initial radiographs
may lead to complications such as malunion, nonunion,
osteoarthritis and osteonecrosis, resulting in persistent pain
and functional impairment (2). Moreover, in the busy setting
of the emergency department (ED), failure to identify
fractures is the most common diagnostic error (6).
Conventional X-rays may be non-diagnostic and computed
tomography (CT) may be required for prompt diagnosis,
particularly when evaluating carpal bones. If initial finding are
inconclusive and suspicion remains, a CT may be helpful for
detecting occult or subtle fractures. However, CT s
associated with additional costs, ionization radiation
exposure and longer ED length of stay (7). In busy clinical
settings where clinicians experience excessive workload, an
accurate and efficient fracture detection method could assist
and guide clinicians in avoiding misdiagnosis. In this context,
deep learning algorithms (DLA) aim to facilitate clinician
tasks and support clinical decision-making. Clinical studies
have demonstrated the successful interpretation capabilities
of DLA in various medical fields , including oncology and
gastroenterology (8-11). In recent years, DLAs have
achieved remarkable results in automatically detecting
fractures in different body parts (4, 12). Nevertheless, DLA
still encounter difficulties in identifying certain fractures such
as scaphoid fractures, which are obvious to human
observers(12).

This study aims to investigate the diagnostic performance
of a DLA in detecting wrist bone fractures that are
challenging to identify on antero-posterior and lateral plain
radiographs. We then compare the diagnostic performance

of the algorithm with that of emergency medicine (EM)
doctors.

METHODS
Study design and population

This retrospective study was reviewed and approved by
the Ankara University Research Ethics Review Board
(approval number: 2021000367). The requirement for
written informed consent was waived due to the
retrospective nature of this study. Adult patients presenting
with wrist injuries who underwent wrist or/and hand CT in the
ED between 2019 and 2022 were reviewed. Patients with
more than one fracture on CT, those who did not have three
views of plain radiographs (antero-posterior, lateral, oblique)
and those who had obvious fractures (displacement,
fragmentation) on radiographs were excluded (Figure 1).
Patient images were anonymized and stripped of any
identifying clinical information.

Bone fracture Computer Aided Diagnosis (CAD)

Model Pipeline (Initial dataset)

The proposed pipeline in this study consists of two
models. The first model is a U-Net model, designed for
foreground segmentation. In radius region images,
background elements such as text annotations indicating the
radius location may interfere fracture detection. Additionally,
bilateral radius images may be appeared together, making it
necessary to first isolate the foreground region (Figure 2).

U-Net is a convolutional neural network with the encoder-
decoder structure. The encoder compresses the image into
a low-resolution abstract representation, while the decoder
reconstructs this encoded information to the original image
resolution (13, 14). Skip connections between encoder and
decode layers of the same resolution enable the integration
of semantic information with precise spatial details. Finally,
The model outputs the probability of each pixel belonging to
the foreground or background.

The second model in the pipeline is Faster Region-based
Convolutional Neural Network (Faster R-CNN)(15). Using
the segmentation results, the foreground region is extracted
from the original image and cropped to fill the field of view,
and then resampled for model input. Feature extraction is
performed by the Resnet-50 backbone, and multi-scale
feature integration is achieved via a Feature Pyramid
Network (FPN), which fuses spatial location information from
lower layers with semantic information from higher layers
(16). The Region Proposal Network (RPN) predicts
candidate fracture bounding boxes based on these feature
maps. Finally, proposals and corresponding features are
passed through fully connected layers to classify fractures
and refine bounding box coordinates for precise localization
(Figure 3).

The U-Net model was trained on a dataset of 14,509 full-
body digital radiography (DR) images for training and 1,196
images for validation. To enhance model robustness and
generalization, a variety of data augmentation techniques
were employed, including Random Gamma, Horizontal Flip,
Random Brightness and Contrast, Elastic Transform, and
Random Sized Crop. Key training parameters included an
AdamW optimizer, a base learning rate of 3e-4, a weight
decay of 0.0005, and a batch size of 16. The model was
trained for 40,000 iterations with input images resized to
512x512 pixels. For the fracture detection task, the Faster R-
CNN model was trained on a dedicated dataset of limb
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Figure 2. The overview of Model architectire

Input Segmentation Model

fractures. The training set consisted of 29,254 images
(63.49% positive cases), and the validation set contained
2,037 images (50% positive cases). The data augmentation
pipeline included Random Brightness, Random Contrast,
Random Crop, Random Extent, Random Flip, Random
Gamma, Random Saturation, and Random Lighting. The
model was trained for 40,000 iterations using a Stochastic
Gradient Descent (SGD) optimizer with a base learning rate
of 0.001, momentum of 0.9, and a weight decay of 0.0001.
A batch size of 16 was used, and input images were resized
to have a minimum side of 800 pixels and a maximum side
of 1333 pixels. During testing, a Non-Maximum Suppression
(NMS) threshold of 0.1 was used.

Figure 3. Bone fracture Computer Aided Diagnosis- Model
Pipeline a) U-Net Model for bone segmentation. B)Faster
Region-based Convolutional Neural Network (Faster R-CNN),
Faster R-CNN Model for fracture detection
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Abb. FPN: feature pyramid network, RPN: region proposal network, ROU:
region of interest, Reg: regression, Cls: classification

Evaluation dataset and ground truth

In this study, the evaluation dataset comprised plain
radiographs of patients over than 18 years of age presenting
with hand injuries. The plain radiographs (antero-posterior,
lateral and oblique) were retrieved from the Radiology
Information System/Picture Archiving and Communication
System (RIS/PACS; Centricity 5.0 RIS-i, GE Healthcare,
Milwaukee, WI, USA) of Ankara University School of
Medicine for fracture identification in order to identify the
fractures. Only complete and adequate image series were
included; —specifically, those consisting of all three
standard views, free from plaster cast artifacts, and

Detection Model

Output

accompanied by corresponding CT images. All radiographs
were provided in Digital Imaging and Communications in
Medicine (DICOM) format and anonymized prior to
evaluation. The dataset included only cases with a single
fracture; patients with multiple or simultaneous fractures
were excluded. CT images were obtained using a 64-slice
scanner (Toshiba Aquilion 64, Otawara, Japan) with the
following parameters: 0.5 mm detector collimation, 120 kVp
tube voltage, 0.5 s gantry rotation time, 1 mm reconstructed
section thickness, and 1 mm reconstruction intervals. The
“ground truth” (GT) for each CT image was determined by a
board-certified radiologist with eight years of experience.
The radiologist was blinded to patients’ clinical conditions
and prior CT reports. Four emergency medicine physicians
(Expert 1, Expert 2, Expert 3, Expert 4), each with at least
two years of clinical experience, independently analyzed the
plain radiograph dataset. While they were aware that each
patient had exactly one fracture to identify, they were blinded
to the total number of fracture and non-fracture cases. Each
reader annotated the fractures and their locations on the
radiographs at individual workstations, without time
constraints. The readers were blinded to the CT images, CT
reports, and each other's assessments.

Evaluation method and model performance

Each image was analyzed using the DLA algorithm. The
findings from the GT and algorithm analysis for all cases
were compared. The model performance was evaluated
using the Confusion Matrix. The metrics used to assess the
performance of the fracture detection model were as follows:
True Positive (TP): the number of accurate detected
fractures; False Positive (FP): the number of detected
fractures even though there were no fractures; False
Negative (FN): the number of fractures not detected. The
performance metrics of the model were determined
according to the formulas using TP, FP, and FN, as follows:
Accuracy= (TP + TN) / (TP + TN + FP + FN); Sensitivity
(Recall, True positive rate (TPR)= TP / (TP + FN); Precision
(Positive predictive value (PPV))= TP /(TP + FP); F1 Score=
2TP / (2TP + FP + FN). From these formulas, accuracy,
sensitivity, precision and F1 scores for all radius and carpal
fractures were determined. F1 score is defined as the
harmonic mean of sensitivity and precision.

Statistical Analysis

Continuous variables were reported with mean and
standard deviation (SD) and categorical variables with
frequencies and percentages (%). We assessed the
diagnostic performance of DLA and the four experts using a
receiver operating curve (ROC). ROC curves were used to
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compare the diagnostics performance of DLA and the four
experts. An area under curve (AUC) equal to 1.00 represents
perfect classification, and an AUC of 0.5 indicates a
prediction equal to chance. The difference between GT and
DLA, and the four EM doctors, in terms of categorical
variables, was tested by McNemar test. Cohen's kappa
coefficient (k) analysis was performed to determine the
agreement between GT, DLA and the four EM doctors.
Fleiss’ generalized kappa coefficient was used to measure
the degree of interobserver agreement among the four EM
doctors. The degree of agreement was defined according to
the value of the k as follows: between 0.00 and 0.20 slight,
between 0.21 and 0.40 fair, between 0.41 and 0.60
moderate, 0.61 and 0.80 substantial, and 0.81 to 1.00 almost
perfect. A P-value less than 0.05 was considered significant.

Figure 4. Fracture of radius bone on plain radiographs and
computerized tomography images

RESULTS

A total of 313 patients with wrist trauma who underwent
CT were included. There were 155 female (49.5%) and 158
male (50.5%) patients. The mean age of the study
population was 43.1£19.5 years old. After radiologic
evaluation (GT), a total of 121 fractures was identified
(38.7%), 82 patients were diagnosed with a radius fracture
and 39 patients with a carpal bone fracture (Figure 4). The
remaining 192 patients (61.3%) with no fractures were
assigned to the control group According to DLA, 112
fractures were detected (35.8%) whereas no fracture was
detected in 201 of the patients (64.2%). The final
demographic and clinical characteristics of the patients and
diagnosis based on GT and DLA are provided in Table 1.

Table 1. Characteristics of the study group

Female 155 (49.5)
Gender, n (%) Male 158
(50.5)
Age, (years old) 43.1£19.5
MeantSD
No 192 (61.3)
Fracture Yes 121 (38.7)
ding to GT
f‘c((:/:))r ng fo BT, Radius fracture 82 (26.2)
Carpal bone fracture 39 (12.5)
Fracture No 201 (64.2)
according to DLA,
n (%)
Yes 112 (35.8)

Abb. DLA: deep learning algorithm; GT: Ground truth; SD: Standard
deviation

DLA results were compared with GT; 52 false negatives,
43 false positives and 149 true negatives and 69 true
positives were determined. According to these results, the
sensitivity of DLA was calculated as 57% and the precision
as 61.6% in detecting fractures in hand and wrist traumas.
The DLA had an AUC of 0.673+0.032 while the diagnostic
performances of the four EM doctors were higher with AUC
values of 0.822+0.027, 0.726+0.029, 0.807+0.027,
0.80810.028, respectively (Figure 5). The DLA correctly
detected 69 out of the total fractures while 43 of 192 patients
confirmed as having no fracture were incorrectly diagnosed
as having a fracture. The accuracy of the DLA was
calculated as 69.6% (95% CIl 64.2% to 74.5%). Accuracy,
sensitivity, precision and F1 score favored the four EM
doctors over DLA (Table 2).

Figure 5. The diagnostic performances of DLA and emergency
medicine doctors in detecting hand and wrist traumas were
compared with the area under the receiver operating curves
(AUC)
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Abb. DLA: deep learning algorithm

The diagnostic performance of DLA was lower than that of
expert 1, 3 and 4 (p<0.001 for all comparisons). There was
no statistically significant difference between diagnostic
performance of DLA and Expert 2 (p= 0.110) (upper diagonal
of the Table 3). EM experts’ agreements with each other
were higher than with DLA (lower diagonal of the Table 3).

The generalized kappa coefficient among four experts
was indicated substantial agreement with a k= 0.624+0.023,
(95% CI: 0.579-0.670, p<0.001). There was a significantly
fair agreement between GT and DLA. All four experts
showed a better agreement with GT than DLA. Expert 1, 3
and 4 demonstrated substantial agreement with DLA. A
moderate agreement between GT and Expert 2 was
detected (Table 4).

When considering accuracy according to anatomic sites
of fractures, DLA and all four experts were better at
diagnosing radius fractures than carpal ones (p<0.001)
(Table 5).

For detecting radius fractures, there were statistically
significant differences between DLA and the four experts (p=
0.004, p= 0.004, p= 0.027 and p= 0.008 respectively).
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Table 2. Diagnostic performances of deep learning algorithm and four emergency medicine experts

DLA Expert 1 Expert 2 Expert 3 Expert 4
Normal Fracture Normal Fracture Normal Fracture Normal Fracture Normal Fracture
Normal 149 43 176 16 128 64 164 28 177 15
GT
Fracture 52 69 33 88 26 95 29 92 37 84
Total 201 112 209 104 154 159 193 120 214 99
p value <0.001 <0.001 <0.001 <0.001 <0.001
Accuracy
(95% CI) 0.696 (0.642-0.745) 0.843 (0.798-0.880) 0.712 (0.659-0.760) 0.818 (0.771-0.857) 0.834 (0.788-0.872)
AUC 0.673 (0.618-0.725) 0.822 (0.775-0.863) 0.726 (0.673-0.775) 0.807 (0.759-0.849) 0.808 (0.760-0.850)
(95% Cl) (p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)
(Sgesr:/mg\ll)lty 0.570 (0.481-0.655) 0.727 (0.642-0.799) 0.785 (0.704-0.849) 0.760 (0.677- 0.828) 0.694 (0.607-0.769)
(]
Precision
(95% Cl) 0.616 (0.524-0.701) 0.846 (0.765-0.903) 0.597 (0.520-0.671) 0.767 (0.683-0.833) 0.848 (0.765-0.906)
F1 Score
(95% Cl) 0.592 (0.536-0.646) 0.782(0.732-0.825) 0.679(0.625-0.729) 0.763(0.712-0.708) 0.764(0.713-0.808)
0

Abb. DLA: deep learning algorithm; GT: Ground truth

Significance with DLA versus Expert 1, 2, 3, and 4 was seen
for detecting carpal fractures (p= 0.125, p= 0.008, p= 0.002,
and p= 0.648, respectively), total fractures (p= 0.001,
p<0.001, p<0.001, and p= 0.020, respectively) and normal
radiographs (p<0.001, p= 0.020, p= 0.063, and p<0.001
respectively).

Table 3. Pairwise comparison of ROC curves (upper
diagonal) and inter-observer agreement for evaluations
(lower diagonal)

DLA Expert 1 Expert 2 Expert 3 Expert 4
DLA 0.149+0.0 0.053+0.0 0.134+0.0 0.135+0.03
28 33 30 0
p<0.001 p=0.110 p<0.001 p<0.001
Expe 0.449+0.0 0.096+0.0 0.015£0.0 0.014+0.02
rt1 53 21 18 3
p<0.001 p<0.001 p=0.417 p=0.552
Expe 0.268+0.0 0.625+0.0 0.081+0.0 0.082+0.02
rt2 52 41 23 7
p<0.001 p<0.001 p=0.001 p=0.003
Expe 0.370£0.0 0.806+0.0 0.637+0.0 0.0008+0.0
rt3 54 35 42 24
p<0.001 p<0.001 p<0.001 p=0.973
Expe 0.379+0.0 0.657+0.0 0.428+0.0 0.630+0.0
rt4 55 46 47 46
p<0.001 p<0.001 p<0.001 p<0.001

Abb. DLA: deep learning algorithm; kappa coefficients (k+Standard Error) were given at
the lower diagonal of the table; AArea Under the CurvexStandard Error were given at
the upper diagonal of the table,

DISCUSSION

In emergency medicine settings, the high volume of
patients and substantial workload, often necessitate rapid
evaluation of patients and X-rays. The lack of dedicated time
for reading radiographs should not lead doctors to
misinterpretation of results, as misdiagnosis of
musculoskeletal injuries can have undesirable outcomes
such as disability, restriction of range of motion and similar
complications (17, 18). Therefore, a deep learning algorithm
designed to interpret plain radiographs for orthopedic injuries

could potentially improve diagnostic accuracy for extremity
injuries and enhance patient management. In this
retrospective study of 313 patients, we assessed the
diagnostic performance of DLA and four emergency
medicine doctors in detecting wrist bone fractures. Our
findings indicate that the diagnostic ability of DLA was not as
accurate as that of the EM doctors with the DLA’s sensitivity
(57%) being lower than that of the EM physicians (72.7%,
78.5%, 76%, 69.4%) in detecting wrist bone fractures.
Furthermore, our DLA exhibited lower accuracy, sensitivity
and specificity compared to the four EM doctors, as
indicated by its lowest AUC. These results suggest that the
DLA may not be sufficient to replace human doctors.
However, the potential for artificial intelligence-assisted
diagnosis lies not in replacement, but in conjunction with
physicians to enhance their capabilities and facilitate clinical
integrations. An algorithm, despite its stand-alone limitations
observed in this study, could be highly useful as a triage tool
to prompt further imaging when suspicion persists,
particularly in busy settings like emergency departments.

Table 4. Agreement between ground truth, deep learning
algorithm and emergency medicine experts

Kappa (versus | 95% p value

GT) Confidence

(kxStandard Interval

Error)
DLA 0.351+0.054 0.245-0.458 <0.001
Expert 1 0.661+0.044 0.575-0.747 <0.001
Expert 2 0.427+0.050 0.330-0.524 <0.001
Expert 3 0.615+0.046 0.526-0.705 <0.001
Expert 4 0.638+0.045 0.549-0.726 <0.001

Abb. DLA: deep learning algorithm
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Table 5. Diagnostic accuracy of DLA and emergency medicine experts

Radius bone n (%) Carpal bone n (%) Fracture n (%) Normal n (%) Total n (%)
Correct Incorrect | Correct | Incorrect | Correct | Incorrect | Correct | Incorrect | Correct | Incorrect
DLA 60 22 9 30 69 52 149 43 218 95
(73.2) (26.8) (23.1) (76.9) (57.0) (43.0) (77.6) (22.4) (69.6) (30.4)
Expert 1 74 8 14 25 88 33 176 16 264 49
(90.2) (9.8) (35.9) (64.1) (72.7) (27.3) (91.7) (8.3) (84.3) (15.7)
Expert 2 74 8 21 18 95 26 128 64 223 90
(90.2) (9.8) (53.8) (46.2) (78.5) (21.5) (66.7) (33.3) (71.2) (28.8)
Expert 3 71 11 21 18 92 29 164 28 256 57
(86.6) (13.4) (53.8) (46.2) (76.0) (24.0) (85.4) (14.6) (81.8) (18.2)
Expert 4 72 10 12 27 84 37 177 15 261 52
(87.8) (12.2) (30.8) (69.2) (69.4) (30.6) (92.2) (7.8) (83.4) (16.6)

Abb. DLA: deep learning algorithm

Previous studies have shown that artificial intelligence (Al)
led to an improvement in the diagnostic performance of both
radiologists and EM physicians when evaluating trauma
radiographs [19, 20]. Nehrer et al. also showed that the
accurate diagnosis of knee osteoarthritis could be
ameliorated with the aid of Al, especially when compared to
stand-alone Al or physician-alone performances (21). The
integration of Al as a decision support tool can help
clinicians avoid misdiagnosis in settings with extensive
workload acting as an accurate and efficient fracture
detection method. Our study found that the DLA detected
112 fractures, while 121 fractures were identified according
to GT. These findings indicate that DLA underestimated the
number of fractures.

Similar to our results, Langerhuizen et al. demonstrated
the failure of a DLA in identifying hand fractures on
radiographs; showing lower accuracy, sensitivity and
specificity compared to surgeons (12). In our study, the
performance of DLA and human observers differed
significantly depending on anatomical area. Both DLA and
EM experts were more effective at detecting radius bone
fractures than carpal ones. Similarly, in Cohen et al.’s study,
among all missed fractures, Al missed radius fractures
(38%) less frequently than carpal ones (58%)(22). It is widely
acknowledged that diagnosing carpal bone fractures using
plain radiographs is challenging for physicians due to their
complex anatomical structures (23). Like human readers, the
DLA encountered some difficulties analyzing carpal bone
fractures suggesting that future algorithms should be
specially trained to recognize these challenging injuries.
Despite these challenges, the collaborative use of Al with
physicians holds significant promise

For instance, Nguyen et al demonstrated that Al
assistance significantly increased the detection of non-
obvious and difficult pediatric fractures, such as Salter or
greenstick fractures, by 14.32 points, even though their
stand-alone Al performed better than human observers in
that specific context. This highlights Al's potential to
complement human expertise, particularly in identifying
subtle findings that might otherwise be overlooked (24).

For successful clinical integration, several factors must be
considered. Firstly, Al programs for fracture detection have
the potential to reduce the burden on EM doctors, leading to
benefits such as decreased emergency department length

of stay, fewer unnecessary CT orders, and reduced costs.
(25,26).

This highlights the efficiency gains Al can bring.
Secondly, Al can serve as a valuable training tool in the era
of digitalization. It is crucial for both junior and senior medical
doctors to familiarize themselves with the clinical practice of
these technologies. However, it is paramount that junior
doctors with less experience do not base all diagnostic
decisions solely on Al, emphasizing the need for physician
oversight and critical evaluation (27). One of the strengths of
our study is the establishment of GT through CT images
whicih provides a more definitive reference compaed to
many studies that rely on plain radiographs interpreted by
expert radiologists or orthopedic surgeons (24, 28). This
robust GT is essential for accurately evaluating Al
performance.

Our study had some limitations. First, the retrospective
nature of this study did not allow the readers to examine the
patient and focus on a specific anatomical area. Examining
the patient’s injured area before viewing the radiograph
improves the final diagnostic decision (20, 29). Similarly,
incorporating demographics or injury signs may improve the
algorithm performance. As the study population was
restricted to one single institution with a small number of
patients, having larger cohorts might have enhanced the
results.

Transformative change in medical practice occurs over
time; however, Al, as one of the most important technologies
ever developed in recent decades, must ensure safety and
benefit for the long-term future. It is generally believed that
Al tools will primarily facilitate and enhance human work,
rather than replace the work of physicians and other
healthcare staff. While Al in emergency radiology is still in
its early stages and necessitates investment in research and
development, particularly for subtle findings like wrist
fractures where training data can be challenging to acquire,
the synergistic potential of Al and human expertise is
undeniable.

Al's application in orthopedic imaging can integrate past
clinical experiences and a vast amount of knowledge to
guide physicians in making more accurate diagnostic and
therapeutic decisions, thus making the diagnosis and
treatment of orthopedic diseases more efficient,
standardized, and automated (30).
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Continued research, innovation, and interdisciplinary
collaboration are important to unlock the full potential of Al in
healthcare. With successful integration, Al is anticipated to
revolutionize healthcare, leading to improved patient
outcomes, enhanced efficiency, and better access to
personalized treatment and quality care (31).

CONCLUSION

In conclusion, our study demonstrated that while the DLA
accurately detected radius fractures in wrist X-rays with
capabilities comparable to emergency medicine physicians,
the algorithm requires further improvement, especially for
carpal bone injuries. The findings underscore that Al-
assisted diagnosis, when integrated thoughtfully, can serve
as a valuable adjunct to physician expertise, particularly in
busy emergency settings, by enhancing efficiency, providing
decision support, and acting as a robust triage tool.
Continued research and development are crucial to refine Al
algorithms, ensuring their reliability, and seamless
integration into clinical workflows to ultimately improve
patient outcomes through a collaborative human-Al
approach.
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