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Abstract: In this study, the applicability of the widely used entropy method traditionally employed for calculating criterion weights in
the Multi-Criteria Decision-Making (MCDM) literature is investigated as a novel approach for measuring the performance of
alternatives. The proposed method, termed Entropy-Based Performance Measurement (EBPM), is grounded in the principle of
continuously increasing uncertainty inherent in both natural and social systems. The primary motivation of this approach is to
demonstrate, through sensitivity, comparative, and simulation analyses, that the method can produce ideally sensitive, reliable,
consistent, stable, and robust results. The study aims to expand the application domain of the entropy method and to contribute to
both the MCDM and entropy literature. EBPM is theoretically based on entropy’s inherent capability to quantify and enhance
informational performance. Without manipulating the original entropy equation, the entropy function is reformulated into a positively
increasing structure, enabling it to measure the performance of alternatives. In the methodology section, the characteristics of 15
widely recognized MCDM methods are introduced, the theoretical and mathematical foundations of the proposed approach are
explained, and its applicability is demonstrated using the innovation performance data of seven countries selected from the 2024
Global Innovation Index. In the results and discussion section, the quantitative findings and comprehensive explanations of the
proposed method are presented in detail. Thus, this study aims to broaden the potential of the entropy method within the field of
MCDM and to offer a novel perspective for decision-making processes.
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1. Introduction dominance of alternatives across multiple criteria

The development of new Multi-Criteria Decision-Making (Thakkar, 2021).
(MCDM) methods is of critical importance for Such an approach renders the decision-making process

overcoming the limitations of existing approaches and more rational and consistent under prevailing conditions,

offering solutions to a wider range of problem types
(Cirovic and Pamucar, 2022). While traditional methods
may be effective under certain criteria, they often fall
short when addressing complex and dynamic challenges.
Overcoming these limitations enables more accurate and
reliable decision-making outcomes. Innovative MCDM
approaches enhance the accuracy of decision support
processes and strengthen overall decision-making
efficiency (Lopez et al,, 2023).

Therefore, the discovery and development of novel
MCDM methods can provide effective solutions to
increasingly complex problems and allow for more
refined decisions through the interaction of multiple
criteria. This is especially significant in addressing
contemporary critical issues such as sustainability,
resource management, and risk analysis. One of the core
components of MCDM
quantitative superiority objectively reveals the relative

methods  characteristic

thus enabling decision-makers to make more reliable and
defensible choices. Characteristic
superiority enhances the credibility of decision support
systems and clarifies the distinctions between
alternatives, thereby contributing to scientifically
grounded solutions (Owen, 2023).

In this context, the study proposes a novel method for

quantitative

evaluating the performance of alternatives based on the
Entropy method, which is frequently employed in the
MCDM literature for calculating the weight values of
criteria. This method, referred to as the Entropy-Based
Performance Measurement (EBPM), aims to extend the
applicability of entropy beyond traditional weight
determination, offering a evaluation
mechanism of alternatives within the broader MCDM

performance

framework.
The primary motivation of this research is to

demonstrate that the proposed method possesses ideal
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sensitivity through sensitivity analyses, yields credible
and reliable outcomes in comparative analyses, and
proves to be stable and robust under simulation
conditions. An additional motivation is to expand the
application scope of the entropy method, thereby
contributing to both the MCDM literature and entropy-
based analytical approaches.

The theoretical foundation of the EBPM method is
grounded in the frequently cited notion in the literature
that entropy and by extension, uncertainty exhibits a
continuously increasing and positively oriented behavior
in both natural and social systems (Shankar, 2014). The
second theoretical foundation of the method is based on
the assumption that the presence of entropy reduces the
existing information performance of the systems it
influences and consequently increases their information
requirements. Accordingly, low levels of entropy imply
high information performance, whereas high levels of
entropy indicate reduced information performance
(Aksakal and Caliskan, 2020). Within the framework of
these two theoretical premises, the entropy function is
employed without modifying the original entropy
equation, thereby establishing a positively progressive
structure that effectively measures the performance of
alternatives.

In the methodology section, the study first introduces the
characteristics of 15 widely used MCDM methods, each
with distinct structural features. Subsequently, the
theoretical of the
proposed EBPM method are comprehensively detailed.
Finally, the performance of seven countries selected from
the 2024 Global Innovation Index is evaluated using the
proposed method based on innovation performance
criteria. The discussion section elaborates on the

and mathematical foundations

quantitative results.

2. Materials and Methods

2.1. Some MCDM Methods and Their Properties
MCDM methods play a fundamental role in complex
decision-making processes, particularly in selecting the
most appropriate solution among various alternatives
and evaluating the performance of each alternative based
on specific criteria (Munier, 2024). In today’s decision-
making landscape, decision-makers are often faced with
a wide array of alternatives possessing diverse attributes,
making it essential to identify the optimal choice
(Munier, 2021). This process becomes especially crucial
in contexts characterized by high uncertainty and
complexity, where considering multiple criteria enables
more comprehensive and balanced decisions compared
to single-criterion evaluations (Zardari et al.,, 2014).

The literature offers a wide range of MCDM methods,
each grounded in different computational techniques.
These methods contribute to decision support processes
by analyzing alternative performance according to their
unique structural frameworks (Thanh, 2021). Such
approaches

allow decision-makers to assess the

strengths and weaknesses of each alternative while
maintaining a balance among criteria. The significance of
MCDM lies in its ability to facilitate more effective and
informed decisions across various spheres of life. From
business and public administration to education and
healthcare, MCDM methods serve as valuable tools for
solving complex problems and achieving optimized
outcomes. Moreover, these methods are critical for the
efficient allocation of resources, minimizing risks, and
promoting sustainable decision-making practices. As
such, MCDM methodologies are indispensable in
contemporary decision-making environments where
complexity, diversity, and uncertainty are inherent.

As a result, it is commonly observed that researchers
make extensive use of methods such as Simple Additive
Weighting (SAW) (Azadfallah, 2025), the Weighted
Product Method (WPM) (Fan et al.,, 2025), the Technique
for Order of Preference by Similarity to the Ideal Solution
(TOPSIS) (Paradhita et al, 2025), the Weighted
Aggregated Sum Product Assessment (WASPAS) (Chen et
al, 2025), the Measurement of Alternatives and Ranking
according to Compromise (MARCOS)
(Roshanravan et al.,, 2025), the multi-attributive border
approximation area comparison (MABAC) (Mehdiabadi,
et al,, 2025), CRADIS (Aghamammadli et al., 2024), the
Multiple Attribute Utility Theory (MAUT) (Permata et al,,
2025), the range of value (ROV) (Andi¢, 2024), the
Complex Proportional Assessment (COPRAS) (Ballamudji,
2024) the ranking of alternatives through functional
mapping of criterion sub-intervals into a single interval
(RAFSI) (Trung et al.,, 2022), the combined compromise
solution (COCOSO) (Lendvai et al,, 2025), the proximity
indexed value (PIV) (Ersoy, 2024), the multi attributive
ideal-real comparative analysis (MAIRCA) (Oztas and
Oztas, 2024), and the additive ratio assessment (ARAS)
(Aydemir, 2025).

The SAW method, also known as the scoring method, is

Solution

applicable exclusively to numerical and comparable data
sets (Demirci, 2020). The quantitative performances of
the alternatives are evaluated based on normalized and
weighted values corresponding to the criteria (Sutoyo et
al,, 2025). The method begins with the construction of a
decision matrix. Subsequently, the data are normalized,
and the normalized values are multiplied by the
respective criterion weights to obtain the weighted
normalized decision matrix (Ciardiello and Genovese,
2023). In the final step, the overall score for each
alternative is calculated. These scores are then ranked in
descending order, thereby facilitating the selection
process and concluding the decision-making procedure
(Ciardiello and Genovese, 2023)

The WPM evaluates
computing the product of the normalized values

each decision alternative by

corresponding to each criterion, raised to the power of
the respective criterion weights (Kaya and Karasan,
2020). In this context, the quantitative performance of
alternatives is based on weighted normalized values
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(Chinnasamy et al., 2023). The method involves the
following steps:
normalizing the matrix, and then applying exponential
weighting to the
corresponding criterion weights (Chinnasay et al., 2023).
In the final step, the weighted values for each criterion

constructing the decision matrix,

normalized values using the

are multiplied for each alternative to obtain the overall
performance score. These scores are then ranked in
descending order to complete the decision-making
process (Alali et al.,, 2023).

The TOPSIS evaluates decision alternatives based on
their proximity to a positive ideal solution and their
distance from a negative ideal solution (Basdar, 2019;
Cankaya Kurnaz, 2025). The positive ideal solution
represents the best values for each criterion, whereas the
negative ideal solution represents the worst (Aktas et al.,
2015). In this context, the quantitative superiority of
alternatives is associated with being closer to maximum
values for benefit-oriented criteria and farther from
minimum values (Kaymaz et al, 2020). The TOPSIS
method involves several steps: constructing the decision
matrix, normalizing the data, and generating the
weighted decision matrix by multiplying normalized
values with corresponding criterion weights (Celikbilek,
2018). Subsequently, the ideal (positive) and anti-ideal
(negative) values are determined, and the Euclidean
distances of each alternative to these reference points are
calculated (Tepe, 2021; Han et al., 2025). In the final step,
the relative closeness of each alternative to the positive
ideal solution is computed, and the alternatives are
ranked in descending order according to these scores
(Chaipetch et al., 2025: Han et al, 2025; Alqoud et al,
2025).

The WASPAS method is an integrated multi-criteria
decision-making technique that combines the principles
of the SAW and WPM approaches (Ozdemir, 2018; Chen
et al,, 2025). The methodology involves the construction
of a decision matrix, normalization of the input data, and
subsequent calculation of relative importance scores
using both SAW and WPM formulations (Arisantoso et al.,
2023; Radomska-Zalas, 2023). In the final step, a
composite optimality score is computed for each
alternative. These scores are then ranked in descending
order to determine the most suitable alternative
(Zavadskas et al,, 2012; Handayani et al., 2023).

The MARCOS method evaluates decision alternatives
through a compromise-based approach that considers
their proximity to the ideal (AI) and anti-ideal (AAI)
solutions (Ecer, 2020). The alternative that is closest to
the ideal solution and farthest from the anti-ideal
solution is regarded as the most preferable option (El-
Araby et al, 2024). The method begins with the
normalization of the decision matrix, followed by the
application of weights, and then the computation of
criterion total for each alternative (Muni et al, 2024).
The quantitative superiority of alternatives is associated
with their closeness to ideal values and distance from

anti-ideal values, particularly in benefit-oriented criteria
(Trung, 2021). Utility degrees are determined by relating
these totals to both the ideal and anti-ideal solutions. In
the final step, performance scores are calculated using a
ratio-based approach that simultaneously considers both
reference points (Munier et al, 2024; Andrejic and
Vukasin, 2025).

The MABAC method is an evaluation approach based on
the distance of each alternative from the boundary
approach area of the criterion functions (Ecer, 2020). In
the first three steps, a decision matrix is created,
normalized, and the weighted normalized decision
matrix is obtained (Keles, 2023). In the fourth step, the
boundary approach area matrix is determined, and in the
fifth step, the distances of the alternatives to this area are
calculated (Akmaludin et al, 2024). The quantitative
performance of the alternatives is related to the height of
the weighted normalized values and their distance to the
boundary approach values of the criteria (Bektas, 2023).
In the final step, the distance values of each alternative
across all criteria are summed, and the performance
scores are ranked in descending order. (Dokovi¢ and
Doljanica, 2023; Yadav et al., 2025).

The CRADIS method is MCDM approach that evaluates
alternatives based on their deviations from the ideal,
anti-ideal, and optimal solutions through a utility
function (Cilek and Seyranlioglu, 2025). The method
begins with the creation, normalization, and weighting of
the decision matrix. Subsequently, the ideal and anti-
ideal solution values are determined, and deviations from
these values are calculated (Puska et al, 2023). The
utility functions for the alternatives are derived based on
these deviation levels. In the final step, both the ideal and
anti-ideal solutions are equally weighted, and the average
performance of each alternative is determined. In this
context, the quantitative superiority of the alternatives
depends on the low deviation levels from the ideal and
anti-ideal solutions (Ozekenci, 2024).

The MAUT method is an approach aimed at maximizing
total utility through real-valued utility functions in
decision problems involving multiple, conflicting criteria
(Atan and Altan, 2020). Preferences are expressed
through the utility functions defined for each criterion
(Begam, 2024). The method begins with the creation of
the decision matrix and the normalization of the data
(Cetinkaya et al, 2023). The normalized values are
integrated into the exponential form of the base of the
natural logarithm, e, and then the ratio of 1 minus this
value to 1.71 is calculated, allowing the marginal utility
scores of the alternatives to be determined. The
quantitative superiority of the alternatives is related to
the magnitude of these marginal utility values based on
the exponential values (Ecer, 2020). Finally, the total
utility score for each alternative is determined by
summing the weighted marginal utilities, and the
alternatives are ranked in descending order based on
these scores (Ozkaya, 2024).
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The ROV method begins with the creation of the decision
matrix, similar to the SAW method (Turan and Bulak,
2023). In the second step, the matrix values are
normalized, and in the third step, the normalized values
are weighted, with benefit and cost-oriented criteria
summed separately (Madi¢ and Radovanovié, 2015). In
the final step, the averages of these sums are calculated
to determine the performance scores of the alternatives
(Madi¢ et al, 2016). In this method, the quantitative
superiority of the alternatives is directly related to the
magnitude of the weighted normalized criterion values
(Ulutas and Topal, 2020).

The COPRAS method provides a percentage-based
analysis by separately considering benefit- and cost-
oriented criteria in the evaluation of decision alternatives
(Goswami et al, 2021). The method begins with the
construction of the decision matrix, followed by
normalization of the data and application of the criterion
weights. Based on the weighted normalized values, the
benefit and cost criteria are aggregated separately
(Taherdoost and Mohebi, 2024). The relative significance
of each alternative is determined using these values, and
performance indices are then calculated. In this context,
higher values for benefit criteria and lower values for
cost criteria indicate the quantitative superiority of the
alternatives (Paksoy, 2017). Finally, the alternatives are

ranked in descending order according to their
performance indices (Organ and Yalgin, 2016).
The RAFSI method diverges from conventional

normalization processes by introducing a distinctive
standardization approach capable of transforming data
variations within the decision matrix across any
subinterval. This feature aims to fulfill the conditions of
ideal decision-making (Alossta et al,, 2021). The method
begins with the construction of the decision matrix. In
the second step, the matrix values are matched with their
corresponding criterion weights. In the third step, both
arithmetic and harmonic means are calculated for each
alternative (Zizovic et al, 2020). Subsequently, a
normalized decision matrix is derived based on these
averages. In the final step, the criterion functions for each
alternative are aggregated to determine their overall
performance scores (Demir, 2021).

The COCOSO method, developed through the integration
of the SAW and WPM techniques, offers a unified
compromise decision-making strategy by combining two
distinct aggregation logics. Accordingly, the quantitative
superiority of alternatives aligns with the dominance
structures inherent in both SAW and WPM approaches
(Ecer, 2020). The method begins with the construction of
the decision matrix, followed by the formation of the
normalized decision matrix. In the third step, the sum of
the weighted normalized values (S) and the product of
the exponential weighted values (P) are calculated
(Rasoanaivo et al., 2024). In the fourth step, three distinct
evaluation strategies are applied based on the magnitude
of the S and P values. In the final step, the arithmetic and

geometric means of these strategies are used to derive
the performance scores of the alternatives. In this
context, higher values of S and P indicate greater
quantitative superiority of the alternatives (Tesic et al.,
2023).

The PIV method is based on the principle that the best
decision alternatives should be closest to the positive
ideal solution. In this method, the proximity index is used
to measure the deviations of the normalized values of the
alternatives from the ideal values, which vary according
to whether the criteria are benefit or cost-oriented
(Goswami et al,, 2022). These indices are calculated by
incorporating the weights of the criteria and are linearly
aggregated across all attributes to determine the overall
proximity value of each alternative. Within this
framework, the alternative with the greatest total
weighted normalized proximity is considered the optimal
decision alternative (Trung and Tan, 2023). The
procedure involves the following steps: construction of
the decision matrix, generation of the normalized
decision matrix, formation of the weighted normalized
decision matrix, calculation of the Weighted Proximity
Index for each alternative, and finally, the evaluation of
the Overall Proximity Values of the alternatives (Khan et
al, 2019).

The MAIRCA method is based on determining the
discrepancy between the theoretical solution and the
actual outcomes. In this method, the total deviation of
each alternative from the expected performance for each
criterion is considered (Aksoy, 2021). Accordingly,
alternatives with the smallest difference between the
theoretical and actual evaluations are deemed to have
the greatest quantitative superiority. The procedure
begins with the construction of the decision matrix in the
first step, followed by the formulation of the preference
values for the alternatives in the second step (Zolfani et
al,, 2020). In the third step, a theoretically derived matrix
is developed, while in the fourth step, the actual
evaluation matrix is constructed (Isik et al, 2025).
Subsequently, a deviation matrix is obtained, and finally,
the functional values or performance scores for each
alternative are calculated in the last step (Ulutas, 2019).
In the ARAS method, decision alternatives are evaluated
based on their benefit levels, and the optimality value of
each alternative is compared with a reference alternative
(Altin, 2020). The process begins with the construction of
the decision matrix and the normalization of the data.
Subsequently, the normalized values are weighted, and
the optimality function value for each alternative is
calculated accordingly (Arslan, 2017). In the final stage,
these values are compared to the reference alternative to
determine the performance levels of all alternatives,
which are then ranked in descending order (Ozbek and
Erol, 2017). Therefore, in this method, the quantitative
superiority of the alternatives is directly associated with
the magnitude of their weighted normalized values
(Ozbek, 2019).

BS] Eng Sci / Furkan Fahri ALTINTAS

1376



Black Sea Journal of Engineering and Science

2.2. Proposed Method: ENTROPY-Based Performance
Measurement (EBPM)

Shannon entropy, one of the fundamental concepts of
information theory, was introduced by Claude E.
Shannon in 1948 (Krippendorff, 2019). First defined in
"A  Mathematical Theory of
Communication”, this concept aims to quantitatively
measure the level of uncertainty contained within a
system or probability distribution (Nanda, 2020).
Moreover, entropy is widely employed to determine the
average amount of information conveyed by a message
or dataset (Robinson, 2008). In this context, the entropy
formula is presented in equation 1 (Cincotta et al,, 2021).

his seminal work

E= —Z (pij * In(pij)) (1)

i

In the entropy equation presented in Equation 1, E
denotes the total entropy (i.e., the information content or
degree of uncertainty); p;jrepresents the probability of
occurrence of the i — th event in the j — th condition; In
refers to the natural logarithm (logarithm to the base e);
and m indicates the number of data points. Accordingly,
the fundamental assumption of Shannon entropy is that
events or communication processes occur with specific
probabilities (Stevenson, 2021). In this context, low-
probability (low entropy) events are considered to carry
more information, high-probability  (high
entropy) events are assumed to provide less information.
This characteristic renders the entropy measure an
effective evaluating the
informational potential of a system by taking into
account the probability distribution of events (Bahadir
and Tiirkmengalikoglu, 2021).

However, some limitations of Shannon entropy have also
been highlighted in the literature. Particularly in systems
involving continuous variables, the entropy value may
yield negative results or possess units with ambiguous
physical interpretations. Such issues complicate the
practical applicability of the method (Rudnicki, 2011).
Despite these challenges, Shannon entropy remains one
of the most fundamental and widely accepted measures
for quantitatively assessing information content in the
field of information theory (van Stokkum, 2024). In
summary, Shannon entropy serves as a critical tool for
quantitatively ~ evaluating  the  uncertainty or
unpredictability inherent in a random variable or
probability distribution. Within the framework of
information theory, it plays a significant role in assessing
the informational potential of systems and is extensively
applied across various decision-making domains
(Zaeemzadeh and Tononi, 2024).

The principal aim of Shannon entropy is to quantitatively
measure the “amount of information” conveyed by a
random variable. When the probabilities associated with
a variable are characterized by high uncertainty meaning
that each outcome has an equal likelihood of occurring

whereas

indicator  for overall

the entropy value becomes high. This indicates a low
level of existing informational performance and suggests
that more information is required to adequately describe
the system (Mishra et al, 2019). Conversely, when the
outcomes of a variable are more distinct and predictable
such that one particular outcome has a much higher
probability than the others the entropy value is low. This
implies that there is already sufficient informational
performance to understand or describe the system, and
less additional information is needed (Sharma et al,
2015).

In information theory, entropy is generally associated
with concepts such as “uncertainty,” “disorder,” or
“randomness.” It is also directly related to “information
content,” as the realization of an uncertain (i.e., high-
entropy) event introduces new information. In cases
where entropy is high, the informational performance is
low, meaning that each observed event contributes
substantially to new knowledge. In contrast, when
entropy is low, the information performance per event is
considered adequate, or only a limited amount of new
information is required. This underscores the notion that
enhancing the potential to gain information about an
event is only feasible by reducing the uncertainty
surrounding that event. High entropy reflects increased
complexity or disorder, and the occurrence of low-
probability (high-entropy) events is typically associated
with a need for greater information acquisition (Aksakal
and Caliskan, 2020).

In the MCDM literature, Shannon entropy is commonly
utilized in the criterion weighting process (Ecer, 2020).
In this context, entropy emerges as a crucial tool for
ensuring a more objective and balanced weighting when
evaluating different alternatives (Aycin, 2019). By
considering the uncertainties and diversity among the
criteria, entropy serves as a method that contributes to
the decision-making process (Dinger, 2019). The entropy
equation used in criterion weighting is detailed in
equation 2 (Oztel and Alp, 2020). Subsequently, equation
3 is utilized to measure the importance weights of the
criteria within the scope of MCDM (Oztel and Alp, 2020).

5 =~y 2, (P (00) 2
i=1

w;=1-E 3)

Within the framework of Equation 2, the criterion
exhibiting the lowest entropy value corresponds to the
one possessing the least uncertainty and, consequently,
the highest information capacity (Uludag and Dogan,
2021). This observation leads to the inference that such a
criterion represents the most significant factor, thereby
commanding the highest weight. In this context, Shannon
entropy, as a quantifier of uncertainty, effectively serves
as an indicator of information-carrying potential (Demir
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et al, 2021). Accordingly, entropy, or uncertainty, can be
conceptualized as an independent variable, while the
performance related to information acquisition may be
treated as the dependent variable.

In the MCDM literature, the application of entropy is
predominantly confined to its role as an independent
variable within the criterion weighting process. However,
a notable gap exists in the extant literature, as no studies
have been identified that mathematically model the
influence of entropy itself representing the inherent
information potential on the performance evaluation of
the alternatives. Consequently, it is postulated that,
analogous to the utilization of Shannon entropy as an
independent variable for criterion weighting, the
information capacity signified by entropy should also be
considered a pertinent factor potentially influencing the
performance outcomes of the alternatives.
Conventionally within MCDM literature, entropy is
employed almost exclusively as an independent variable
for the purpose of deriving weights (Bircan, 2020; Bas,
2021). Nevertheless, a mathematical framework that
explicitly models the information potential engendered
by uncertainty, within the scope of entropy throughout
the decision-making process, remains conspicuously
absent. It is therefore proposed that, just as entropy
serves as an independent variable for criterion weighting
in MCDM methodologies, low entropy indicative of high
information potential associated with alternatives could
be recognized as a factor that positively modulates their
information-based performance capabilities. In this
regard, the entropy method can be regarded as a potent
instrument  within decision-making paradigms,
contributing significantly to the clarification and
refinement of the information presented to the decision-
maker (Oztel and Alp, 2020).

Stated differently, when the decision-making process is
conceptualized as an information processing sequence,
decision-pertinent information characterized by low
uncertainty, which impacts the alternatives, is conveyed,
perceived, and processed via the inherent attributes of
these alternatives. Within this paradigm, the attributes of
the alternatives constitute the fundamental conduits of
information. The comprehensiveness and diversity of the
information presented through these attributes under
conditions of low entropy at the critical decision point
directly correlate with the magnitude of their influence
on the final decision (Chakraborty et al., 2015).

From an alternative viewpoint, the concept of entropy, or
information content, can be defined as the capacity to
generate signals possessing communication potential.
The principal objective herein is the faithful transmission
of the intended information or information content
without degradation or loss. Indeed, the necessity for
information concerning an event arises only when
uncertainty pervades that event. Therefore, if an event
exhibits a low probability of occurrence, corresponding
to high entropy, it implies that the available information

potential is diminished, necessitating the acquisition of
further information (Uludag and Dogan, 2021). In this
context, the information performance of alternatives is
amenable to quantification through an entropy-based
approach, potentially utilizing the entropy method itself.
It is well-established that the standard Entropy method,
particularly when applied using normalized data
constrained to the [0, 1] interval, exhibits a non-
monotonic initially  increasing and
subsequently  decreasing. This characteristic is
inconsistent with the inherent expectation within the
MCDM context of achieving quantitative superiority
when evaluating alternative performance. For instance,
in methods such as SAW, WPM, COCOSO, and WASPAS,
the quantitative dominance of alternatives is directly
proportional to the magnitude of the criterion weights
and the normalized performance values; as these values
performance of the
alternatives correspondingly rise (Thakkar, 2021).
Conversely, other MCDM techniques, including TOPSIS,
MARCOS, and ARAS, assess alternative performance
based on their proximity to ideal solutions (maximum for
benefit criteria, minimum for cost criteria) (Munier,
2024). In light of these divergences, it can be asserted
that, particularly within the framework of Multi-Criteria
Decision-Making (MCDM) utilizing [0, 1] normalized
values, the Entropy method exhibits
behavior in reflecting the quantitative superiority
derived from the magnitudes of criterion weights and
normalized data when assessing the performance of
alternatives.

Conversely, the monotonically increasing nature of
Shannon entropy provides a more robust and widely
accepted metric for information measurement. This
aligns with the established principle, observed across
natural and social-sciences, that entropy tends
perpetually towards an increase. A prime exemplification
of this is Heisenberg's Uncertainty Principle, which
stipulates that the position and momentum of a particle
cannot be simultaneously determined with absolute
precision. This limitation arises not from an inability to
measure the momentum transferred during, for instance,
a photon-electron collision, but rather from the inherent
constraints of the measurement process itself (Koksal
and Koseoglu, 2010). In quantum mechanics, predicting
both the position and momentum of an electron with
certainty is impossible; an increase in the uncertainty of a
particle's position corresponds to a decrease in the

behaviour

increase, the overall scores

inconsistent

uncertainty (entropy) related to its momentum, and vice

Consequently, nature exhibits an inherent
tendency towards increasing entropy (Apaydin, 2004;
Sakurai and Napolitano, 2012).

Similarly, the Second Law of Thermodynamics defines
entropy and dictates its directionality in thermal

processes, asserting that the entropy of the universe is

versa.

constantly increasing (Shankar, 2014). Furthermore,
Boltzmann's H-Theorem, which examines the statistical
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behavior of gas molecules, mathematically substantiates
the monotonic increase of entropy over time (Gressman
and Strain, 2010). The Clausius inequality offers another
mathematical perspective, asserting that entropy cannot
decrease in any cyclic process; rather, it is constrained to
increase or remain constant (Narang et al,, 2024). From a
social science perspective, Gini (2000) posits that human
interactions within social systems perpetually augment
entropy. Moreover, considering the principle of
information conservation alongside the non-additive
nature of information and the additive property of
entropy collectively underscores the continuity and
persistent increase of entropy within isolated systems

(Zhang, 2008). The continuous formation of Shannon
entropy can be achieved without manipulating the
entropy equation, but by ensuring that the process
operates under equal conditions for all values, thereby
maintaining the continuity of the entropy function’s
increase. In this context, the proposed method ensures
the continuous increasing position of the entropy
function in order to establish quantitative superiority in
measuring the performance of alternatives within the
MCDM framework. Initially, the weighted normalized
values and their original entropy simulation positions are
presented in Table 1, while their graphical
representation is illustrated in Figure 1.

Table 1. Entropy values of the weighted normalized values

(Wdi*]-) m=2 m=3 m=4 m=5
0.1 0.332193 0.209590 0.166096 0.143068
0.2 0.464386 0.292995 0.232193 0.200000
0.3 0.521090 0.328771 0.260545 0.224421
0.4 0.52877124 0.33361751 0.26438562 0.22772938
0.400001 0.52877112 0.33361743 0.26438556 0.22772932
0.5 0.500000 0.315465 0.250000 0.215338
0.6 0.442179 0.278984 0.221090 0.190436
0.7 0.360201 0.227262 0.180101 0.155130
0.8 0.257542 0.162491 0.128771 0.110918
0.9 0.136803 0.086313 0.068401 0.058918
0.999999 0.0000014 0.0000009 0.0000007 0.0000005

(Wdi*j m=6 m=7 m=8 m=9
0.1 0.12851 0.11833 0.11073 0.10480
0.2 0.17965 0.16542 0.15480 0.14650
0.3 0.20159 0.18562 0.17370 0.16439
0.4 0.20455664 0.18835212 0.17625708 0.16680875
0.400001 0.20455659 0.18835207 0.17625704 0.16680872
0.5 0.19343 0.17810 0.16667 0.15773
0.6 0.17106 0.15751 0.14739 0.13949
0.7 0.13934 0.12831 0.12007 0.11363
0.8 0.09963 0.09174 0.08585 0.08125
0.9 0.05292 0.04873 0.04560 0.04316
0.999999 0.0000055 0.0000055 0.0000055 0.0000055
m: number of components
BS] Eng Sci / Furkan Fahri ALTINTAS 1379



Black Sea Journal of Engineering and Science

..................................................... iiziiyo-c/in (2)

................... {:-)- B LG CELEEEEPEEEEEEEPEPPERE PR l:f“rl tdl

1:0.1 Z2:0.2 0.2 40,4

~-wref(In (3)

.~ At emmsmmsssEEssssssEssssssEsssssss -fl::ﬂ_'ln {5]
- e SRR “ef(In (6)

acf (In (2)
-ocf(In (2)

e {In (4)
/(In (5)
ef (In (6)
-o</(In (7)
/(in (8)
-a-c/(In (2)

Figure 1. Positions of entropy values.

When Table 1 and Figure 1 are examined together, it is
observed that the values of wdjj, representing the
weighted scores of each criterion
corresponding to each alternative, fall within the range of
0 to 1, as required by the structural nature of MCDM
methods. In the simulation analysis, based on Equation 3,

it was found that when the wd;; value reached 0.4 in the

normalized

fourth scenario, the entropy attained its maximum value.
However, beyond this point, the entropy began to exhibit
a decreasing trend. Accordingly, when the weighted
normalized decision matrix contains values exceeding
0.4, the decreasing behavior of the entropy function
introduces a contradiction regarding the quantitative
superiority of alternatives within the framework of
MCDM methodologies.

In contrast, the proposed method, similar to widely used
MCDM approaches such as SAW, WPM, COCOSO, and
WASPAS, assumes that the quantitative superiority of
alternatives is positively correlated with both the
magnitude of the criteria weights (w) and the normalized
values (d;;). In this context, for the entropy function to
demonstrate a monotonically increasing behavior, it is
necessary to constrain the weighted normalized values
within the interval 0 < wdj; < 0.387. When each wd;
value is multiplied by the coefficient 0.387, the entropy
function becomes strictly increasing, thereby allowing
the decision matrix to be standardized in alignment with
the proposed approach, as illustrated in Table 2 and
Figure 1.

In various simulation experiments, when the Wd;‘]- values
were standardized using the coefficient 0.4, it was
observed also reflected in Table 3 that the wd;;value
initially increased up to approximately 0.939, after which
it began to decline. Consequently, through extensive
simulations, it was determined that the wd;; value that
yields a strictly increasing entropy function within the
[0,1] interval is approximately 0.387. In each of these
scenarios, the weighted normalized values standardized

by the coefficient 0.387 consistently exhibited a
monotonically increasing trend (Table 2 and Figure 1).
The proposed result has been repeatedly tested and
validated across a wide range of scenario sets, including
simulations where the number of alternatives (m)
reached up to 1,000. In each scenario, the entropy value
was consistently observed to increase monotonically in a
positive direction. This indicates that the method
remains stable even under large-scale data conditions
and is capable of producing computationally reliable
Therefore, under such conditions, the
proposed method (EBPM) transforms into a continuously
function, thereby ensuring

outcomes.

increasing  entropy
consistency in reflecting the quantitative superiority of
alternatives.
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Table 2. Standardization entropy scores of weighted normalized values ((Wd;‘]- *0.387)

(wdi*j) * 0.387 m=2 m=3 m=4 m=5
0.03870 (0.1*0.387) 0.182 0.115 0.091 0.182
0.07740 (0.2*0.387) 0.286 0.180 0.143 0.286
0.11610 (0.3*0.387) 0.361 0.228 0.180 0.361
0.15480000 (0.4*0.387) 0.4166477 0.2628754 0.20832385 0.4166477
0.15480004 (0.400001*0.387) 0.4166478 0.2628755 0.20832388 0.4166478
0.19350 (0.5%0.387) 0.459 0.289 0.229 0.459
0.23220 (0.6%0.387) 0.489 0.309 0.245 0.489
0.27090 (0.7%0.387) 0.510 0.322 0.255 0.510
0.30960 (0.8*0.387) 0.524 0.330 0.262 0.524
0.34830 (0.9%0.387) 0.529 0.3343 0.264 0.529
0.38700 (0.999999*%0.387) 0.530 0.3344 0.265 0.530
(Wdi*]-) *0.387 m=6 m=7 m=8 m=9
0.03870 (0.1*0.387) 0.078 0.070 0.065 0.061
0.07740 (0.2*0.387) 0.123 0.111 0.102 0.095
0.11610 (0.3*0.387) 0.155 0.140 0.128 0.120
0.15480000 (0.4*0.387) 0.17944040 0.16118133 0.14841291 0.13888257
0.15480004 (0.400001*0.387) 0.17944042 0.16118135 0.14841292 0.13888258
0.19350 (0.5*%0.387) 0.197 0.177 0.163 0.153
0.23220 (0.6*0.387) 0.211 0.189 0.174 0.163
0.27090 (0.7*0.387) 0.220 0.197 0.182 0.170
0.30960 (0.8*0.387) 0.226 0.203 0.187 0.175
0.34830 (0.9*%0.387) 0.22825 0.20502 0.18878 0.17666
0.38700 (0.999999*0.387) 0.22827 0.20504 0.18880 0.17667

m= number of components

Table 3. Standardization entropy scores of weighted normalized values ((wd;‘ ;) *0.4)
(wd{j) * 0.4 m=2 m=3 m=4 m=5
0.04 (0.1*0.4) 0.186 0.117 0.093 0.080
0.08 (0.2*%0.4) 0.292 0.184 0.146 0.126
0.12 (0.3*0.4) 0.367 0.232 0.184 0.158
0.16 (0.4*0.4) 0.42301699 0.26689401 0.21150850 0.18218350
0.16000004 (0.41*0.4) 0.42301704 0.26689404 0.21150852 0.18218352
0.2 (0.5%0.4) 0.464 0.293 0.232 0.200
0.24 (0.6*0.4) 0.494 0.312 0.247 0.213
0.28 (0.7*%0.4) 0.51422 0.324437 0.257110 0.221463
0.32 (0.8*%0.4) 0.52603 0.331890 0.263017 0.226551
0.36 (0.9%0.4) 0.53061 0.334781 0.265308 0.228524
0.3756 (0.4*0.9390) 0.530622 0.334785 0.2653109 0.228526
0.37564 (0.4*0.9391) 0.530621 0.334784 0.2653103 0.228525
(Wd;‘j) * 0.4 m=6 m=7 m=8 m=9
0.04 (0.1*0.4) 0.072 0.066 0.062 0.059
0.08 (0.2*%0.4) 0.113 0.104 0.097 0.044
0.12 (0.3*0.4) 0.142 0.131 0.122 0.055
0.16 (0.4*0.4) 0.16364531 0.1506816 0.14100566 0.06380966
0.16000004 (0.41*0.4) 0.16364533 0.1506817 0.14100568 0.06380967
0.2 (0.5%0.4) 0.180 0.165 0.155 0.070
0.24 (0.6*0.4) 0.191 0.176 0.165 0.075
0.28 (0.7%0.4) 0.198928 0.183169 0.171407 0.162218
0.32 (0.8*%0.4) 0.203498 0.187377 0.175345 0.165945
0.36 (0.9%0.4) 0.205270 0.189009 0.176872 0.167390
0.3756 (0.4%0.9390) 0.2052725 0.189011 0.1768739 0.1673925
0.37564 (0.4*0.9391) 0.2052721 0.189010 0.1768735 0.1673922

m= number of components
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As illustrated in Table 3 and Figure 1, a noticeable
upward trend in entropy values has been observed
following the standardization process applied to ensure
that the entropy values or the entropy function attain a
monotonically increasing structure. Specifically, this
standardization multiplying the weighted
normalized values by a coefficient of 0.387.

Within this context, the Entropy method demonstrates
the capability to distinguish between criteria during the
weighting phase, and as emphasized in the literature
[45], it enhances the discriminative power of the criteria.
Similarly, by transforming the entropy function into a
monotonically increasing form, it is considered that the
performance levels of alternatives can be more clearly
differentiated based on their own intrinsic quantitative
superiority. In line with this, the implementation steps of
the proposed method are systematically presented
below.

ALT: Alternative

CRT: Criteria

CRTi: i — th evaluation criterion

involves

m: number of criteria

n: number of alternative

d;;: value of the j — th alternative according to the i — th
evaluation criterion

wj: weight of the i—th evaluation criterion (i =
1,2,..,m)

max(d;;): maximum value of the alternative according to
the i — th criterion

min(d;;): minimum value of the alternative according to
the i — th criterion.

Step 1. Obtaining Decision Matrix (DM)

In the first step of the proposed method, the decision
matrix is constructed using equation 4.

DM = [dij]mxn

ALT [ALT, ALT, ALT,

CRT, | dyy  dip .. din )
= CRT,| dy; dyy .. don

CRTpldp:  dpy o don

Step 2. Obtaining Normalized Decision Matrix (DM*)

In the second phase of the methodology, the decision
matrix is normalized by applying Equation 5 for benefit-
type criteria and equation 6 for cost-type criteria.
Following this step, the normalized decision matrix is
constructed in accordance with equation 7, taking into
account the nature (i.e., orientation) of each criterion.

For benefit-oriented criteria:
dr,=—14
Y max(d;;) )

For cost-oriented criteria:

= M [6]
13} dU
Normalized matrix:
DM* = [dU] mxn
ALT TALT, ALT, ALTn]
CRT, d*11 d*lz d*ln (7)
= CRT; |d"yy  d'3 d*2n
; : : o
CRTm |~d*m1 d*mZ d*an

Step 3. Obtaining Weighted Normalized Decision Matrix
(wDM*)

In this step, the normalized values corresponding to each
criterion for a given alternative, as presented in equation
8, are multiplied by the respective criterion weights.
Subsequently, the weighted normalized decision matrix
is obtained using equation 9.

Wd*ij :W*d*ij (8)

wDM* = [dij*]

mxn

ALT [ ALT, ALT, ALT, ]

CRT; |wd*y; wd*q, wd* 1, 9)
= CRTZ Wd*21 Wd*zz Wd*Zn |

CRT,, lwd*ml wd* 2 wd*an

Step 4. Construction of the Standardized Matrix (SwDM*)
In this step, the weighted normalized values are scaled by
a factor of 0.387, based on the rationale provided in
Table 3, to ensure that none of the values exceed the
specified threshold. As a result of this transformation, the
entropy function defined in equation 10 is converted into
a structure that increases monotonically. Subsequently,
the standardized matrix is constructed using equation 11.

SwDM* = [Swd";;]

ALT [ ALTy ALT, ALT,

CRT; | Swd*y;  Swd*y, Swd* 1, (11)
= CRT, | Swd*,; Swd*,, Swd*,,

CRT, LSwd* ;1 Swd* i, Swd* mn

Step 5. Measurement of entropy score of alternatives (Ej)
In this step, based on Equation 1, entropy values of each
alternative are measured using Equation 2, within the
framework of the increasing entropy function defined in
Equation 12. According to the theoretical foundation of
entropy in the literature, an increase in entropy implies a
decrease in existing information performance and,
consequently,
Conversely, a lower entropy value indicates higher
information performance.

a rise in information requirements.

Following this step, the
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performance values are ranked from the lowest to the
highest (equation 12).

1 m

Step 6. The knowledge performances of the alternatives
(KP)

In this step, in order to achieve a quantitative superiority
ranking of the alternatives from highest to lowest, the
information performances
calculated as shown in equation 13, by subtracting their
entropy values from 1, similar to the approach used for
determining criterion weights in Equation 3 of the
entropy method. Accordingly, the higher the value
obtained by subtracting the entropy from 1, the greater
the information performance of the alternative.

of the alternatives are

KP,=1-E (13)

When the proposed method is examined, it offers several
notable advantages from multiple perspectives. First,
unlike traditional MCDM approaches, the EBPM method
evaluates the information contribution of alternatives to
the decision-maker directly through an entropy-based
function, thereby providing a more qualified decision
support mechanism. By preserving the
integrity of Shannon entropy, the method integrates
scientific rigor into the decision-making process through
information generation.

Second, the method emphasizes objectivity in the
evaluation process, as it does not rely on subjective
weighting and operates based on a predefined threshold
value. This feature minimizes decision-maker biases and
enables consistent and systematic analysis.

Third, due to its mathematically simple structure and
straightforward data processing steps, EBPM is highly
applicable to large datasets and across various sectors.
Another advantage is its capacity to prevent excessive
data dispersion during the standardization phase. As a
result, extreme values within the decision matrix are
brought under control, and the influence of such values is
appropriately considered within the proposed method.
Despite its advantages, the proposed method also has
certain limitations. The first limitation arises from the

structural

logarithmic computation involved in the method, which
makes it sensitive to zero and negative values. In this
context, Zhang et al. (2014) emphasized that the decision
matrix should be positively oriented and free from zero
which through Z-score
standardization. The second limitation pertains to the
formation of the standardized matrix, where a significant
reduction in values can lead to excessive sensitivity. The
inclusion of these highly sensitive values in the

values, can be ensured

computational process may complicate the calculation
steps. Moreover, when the original data points are very
close to each other, the sensitivity of the standardized

values increases, potentially affecting the overall stability
and robustness of the method.

The proposed method, when compared with certain
MCDM methods, demonstrates similarities in terms of
the computational logic underlying the evaluation of
alternatives. Specifically, methods such as SAW
(Radulescu and Radulescu, 2024). WPM (Ozbek, 2019),
WASPAS (Chakraborty et al., 2015), COCOSO (Yazdani et
al, 2019), MAUT (Keeney and Raiffa, 1976), ROV
(Yakowitz et al, 1993), ARAS (Zavadskas and Turskis,
2010) and COPRAS (Zavadskas et al, 1994) share a
common foundation with the proposed approach, in that
the quantitative superiority of alternatives is based on
the relationship between the weighted normalized values
and the numerical magnitude of the criterion weights.
This resemblance highlights the fact that these methods
adopt a similar calculation framework in determining the
performance of alternatives. In contrast, the
computational logic of the proposed method significantly
differs from that of methods such as TOPSIS (Hwang and
Yoon, 1981), MARCOS (Stevi¢ et al, 2020), MABAC
(Pamucéar and Cirovié¢, 2015) CRADIS (Tasci, 2024), PIV
(Goswami et al., 2022), MAIRCA (Pamudar et al., 2018),
and RAFSI (Alossta et al,, 2021). In these methods, the
performance or quantitative dominance of alternatives is
determined based on their proximity to an ideal solution
point (either maximum or minimum reference values).
Therefore, while these methods rely on an evaluation
approach grounded in the distance of alternatives from
the ideal solution, the proposed method emphasizes the
direct quantitative contribution and the effect of
weighted normalized score.

When compared to other MCDM methods, the proposed
approach offers several notable advantages. Firstly, the
EBPM method does not merely evaluate the overall
performance of the alternatives; it also quantifies their
respective information potentials. This dual functionality
allows for a more comprehensive assessment of
alternatives beyond conventional performance metrics.
Secondly, from the perspective of entropy analysis, the
theoretical foundation of the proposed method is
inherently associated with both natural and social
sciences. This interdisciplinary foundation enhances the
applicability of the method in real-world decision-making
contexts, particularly when the decision matrix includes
criteria drawn from diverse scientific fields. Thirdly,
unlike many other MCDM methods, the proposed
approach is grounded in the entropy equation, which has
previously been employed in both natural and social
sciences and is recognized for its validity and reliability
in the literature. Accordingly, the theoretical basis of the
method is indirectly supported by a broader range of
academic disciplines, reinforcing its scientific credibility
and cross-disciplinary relevance.

2.3. Data Set

In this study, a dataset was constructed within the scope
of a sample application to demonstrate that the
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performance of alternatives in decision-making problems
can be evaluated using the entropy method, and thereby
to validate the applicability of the proposed approach.
The dataset consists of the 2024 Global Innovation Index
(GII) criterion values of seven selected countries
exhibiting varying of performance (World
Intellectual Property Organization, 2024). These
countries were deliberately chosen to prevent the
values from dominating the

levels

criterion overall

Table 4. Data set

performance outcomes and to ensure that the differences
among excessively large.
Accordingly, there are no dominant values for any
alternative within the dataset. Through this approach,
the proposed method aims to
differentiation in the performance of alternatives. For the
sake of clarity, the abbreviations of the countries and GII
criteria are provided in Table 4.

alternatives are not

reveal an ideal

GII Criteria Abbreviations
Institutions CRT1
Human Capital and Research CRT2
Infrastructure CRT3
Market Sophistication CRT4
Business Sophistication CRT5
Knowledge and Technology Outputs CRT6
Creative Outputs CRT7
Countries/Alternatives Abbreviations
Saudi Arabia ALT1
Romania ALT2
Qatar ALT3
Brazil ALT4
Chile ALTS
Serbia ALT6
Philippines ALT7
3. Results equation 8, and the weighted normalized decision matrix

3.1. Computational analysis

In the study, the decision matrix was initially constructed
using Equation 4. Subsequently, in the second step of the
proposed method, the normalized decision matrix was
obtained by applying Equation 5 and Equation 7 to the
decision matrix values. In this context, the corresponding
values are presented in Table 5.

In the third step of the method, the normalized values
were weighted using the Entropy method as defined in

Table 5. Decision and normalized decision matrix

was constructed using equation 9. All procedural steps
related to the calculation of criterion weights within the
scope of the entropy method are presented in detail in
Appendix A in a systematic and transparent manner. This
appendix enhances the traceability of the computational
process and provides concrete support for the practical
applicability of the method. In this context, the weighted
normalized values are explained in Table 6.

Decision Matrix

CRT ALT1 ALT2 ALT3 ALT4 ALTS5 ALT6 ALT7
CRT1 64.9 42.2 73.4 31.8 56.3 46.5 47.2
CRT2 43.4 30.8 36.6 33.9 33.5 35.7 26.2
CRT3 46.1 51.4 50.2 45.5 45.6 52.3 34.3
CRT4 48.7 32.4 34.7 38.2 38.6 42.2 29.7
CRT5 23.7 311 25.7 36.2 30.5 22.2 36.7
CRT6 20.6 299 17.5 24.5 21.2 29.6 28.7
CRT7 244 28.5 25.9 32.3 27.5 17.9 26.2
Normalized Decision Matrix
CRT ALT1 ALT?2 ALT3 ALT4 ALTS5 ALT6 ALT7
CRT1 1.000 0.821 1.000 0.699 1.000 0.889 1.000
CRT2 0.669 0.599 0.499 0.745 0.595 0.683 0.555
CRT3 0.710 1.000 0.684 1.000 0.810 1.000 0.727
CRT4 0.750 0.630 0.473 0.840 0.686 0.807 0.629
CRT5 0.365 0.605 0.350 0.796 0.542 0.424 0.778
CRT6 0.317 0.582 0.238 0.538 0.377 0.566 0.608
CRT7 0.376 0.554 0.353 0.710 0.488 0.342 0.555
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Table 6. Weighted normalized decision matrix

CRT ALT1 ALT2 ALT3 ALT4 ALT5S ALT6 ALT7
C1*294 0.294 0.241 0.294 0.205 0.294 0.261 0.294
C2*093 0.062 0.056 0.046 0.069 0.055 0.063 0.052
C3*071 0.050 0.071 0.049 0.071 0.058 0.071 0.052
C4 *110 0.083 0.069 0.052 0.092 0.075 0.089 0.069
C5*153 0.056 0.093 0.054 0.122 0.083 0.065 0.119
C6 *163 0.052 0.095 0.039 0.088 0.061 0.092 0.099
C7*117 0.044 0.065 0.041 0.083 0.057 0.040 0.065

In the fourth step, the uncertainty values of each decision
alternative were ensured to be an increasing function,
thereby enhancing their information levels. To achieve
this, the matrix was standardized using Equation 10, and
the newly standardized matrix was constructed using
Equation 11. Consequently, the standardized matrix
values are presented in Table 7.

In the fifth step of the proposed method, the ENTROPY

Table 7. Standardized matrix

values representing the information capacity of each

alternative were calculated using Equation 12.
Subsequently, the information performance of the
alternatives was determined using Equation 13. The
performance rankings of the alternatives were arranged
from the highest to the lowest value. In this context, the
entropy and information performance values of the

alternatives are presented in the Table 8.

ALT ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7
CRT1 0.114 0.093 0.114 0.080 0.114 0.101 0.114
CRT2 0.024 0.022 0.018 0.027 0.021 0.025 0.020
CRT3 0.020 0.027 0.019 0.027 0.022 0.027 0.020
CRT4 0.032 0.027 0.020 0.036 0.029 0.034 0.027
CRT5 0.022 0.036 0.021 0.047 0.032 0.025 0.046
CRT6 0.020 0.037 0.015 0.034 0.024 0.036 0.038
CRT7 0.017 0.025 0.016 0.032 0.022 0.015 0.025
Table 8. Performance scores of alternatives
ALT Entropy Score Performance Score Rank
ALT1 0.388 0.612 2
ALT2 0.428 0.572 5
ALT3 0.351 0.649 1
ALT4 0.455 0.545 7
ALTS 0.412 0.588 3
ALT6 0.418 0.582 4
ALT7 0.442 0.558 6
In order to further concretize the proposed method, the —7.5438
. . Ejyir1 = ————— = 0,3877
mathematical calculation of the performance value of the —1.9469
ALT1 alternative is presented below. Step 6. Meuserement of performance score of

Step 2. Obtaining Normalized Decision Matrix (DM*)
64.9

64.9
Step 3. Obtaining Weighted Normalized Decision Matrix

(wDM™)

Equation 8: wdigri—_arr1 = 0.294 x 1 = 0.294

Step 4. Construction of the Standardized Matrix (SwDM*)
Equation 10: Swdggri—arr1 = 0.387 x 0.294 = 0.114
Step 5. Meuserement of entropy score of alternatives (Ej)

Equation 5: dggri_arr1 =

Equation 12: E4;1q
= (0.114 * —2.174) + (0.024 * —3.727)
+(0.020 * —3.996) + (0.032 * —3.444)

alternatives (KP;)
KPALTI = 1 - 0.388 = 0.612

Upon examining Table 8, it can be observed that the
obtained ENTROPY values range between 0.649 and
0.545. In this context, the alternative with the highest
ENTROPY wvalue, ALT3 (0.649), is the option that
provides the most information to the decision-maker.
This is followed by ALT1 (0.612), ALT5 (0.588), ALT6
(0.582), ALT2 (0.572), ALT7 (0.558), and ALT4 (0.545).
This ranking reflects the contribution of the alternatives
to the decision-making process, i.e., their potential for

+(0.022 * —3.834) + (0.020 * —3.911) generating  information. The results obtained
+(0.017 x —4.073) = —7.5438 demonstrate that the Entropy-based information
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measurement approach objectively reveals the
distinctiveness of each alternative within the system and
the value of the information it provides to the decision-
maker. In this context, a low Entropy value indicates that
the alternatives have high information performance.
Consequently, an increase in entropy (uncertainty)
suggests high information performance, while a high
entropy value indicates low information performance.
Therefore, entropy contributes to assisting the decision-
maker in making a selection. For instance, the fact that
ALT3 has the highest information value indicates that
this alternative possesses a stronger and
performance profile compared to others under the given
alternative, thus providing the decision-maker with more
meaningful information. These results demonstrate that
the EBPM method yields consistent outcomes both
theoretically and mathematically.

3.2. Sensitivity Analysis

Assessing the robustness of MCDM approaches
frequently necessitates the deliberate alteration of the
decision environment either through the integration of

clearer

Table 9. Rank reversal score

additional criteria or by eliminating criteria deemed less
competitive within the initial evaluation scope. In such
scenarios, it is expected that a resilient MCDM framework
will demonstrate a high level of methodological stability,
particularly by maintaining a consistent ordinal structure
among the ranked entities. This characteristic is vital to
ensuring the reliability and validity of the decision
outcomes, even in the face of modifications to the input
dataset (Demir and Arslan, 2022).

To investigate this of methodological
robustness, a comprehensive sensitivity analysis was
carried out. The process began with the progressive
exclusion of those criteria which, according to the
proposed weighting methodology, exhibited the lowest
relative significance. By incrementally removing these
less influential parameters, the analysis aimed to explore
the extent to which the ranking of alternatives remained
fluctuated
configurations. The corresponding values are presented
in Table 9, and the graphical representation of the
sensitivity analysis is illustrated in Figure 2.

dimension

unaffected or under varying model

Alternatives S0 S1 S2 S3 S4 S5
ALT6 7 7 7 7 7 7
ALT7 6 6 6 6 6 6
ALT4 5 5 5 5 5 5
ALT2 4 4 4 4 4 4
ALTS 3 2 3 3 3 3
ALT3 2 3 2 2 2 2
ALT1 1 1 1 1 1 1
v 7 " OALT4
Z 6 .
= @ALT7
O >
24 OALT2
E 5 . OALTS
f1 - 0—0—0—0—0—0—0—0 oun
0 @ALT3
SCENARIO SQ S1 S2 S3 sS4 S5 S6 S7

Figure 2. Rank reversal graph.

A simultaneous examination of Figure 2 and Table 9
clearly reveals that the proposed decision-making
method, EBPM, exhibits a high level of structural stability
in terms of sensitivity. As part of the sensitivity analysis,
eight from SO
to

to S7 were
the

performance under varying sets of criteria. In each

scenarios—ranging

systematically evaluated assess model’s

scenario, the number of criteria included in the model
was gradually reduced; specifically, the criterion with the
lowest weight was sequentially eliminated from the
decision model, and the resulting impact on the ranking
of alternatives was meticulously analyzed. While Table 9
provides the numerical representation of alternative
rankings under each scenario, Figure 2 offers a visual
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depiction of these variations. The base scenario, SO,
represents the inclusion of all criteria within the model.
Accordingly, the ability to trace changes in rankings holds
critical importance for evaluating the model's sensitivity.
According to the findings, a limited change in ranking
was observed only in the first scenario (S1), during which
CRT3 the criterion with the lowest weight based on the
ENTROPY method was removed from the model.
Specifically, the alternative ALT1 dropped from second to
third place, while ALT5 advanced from third to second.
Apart from this exceptional case, the rankings of all other
alternatives remained unchanged across subsequent
scenarios. In the following steps, CRT2 (6th), CRT4 (5th),
CRT7 (4th), CRT5 (3rd), CRT6 (2nd), and finally CRT1
(1st) were removed from the model, yet none of these
eliminations resulted in any further modifications to the
ranking structure.

Particularly notable is the consistent performance of
ALT4, which maintained its first-place position
throughout all scenarios, thereby underscoring its
dominant and stable standing in the decision-making
context. Similarly, the rankings of ALT2, ALT3, ALT6, and
ALT7 also remained entirely unaffected during the
sensitivity analysis, indicating their robustness against
structural changes in the set of criteria. This consistency
highlights the model's capacity for effectively
distinguishing between both dominant and marginal
alternatives. The fact that a ranking shift occurred solely
between ALT1 and ALT5, and only within a single
scenario, demonstrates the strong rank-preserving
capability of the proposed method. As depicted in Figure
2, the graphical representation clearly illustrates this
singular deviation, while the horizontally stable lines of
the remaining alternatives further emphasize the
structural resilience of the approach. In conclusion, the
EBPM method demonstrates a high level of resistance to
variations in the set of decision criteria and is capable of
preserving the ranking stability of alternatives under
different
confirms the method’s theoretical consistency and
practical applicability. Therefore, EBPM can be regarded
as a reliable, robust, and methodologically stable
decision-support tool with superior rank-preserving
capabilities in MCDM problems.

3.3. Comparative Analysis

This comparative investigation aims to systematically
evaluate the interconnections and relative alignment of
the proposed method approach in relation to several
well-established techniques within the MCDM domain.
The principal

structural conditions. This characteristic

objective is to substantiate the
dependability, and
coherence of the proposed framework by highlighting its
alignment with traditional MCDM procedures and its
statistically significant and positive correlation with
alternative models, as
Ghorabaee et al. (2021).

To initiate this comparative analysis, a comprehensive

effectiveness, methodological

emphasized by Keshavarz-

set of benchmark 15 MCDM methods (SAW, WPM,
TOPSIS, WASPAS, MARCOS, MABAC, CRADIS, MAUT, ROV,
COPRAS, RAFSI, COCOSO, PIV, MAIRCA, ARAS) applied to
determine the performance scores of alternatives. These
specifically to their
widespread adoption and methodological rigor in MCDM
literature. The computed along with the
corresponding alternative rankings derived from each
method, are systematically illustrated in Table 10, Table
11 and visually represented in Figure 3 and Figure 4.

A comprehensive examination of Table 8, Table 10, Table
11, along with Figures 3 and 4, reveals that the proposed
method (EBPM) exhibits a high level of consistency and
robustness in ranking decision alternatives. According to
the EBPM results, ALT3 emerges as the top-performing
alternative, followed by ALT1 and ALTS5, indicating that
the method offers a balanced and discriminative

methods were selected due

scores,

structure from both statistical and decision-making
perspectives.

Table 11 presents a comparative ranking analysis, where
the performance trends derived from EBPM both
increases and decreases closely resemble those produced
by widely used MCDM methods such as SAW, WPM,
TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, PIV
(adjusted by 180 degrees due to reverse ranking logic),
and ARAS. This strong similarity indicates that EBPM not
only maintains internal consistency but also generates
externally valid rankings that align with conventional
methods frequently applied in decision science.
Importantly, a complete rank concordance is observed
between EBPM and the MARCOS method. The exact
matching of rankings across all alternatives suggests a
substantial structural and mathematical alignment
between the underlying logic of MARCOS and the
formulation of the EBPM model. This harmony not only
validates the theoretical foundation of EBPM but also
enhances its practical credibility and applicability in real-
world decision-making problems. The findings presented
in Table 10 further support this
performance scores generated by EBPM show a high
level of correlation with results from other dominant
MCDM techniques such as SAW, WPM, TOPSIS, WASPAS,
MARCOS, CRADIS, COPRAS, PIV, and ARAS. For example,
the top-ranked position of ALTS5 is similarly supported by
SAW, WPM, TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS,
PIV and ARAS.

The findings presented in Table 10 further support this
assertion. The performance scores generated by EBPM

assertion. The

show a high level of correlation with results from other
dominant MCDM techniques such as SAW, WPM, TOPSIS,
WASPAS, MARCOS, CRADIS, COPRAS, PIV, and ARAS. For
example, the top-ranked position of ALT5 is similarly
supported by SAW, WPM, TOPSIS, WASPAS, MARCOS,
CRADIS, COPRAS, PIV and ARAS.
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Table 10. Performance score in scope of methods

ALT SAW WPM TOPSIS WASPAS MARCOS
ALT1 0.824 0.814 0.699 0.819 0.474
ALT2 0.773 0.756 0.348 0.764 0.404
ALT3 0.815 0.800 0.743 0.807 0.480
ALT4 0.749 0.712 0.260 0.730 0.379
ALT5 0.788 0.786 0.569 0.787 0.438
ALT6 0.747 0.730 0.392 0.738 0.406
ALT7 0.762 0.747 0.421 0.754 0.403
ALT MABAC CRADIS MAUT ROV COPRAS
ALT1 0.114 1.000 0.629 0.296 0.152
ALT2 0.045 0.929 0.586 0.262 0.140
ALT3 0.065 0.986 0.624 0.272 0.151
ALT4 0.013 0.895 0.581 0.246 0.135
ALT5 0.044 0.949 0.519 0.261 0.145
ALT6 -0.021 0.893 0.559 0.229 0.136
ALT7 -0.003 0.914 0.574 0.238 0.139
ALT RAFSI C0OS0SO PIV MAIRCA ARAS
ALT1 6.934 3.568 0.069 0.058 0.827
ALT2 6.335 1.814 0.107 0.068 0.764
ALT3 6.504 2.023 0.075 0.065 0.820
ALT4 6.048 2.745 0.126 0.073 0.738
ALT5 6.320 1.609 0.094 0.068 0.787
ALT6 5.753 1.382 0.099 0.078 0.742
ALT7 5914 2.196 0.106 0.075 0.758

Table 11. Performance ranks in scope of methods

ALT SAW WPM TOPSIS WASPAS MARCOS
ALT1 1 1 2 1 2
ALT2 4 4 6 4 5
ALT3 2 2 1 2 1
ALT4 6 7 7 7 7
ALT5S 3 3 3 3 3
ALT6 7 6 5 6 4
ALT7 5 5 4 5 6
ALT MABAC CRADIS MAUT ROV COPRAS
ALT1 1 1 1 1 1
ALT2 3 4 3 3 4
ALT3 2 2 2 2 2
ALT4 5 6 4 5 7
ALT5S 4 3 7 4 3
ALT6 7 7 6 7 6
ALT7 6 5 5 6 5
ALT RAFSI COS0OSO PIV MAIRCA ARAS
ALT1 1 1 1 1 1
ALT2 3 5 6 3 4
ALT3 2 4 2 2 2
ALT4 5 2 7 5 7
ALT5 4 6 3 4 3
ALT6 7 7 4 7 6
ALT7 6 3 5 6 5
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A comprehensive examination of Table 8, Table 10, Table
11, along with Figures 3 and 4, reveals that the proposed
method (EBPM) exhibits a high level of consistency and
robustness in ranking decision alternatives. According to
the EBPM results, ALT3 emerges as the top-performing
alternative, followed by ALT1 and ALTS5, indicating that
the method offers a balanced and discriminative
structure from both statistical and decision-making
perspectives.

Table 11 presents a comparative ranking analysis, where
the performance trends derived from EBPM both
increases and decreases closely resemble those produced
by widely used MCDM methods such as SAW, WPM,
TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, PIV
(adjusted by 180 degrees due to reverse ranking logic),
and ARAS. This strong similarity indicates that EBPM not
only maintains internal consistency but also generates
externally valid rankings that align with conventional

ALT1 ALT2 ALT3 ALT4 ALTS ALTE ALT?

methods frequently applied in decision science.
Importantly, a complete rank concordance is observed
between EBPM and the MARCOS method. The exact
matching of rankings across all alternatives suggests a
substantial structural and mathematical alignment
between the underlying logic of MARCOS and the
formulation of the EBPM model. This harmony not only
validates the theoretical foundation of EBPM but also
enhances its practical credibility and applicability in real-
world decision-making problems.

The findings presented in Table 10 further support this
assertion. The performance scores generated by EBPM
show a high level of correlation with results from other
dominant MCDM techniques such as SAW, WPM, TOPSIS,
WASPAS, MARCOS, CRADIS, COPRAS, PIV, and ARAS. For
example, the top-ranked position of ALT5 is similarly
supported by SAW, WPM, TOPSIS, WASPAS, MARCOS,
CRADIS, COPRAS, PIV and ARAS.
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Visual interpretations in Figure 3 clearly illustrate the
relative distances among alternatives based on EBPM
with ALT3 exhibiting a distinctly higher
performance level. In contrast, Figure 4, which includes

scores,

the output distributions of other methods, reveals more
pronounced performance fluctuations, suggesting that
these conventional approaches may offer less stable or
consistent rankings compared to EBPM. In summary, the
EBPM method demonstrates a strong capability in
producing stable, interpretable, and reliable rankings
across decision alternatives. Its close alignment with
methods like MARCOS not only confirms its theoretical
soundness but also establishes it as a practical, data-
driven alternative within the MCDM landscape.

through the EBPM method exhibit a high degree of
consistency when compared with both directly
proportional and inversely oriented MCDM methods. In
particular, a joint evaluation of Figure 3 and Figure 4
reveals that the performance fluctuations of the
alternatives are highly aligned with those derived from
methods such as SAW, WPM, TOPSIS, WASPAS, MARCOS,
CRADIS, COPRAS, PIV and ARAS. This strong alignment
indicates that the EBPM method demonstrates a
positively strong correlation with widely
recognized MCDM approaches. In support of this
conclusion, the correlation coefficients reflecting the
degree of association between the EBPM method and the
aforementioned MCDM techniques are presented in

these

Consequently, the performance rankings obtained Table 12.

Table 12. Correlation scores
M SAW WPM TOPSIS WASPAS MARCOS
S 0.834** 0.820** 0.920** 0.832** 0.943**
M MABAC CRADIS MAUT ROV COPRAS
S 0.631** 0.834** 0.508* 0.631** 0.869**
M RAFSI COS0Sso PIV MAIRCA ARAS
S 0.631** 0.063* -0.904** -0.631** 0.866**

P**<01, P*<.05, M=method, S= score

As presented in Table 12, the EBPM method exhibits
strong and statistically significant correlations with
widely recognized and frequently applied multi-criteria
decision-making (MCDM) techniques such as SAW, WPM,
TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, and ARAS.
This high level indicates that the
performance rankings derived from EBPM are largely
consistent with those produced by well-established
MCDM approaches. A particularly noteworthy point is
that the PIV and MAIRCA methods employ a reverse
ranking structure, in which alternatives are ordered from
the worst to the best, i.e, in ascending order of

of correlation

performance. Accordingly, the negative but statistically
significant correlation coefficients observed between
these methods and EBPM are expected and can be
interpreted as an indication of methodological
consistency. In other words, these inverse correlations
reflect the intrinsic ranking logic of the PIV and MAIRCA
methods, and despite the opposite direction of the
association, they confirm the existence of a strong and
meaningful relationship. In addition, the relationships
between EBPM and the MABAC, RAFSI, MAIRCA, MAUT,
and ROV methods were found to be moderately
significant. This suggests that the proposed method
achieves an acceptable level of agreement with these
techniques,
methodological compatibility.

On the other hand, although the correlation coefficient
between EBPM and the COCOSO method is relatively
lower than those observed with other methods, it

indicating a moderate degree of

remains statistically significant. This finding implies that,

despite some divergence in the computational

frameworks of the two methods, there is limited
alignment in terms of decision-making outcomes.

In conclusion, the correlation analysis demonstrates that
the EBPM method not only produces stable and
consistent  rankings but also
methodologically coherent and statistically verifiable
relationship with a broad range of mainstream MCDM
methods. These findings strongly support the validity
and reliability of EBPM in addressing complex decision-
making problems.

Overall, the correlation analysis reveals that the EBPM
method demonstrates strong associations with both
positively and inversely ranked MCDM methods. This not
only confirms the statistical robustness of the proposed
approach but also underscores its capacity to distinguish
between alternatives in alignment with decision-maker
preferences. Taken together, the findings suggest that
EBPM is a reliable and valid performance assessment tool
that yields highly compatible results with prominent
methods in the MCDM literature. Hence, considering all
comparative analyses, the EBPM method proves to be a
trustworthy and effective technique in terms of capturing
decision-makers’ preferences and discriminating
between alternatives.

3.4. Simulation analysis

To evaluate the reliability and consistency of the
proposed method, a simulation-based study was carried

establishes a

out by constructing alternative decision matrices through
the assignment of diverse input values. As the number of
simulated scenarios increases, it is anticipated that the
discrepancy between the proposed technique and other
objective MCDM methods will become more apparent. In
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this regard, it is expected that the correlation between
the performance scores derived from the proposed
method and those obtained from other MCDM techniques
will gradually decrease. Such a trend would serve as
evidence of the proposed method’s enhanced capability
to differentiate between criteria based on their relative
significance. Moreover, the homogeneity observed in the
variance distribution across all scenarios would further
substantiate the stability and robustness of the proposed
weighting mechanism (Keshavarz-Ghorabaee et al,
2021).

As part of this analysis, ten distinct scenarios were
developed in the form of decision matrices and
subsequently categorized into two separate groups for
comparative purposes (Group 1: Scenario 1, Scenario 2,
Scenario 3; Group 2: Scenario 4 through Scenario 10).
Moreover, although the scenarios utilized in this study
were constructed based on randomly generated datasets,
particular attention was paid to avoiding excessively
dominant values in order to more effectively reveal

Table 13. Correlation scores

performance differences among alternatives within the
proposed EBPM framework. Instead, alternatives with
relatively close values were deliberately selected to
enable a more accurate and meaningful assessment of the
method’s discriminative capacity. Furthermore, the
dataset was designed to exhibit statistical normality,
thereby ensuring a balanced distribution of data across
criteria. This methodological approach not only provides
a sound foundation for conducting sensitivity analyses
but also demonstrates that the proposed method does
not rely on artificially exaggerated contrasts. Rather, it
delivers a performance evaluation based on realistic and
substantively meaningful among
alternatives. Following this categorization, correlation
coefficients were computed to assess the degree of
alignment between the proposed EBPM method and
other established weighting approaches across the
defined scenarios. The outcomes of these correlation

distinctions

analyses are comprehensively illustrated in Table 13 and
Figure 5.

Methods SAW WPM TOPSIS WASPAS MARCOS
Scenariol 0.861** 0.833** 0.965** 0.863** 0.973**
Scenario2 0.933** 0.888** 0.981** 0.901** 0.993**
Scenario3 0.958** 0.905** 0.988** 0.905** 0.996**
Scenario4 0.829** 0.814** 0.912** 0.849** 0.955%**
Scenario5 0.817** 0.803** 0.905** 0.831** 0.943**
Scenario6 0.791** 0.779** 0.888** 0.823** 0.932**
Scenario7 0.768** 0.753** 0.874** 0.807** 0.925**
Scenario8 0.744%** 0.729%** 0.869** 0.800** 0.915**
Scenario9 0.726** 0.718** 0.852** 0.779** 0.907**
Scenariol0 0.711** 0.703** 0.829** 0.759** 0.903**
Methods MABAC CRADIS MAUT ROV COPRAS
Scenariol 0.655** 0.873** 0.551* 0.654** 0.899**
Scenario2 0.693** 0.913** 0.579* 0.693** 0.903**
Scenario3 0.601** 0.927** 0.491* 0.604** 0.927**
Scenario4 0.633** 0.869** 0.444* 0.631** 0.876**
Scenario5 0.719** 0.855%** 0.429%* 0.616** 0.867**
Scenario6 0.608** 0.839** 0.417* 0.612** 0.859**
Scenario7 0.591* 0.826** 0.404* 0.593* 0.845**
Scenario8 0.582* 0.817** 0.391* 0.579* 0.839**
Scenario9 0.567* 0.808** 0.376* 0.569* 0.819**
Scenariol0 0.559* 0.800** 0.359* 0.559* 0.808**
Methods RAFSI COS0SO ARAS PIV MAIRCA
Scenariol 0.655%** 0.071 0.894** -0.956** -0.657**
Scenario2 0.695** 0.091 0.900** -0.978** -0.698**
Scenario3 0.674** 0.099 0.923** -0.963** -0.679**
Scenario4 0.636** 0.084 0.871** -0.921** -0.643**
Scenario5 0.615%** 0.077 0.864** -0.908** -0.617**
Scenario6 0.604** 0.075 0.854** -0.889** -0.609**
Scenario7 0.594* 0.071 0.842%** -0.881** -0.600**
Scenario8 0.586* 0.067 0.833** -0.876** -0.589*
Scenario9 0.563* 0.061 0.815** -0.873** -0.568*
Scenariol0 0.555* 0.049 0.805** -0.869** -0.561*
P**<0.01, P*<0.05.
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When Table 13 and Figure 5 are examined jointly, it is
generally observed that the correlation values between
the EBPM method and other MCDM methods tend to
decline as the number of scenarios increases. This trend
suggests that increasing the number of scenarios reveals
greater evaluation differences among the methods.
Notably, methods such as TOPSIS, MARCOS, and PIV
maintained high correlation levels despite changes in
scenario structures, thereby exhibiting consistent and
stable performance evaluations. In contrast, methods
COCOSO  demonstrated
correlation values, indicating a higher sensitivity to
scenario variations. Meanwhile, the PIV and MAIRCA
methods

such as relatively lower

continued to yield negative correlation
coefficients, which is consistent with their reverse
ranking logic, wherein lower numerical values indicate
better performance. These inverse correlations are not
anomalies but rather expected outcomes aligned with the
inherent evaluation structures of the respective methods.
Additionally, the statistical significance of the correlation
coefficients presented in Table 13 is marked at the p <
.01 and p < .05 levels. This reinforces the notion that the
observed relationships are not coincidental but are
statistically valid and meaningful. This analysis offers
valuable insights into the sensitivity and consistency of
different MCDM methods when subjected to varying
decision-making scenarios. The fact that the EBPM
method gradually diverges from other methods as the
number of scenarios increases, and thereby becomes
more distinguishable, highlights its ability to characterize

making contexts, further enhancing its value as a
dependable and structured performance evaluation tool.

In the concluding stage of the simulation analysis, the
uniformity of variance in the performance scores
determined through the EBPM methodology was
rigorously evaluated using Levene's test. This statistical
procedure offers a visual and analytical tool for assessing
the consistency of variances across different groups. The
graphical representation is structured around three
essential components: the overall mean Avarage Decision
Metric (ADM), derived from the Analysis of Means
(ANOM) for variances based on Levene’s test, which acts
as the central reference line; and the Upper Decision
Limit (UDL) and Lower Decision Limit (LDL), which
delineate the acceptable bounds for variance fluctuation.
When the variance of a particular group or cluster
exceeds these decision thresholds, it indicates a
statistically significant deviation from the overall mean
ADM, suggesting the presence of variance heterogeneity.
Conversely, if the variances of all clusters fall within the
UDL and LDL range, this supports the assumption of
variance homogeneity. Such consistency reinforces the
robustness, reliability, and methodological stability of the
proposed methodological framework by confirming the
homogeneity of variances under diverse simulation
scenarios (Keshavarz-Ghorabaee et al, 2021). In this
context, Figure 6 presents the graphical results of the
ADM-based analysis, offering visual confirmation of these
findings, while Table 14 complements and substantiates
the interpretation by providing the detailed numerical

and preserve stability in complex decision environments. outcomes underpinning the graphical assessment
Such findings emphasize the robustness and reliability of (Levene Test).
the proposed EBPM method in multi-scenario decision-
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Figure 5. Correlation positions of EBPM with other MCDM methods.
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Figure 6. ADM graph.

Figure 6 presents a visual summary of the Analysis of
Means (ANOM) for the variances of the Average Decision
Metric (ADM) weights
scenarios at a significance level of o = 0.05. This analysis
is based on the Levene’s test, which is used to assess the
homogeneity of variances. On the graph, the horizontal
axis represents the different scenarios (from Scenario 1
to Scenario 10), while the vertical axis displays the
Average ADM Weights.

The central blue line (AVG) indicates the overall average
of ADM performance scores across all scenarios (0.5793),
serving as the main reference point for the variance
analysis. The upper red line (0.6257) and the lower red
line (0.5329) represent the Upper Decision Limit (UDL)
and Lower Decision Limit (LDL), respectively, indicating
the boundaries within which the variance is considered
acceptable. The yellow dots depict the calculated Average
ADM Weights for each individual scenario. As shown in
Figure 6, all the scenario-specific ADM scores lie within
the range defined by the UDL and LDL. This clearly
demonstrates that the variances of ADM scores across
different scenarios are homogeneous, and there is no
statistically significant deviation from the mean. Such
homogeneity validates the robustness, reliability, and
methodological consistency of the proposed framework.
This finding aligns with the assertion of Keshavarz-
Ghorabaee et al. (2021), who emphasized that preserving
variance homogeneity across simulation scenarios is of
critical importance in methodological

calculated under different

ensuring
consistency.

In conclusion, Figure 6 provides a clear visual depiction
of the ANOM analysis based on Levene’s test, effectively
confirming the homogeneity of variances in ADM
performance scores under varying scenarios. This
statistical homogeneity reinforces the consistency and
credibility of the proposed methodological approach,
indicating that the results are built upon a solid
foundation. This visual analysis, in conjunction with the
numerical findings presented in Table 14, significantly
strengthens the validity and reliability of the overall
methodological framework. Moreover, based on the
results of the ADM diagram and Levene’s test, the
homogeneity of performance scores generated by the
proposed method across random different scenarios has
been empirically validated. In this context, the Levene

statistics obtained from scenario datasets exhibiting
normal distribution are comprehensively reported in
Table 14.

Table 14. Correlation scores

Levene Statistic df1l df2 Sig. (p)
0.167 2 10 0.249
P*<0.05

Upon examining Table 14, it is observed that the
significance level (p = 0.241) is greater than 0.05. This
finding indicates that the variances of the performance
scores obtained through the EBPM method across ten
different scenarios are homogeneous, thereby supporting
the outcomes derived from the ADM analysis. In other
words, since there is no statistically significant difference
in the variances of the scores obtained under different
scenarios, it can be inferred that the model demonstrates
consistent performance in terms of variance stability.
From a broader perspective, when the quantitative
findings of all simulation analyses are considered
collectively, it can be concluded that the EBPM method
possesses a stable and robust structure. This statistical
consistency underscores the method’s reliability in multi-
scenario decision-making environments and reinforces
its potential for practical application in complex decision
contexts.

4. Discussion

MCDM methods are systematic and analytical tools
developed to solve multidimensional problems in today’s
increasingly complex decision-making environments [2].
Although existing MCDM methods offer significant
advantages, the growing demand for information-based
decision-making has exposed certain limitations of these
techniques [1]. In this context, the development of novel
MCDM approaches not only aims to overcome the
constraints of existing models but also paves the way for
innovative evaluation techniques grounded in alternative
paradigms [4]. In particular, the creation of models that
effectively provide informative value to decision-makers
and reduce uncertainty highlights a critical, yet unmet,
need within the MCDM literature.

Within the scope of this study, the proposed EBPM
method introduces a novel evaluation framework based
on the informational potential of entropy. The theoretical
foundation of the method is built upon two core
principles. The first is the continuous tendency of
entropy to increase in both natural and social systems
[5,107]. The second is the premise that such an increase
enhances the information performance of these systems
[6]. Without introducing any structural modifications to
the Shannon entropy formula, the method transforms the
entropy function into a theoretically justified and
literature-consistent monotonically increasing structure
by rescaling the weighted normalized values based on a
predefined threshold. This approach not only offers a
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theoretically consistent model but also introduces an
original dimension for performance evaluation in
decision analysis grounded in information theory.

In the application of the EBPM method to the 2024 Global
Innovation Index dataset, the model has been rigorously
tested in terms of ranking stability, reliability, and
sensitivity. In the sensitivity analysis, even when specific
criteria were systematically removed from the decision
matrix, no significant changes were observed in the
ranking of alternatives. The results of the comparative
analysis demonstrate that EBPM exhibits a high degree of
correlation with widely used MCDM methods such as
SAW, WPM, TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS,
PIV, and ARAS, thereby confirming its reliability and
credibility as a decision-making tool. On the other hand,
the observation that the proposed EBPM method exhibits
only moderate correlation with certain MCDM techniques
such as MAUT, MABAC, RAFSI, and MAIRCA, and a
relatively low correlation with the COCOSO method, can
be attributed to the conceptual and computational
divergence between these approaches. Fundamentally,
this discrepancy arises from the differences in how each
method interprets and computes the performance of
alternatives. While EBPM directly evaluates the
information contribution of each alternative through an
entropy-based performance framework, methods like
MAUT, MABAC, RAFSI, and MAIRCA adopt diverse
structural models based on utility theory, approximation
areas, or ideal-theoretical deviations. As a result, the
divergence in evaluation paradigms naturally leads to
differentiated correlation levels. Specifically, the COCOSO
method aggregates performance scores through additive
and multiplicative synthesis based on SAW and WPM
principles, which conceptually misaligns with the
continuously increasing entropy-based formulation of
EBPM. Thus, the lower correlation with COCOSO does not
indicate a methodological deficiency, but rather reflects
the distinctive theoretical foundation and originality of
the EBPM approach. These differences underscore
EBPM’s unique contribution to the MCDM literature,
offering an alternative perspective independent of
traditional ranking logics.

Furthermore, simulation analyses conducted under
various correlation and homogeneity-based scenarios
revealed a consistently high level of ranking stability,
indicating that EBPM possesses a stable and robust
structure.

A key distinguishing advantage of the method lies in its
capacity to assess performance not merely based on
numerical magnitudes but also on the informational
contribution it offers to the decision-maker. Unlike
conventional MCDM techniques such as SAW (Radulescu
and Radulescu, 2024), WPM ((")Zbek and Erol, 2017),
WASPAS (Zawadskas et al, 2012), COCOSO (Yazdani et
al, 2019), MAUT (Keeney and Raiffa, 1976), ROV
(Yakowitz et al., 1993), ARAS (Zawadskas et al,, 2010),
and COPRAS (Zawadskas et al., 1994), which primarily
emphasize the magnitude of normalized values and

criterion weights (i.e., quantitative superiority), the
EBPM method considers both quantitative dominance
and the information-generating capacity of alternatives,
thereby enabling a more qualitative and nuanced
evaluation.

Moreover, in contrast to proximity-to-ideal-solution-
based methods such as TOPSIS (Hwang and Yoon, 1981)
MARCOS (Stevi¢ et al, 2020), MABAC (Pamucar and
Cirovi¢, 2015), CRADIS (Puska et al, 2023), PIV
(Goswami et al,, 2022), MAIRCA (Pamucar et al,, 2018),
and RAFSI (Ziiovic et al, 2020), EBPM evaluates each
alternative according to its
potential, rather than its closeness to an ideal maximum
or minimum reference point. Notably, its negative
correlation with methods such as MAIRCA and PIV, which
operate under a reverse-ranking mechanism, not only
reveals the ranking coherence across models but also
underlines EBPM's capacity to maintain comparative
compatibility with existing methods.

In addition, the entropy-based foundation of EBPM
grants it an inherently multi-disciplinary character,
making it potentially more usable and insightful for
decision-makers across various domains. Nevertheless,
the proposed method presents certain limitations when
compared to other multi-criteria decision-making
(MCDM) techniques. In particular, the EBPM method is
sensitive to zero and negative values, which may limit its
flexibility in certain application domains. In such cases,
the application of Z-standardization scores, as suggested
by Zhang et al. (2014), is recommended. In other words,
by transforming the values in the decision matrix into Z-
standardization scores, all data can be converted into
positive numbers, thereby preserving the applicability of
the EBPM method. Another significant limitation emerges
when the standardized criterion values of alternatives
are very close to one another. Under such circumstances,
the method’s discriminative capacity and computational
precision may diminish, making it more challenging to
identify meaningful differences between alternatives. To
address this issue, it is advisable to employ high-
precision numerical operations within the scope of
advanced mathematical computation. This would allow
for the clearer detection of subtle differences between
alternatives, thereby  enhancing the method’s
discriminative performance.

Moreover, this study offers significant contributions to
the MCDM literature from several perspectives. Firstly,
while the entropy method has traditionally been utilized

intrinsic information

as a tool for weighting criteria, this research introduces a
novel application by employing it directly to measure the
performance of alternatives, thus providing a new
perspective to the literature. This approach broadens the
application potential of the entropy method in decision-
making problems.

Furthermore, by integrating information theory and the
concept of entropy into MCDM methodology, this study
presents an innovative framework that evaluates

alternatives not only based on their quantitative
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attributes but also on the informational value they
provide. The proposed method (EBPM) constitutes an
original methodology that assesses the knowledge-
generating capacity of alternatives, thereby enabling
decision-makers to perform more comprehensive and
qualitative analyses. Additionally, the use of entropy as
the foundation of the method introduces an
interdisciplinary perspective to the MCDM field,
facilitating the integration of knowledge from diverse
disciplines into decision-making processes.

Furthermore, by integrating information theory and the
concept of entropy into MCDM methodology, this study
presents an innovative framework that evaluates
alternatives not only based on their quantitative
attributes but also on the informational value they
provide. The proposed method (EBPM) constitutes an
original methodology that assesses the knowledge-
generating capacity of alternatives, thereby enabling
decision-makers to perform more comprehensive and
qualitative analyses. Additionally, the use of entropy as
the foundation of the method introduces an
interdisciplinary perspective to the MCDM field,
facilitating the integration of knowledge from diverse
disciplines into decision-making processes.

Although the present study demonstrates the potential of
the proposed EBPM method in the MCDM domain, it also
offers several avenues for future research. First,
addressing the current limitations of the method may
constitute a major focus for subsequent studies.
Specifically, solutions can be sought for issues such as the
method’s sensitivity to zero and negative values, and the
diminished discriminatory power when the criterion
values of alternatives are closely aligned. In this regard,
the adoption of alternative normalization techniques or
the development of methodological modifications may be
considered. Second, testing the method across various
application domains would provide greater insight into
its effectiveness and generalizability. Implementing the
method with data from different sectors and decision-
making problems could help to more clearly identify its
strengths and weaknesses. Third, integrating the EBPM
method into decision support systems could enable
decision-makers to utilize the approach more easily and
effectively, thereby enhancing its dissemination and
impact on decision-making processes. Fourth, improving
visualization techniques to better present the method’s
outcomes is essential; effective visualization tools can
assist decision-makers in interpreting results more
intuitively and integrating them into their decision-
making processes.

The proposed EBPM is not merely a theoretical tool
grounded in the concept of entropy; it also creates a
tangible impact on real-world decision-making processes
by offering high informational performance to decision-
makers. In this context, EBPM reduces the level of
uncertainty encountered during the evaluation of
alternatives, thereby enabling decisions to be made
based on high-quality, information-rich foundations

rather than relying on intuition or subjective judgments.
For instance, in the context of policy development, EBPM
provides an objective assessment of the informative
value of policy alternatives, guiding decision-makers in
identifying which option possesses greater strategic
impact potential. Similarly, strategy
formulation, it facilitates the information-based
comparison of investment projects or market offerings,
allowing organizations to make more rational, data-
driven, and sustainable strategic decisions. Therefore,
EBPM is not merely an abstract decision-support model
but a practical method that enhances the strategic
orientation of decision-makers by grounding their
choices in measurable, reliable, and information-rich
foundations.

in business

5. Conclusion

This study proposes the EBPM method, which provides
an  information-based performance
measurement for MCDM problems. The developed
method transforms the classical Shannon Entropy
function into a continuously increasing structure through
a specific standardization, without manipulating the
original entropy function, and measures the potential of
alternatives to provide information accordingly. The
EBPM method has demonstrated stable and reliable
results both in simulation analyses and comparative
evaluation studies. Particularly, its high sensitivity,
ranking stability, and structural flexibility across various
scenarios have led to strong performance from both
theoretical and practical perspectives.

The high correlation of the method with different MCDM
techniques enhances the validity of EBPM in the current
literature and enables integrated analyses between
methods. Additionally, its information measurement-
based approach provides a multi-dimensional evaluation
by considering not only the criterion weights but also the
informative value that alternatives present to the
decision-maker.

In conclusion, the EBPM method can be considered as an
innovative MCDM approach that provides objective,
stable, and support,
contributing both theoretically and methodologically to
the literature. Future studies could further increase the
method’s validity by applying it across different sectors

alternative

information-based decision

and facilitating its integration into decision support
systems.

Although the present study demonstrates the potential of
the proposed EBPM method in the MCDM domain, it also
offers several avenues for future research. First,
addressing the current limitations of the method may
constitute a major focus for subsequent studies.
Specifically, solutions can be sought for issues such as the
method’s sensitivity to zero and negative values, and the
diminished discriminatory power when the criterion
values of alternatives are closely aligned. In this regard,
the adoption of alternative normalization techniques or

BS] Eng Sci / Furkan Fahri ALTINTAS

1395



Black Sea Journal of Engineering and Science

the development of methodological modifications may be
considered. Second, testing the method across various
application domains would provide greater insight into
its effectiveness and generalizability. Implementing the
method with data from different sectors and decision-
making problems could help to more clearly identify its
strengths and weaknesses. Third, integrating the EBPM
method into decision support systems could enable
decision-makers to utilize the approach more easily and
effectively, thereby enhancing its dissemination and
impact on decision-making processes. Fourth, improving
visualization techniques to better present the method’s
outcomes is essential; effective visualization tools can
assist decision-makers in interpreting results more
intuitively and integrating them into their decision-
making processes. Finally, exploring the potential
integration of the EBPM method with other MCDM
approaches may lead to the development of more
comprehensive and robust decision-making frameworks.
The scope of the EBPM method can be further expanded
through future instance,
applying the EBPM approach to decision-making
problems in various domains such as healthcare, energy,
environmental management, supply chain optimization,
and sustainable development could provide valuable
insights into its interdisciplinary applicability. Moreover,
integrating EBPM with uncertainty-based MCDM
approaches—such as fuzzy logic, grey system theory,
rough set theory, or D-numbers—has the potential to
enhance its methodological flexibility in decision
environments characterized by ambiguity. Another
promising research direction involves adapting the
method to group decision-making processes or multi-
layered (hierarchical) decision models. Additionally,
evaluating the computational efficiency,
processing time, and algorithmic performance when
applied to large-scale datasets is crucial for assessing its
practical scalability. Finally, conducting parameter
sensitivity analyses on components such as
normalization techniques, entropy coefficients, and
weighting strategies will contribute to a deeper
understanding of the method’s behavior across different
data structures and decision contexts.
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