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Abstract: In this study, the applicability of the widely used entropy method traditionally employed for calculating criterion weights in 

the Multi-Criteria Decision-Making (MCDM) literature is investigated as a novel approach for measuring the performance of 

alternatives. The proposed method, termed Entropy-Based Performance Measurement (EBPM), is grounded in the principle of 

continuously increasing uncertainty inherent in both natural and social systems. The primary motivation of this approach is to 

demonstrate, through sensitivity, comparative, and simulation analyses, that the method can produce ideally sensitive, reliable, 

consistent, stable, and robust results. The study aims to expand the application domain of the entropy method and to contribute to 

both the MCDM and entropy literature. EBPM is theoretically based on entropy’s inherent capability to quantify and enhance 

informational performance. Without manipulating the original entropy equation, the entropy function is reformulated into a positively 

increasing structure, enabling it to measure the performance of alternatives. In the methodology section, the characteristics of 15 

widely recognized MCDM methods are introduced, the theoretical and mathematical foundations of the proposed approach are 

explained, and its applicability is demonstrated using the innovation performance data of seven countries selected from the 2024 

Global Innovation Index. In the results and discussion section, the quantitative findings and comprehensive explanations of the 

proposed method are presented in detail. Thus, this study aims to broaden the potential of the entropy method within the field of 

MCDM and to offer a novel perspective for decision-making processes. 
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1. Introduction 
The development of new Multi-Criteria Decision-Making 

(MCDM) methods is of critical importance for 

overcoming the limitations of existing approaches and 

offering solutions to a wider range of problem types 

(Ćirovic and Pamučar, 2022). While traditional methods 

may be effective under certain criteria, they often fall 

short when addressing complex and dynamic challenges. 

Overcoming these limitations enables more accurate and 

reliable decision-making outcomes. Innovative MCDM 

approaches enhance the accuracy of decision support 

processes and strengthen overall decision-making 

efficiency (Lopez et al., 2023). 

Therefore, the discovery and development of novel 

MCDM methods can provide effective solutions to 

increasingly complex problems and allow for more 

refined decisions through the interaction of multiple 

criteria. This is especially significant in addressing 

contemporary critical issues such as sustainability, 

resource management, and risk analysis. One of the core 

components of MCDM methods characteristic 

quantitative superiority objectively reveals the relative 

dominance of alternatives across multiple criteria 

(Thakkar, 2021). 

Such an approach renders the decision-making process 

more rational and consistent under prevailing conditions, 

thus enabling decision-makers to make more reliable and 

defensible choices. Characteristic quantitative 

superiority enhances the credibility of decision support 

systems and clarifies the distinctions between 

alternatives, thereby contributing to scientifically 

grounded solutions (Owen, 2023). 

In this context, the study proposes a novel method for 

evaluating the performance of alternatives based on the 

Entropy method, which is frequently employed in the 

MCDM literature for calculating the weight values of 

criteria. This method, referred to as the Entropy-Based 

Performance Measurement (EBPM), aims to extend the 

applicability of entropy beyond traditional weight 

determination, offering a performance evaluation 

mechanism of alternatives within the broader MCDM 

framework. 

The primary motivation of this research is to 

demonstrate that the proposed method possesses ideal 
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sensitivity through sensitivity analyses, yields credible 

and reliable outcomes in comparative analyses, and 

proves to be stable and robust under simulation 

conditions. An additional motivation is to expand the 

application scope of the entropy method, thereby 

contributing to both the MCDM literature and entropy-

based analytical approaches. 

The theoretical foundation of the EBPM method is 

grounded in the frequently cited notion in the literature 

that entropy and by extension, uncertainty exhibits a 

continuously increasing and positively oriented behavior 

in both natural and social systems (Shankar, 2014). The 

second theoretical foundation of the method is based on 

the assumption that the presence of entropy reduces the 

existing information performance of the systems it 

influences and consequently increases their information 

requirements. Accordingly, low levels of entropy imply 

high information performance, whereas high levels of 

entropy indicate reduced information performance 

(Aksakal and Çalışkan, 2020). Within the framework of 

these two theoretical premises, the entropy function is 

employed without modifying the original entropy 

equation, thereby establishing a positively progressive 

structure that effectively measures the performance of 

alternatives. 

In the methodology section, the study first introduces the 

characteristics of 15 widely used MCDM methods, each 

with distinct structural features. Subsequently, the 

theoretical and mathematical foundations of the 

proposed EBPM method are comprehensively detailed. 

Finally, the performance of seven countries selected from 

the 2024 Global Innovation Index is evaluated using the 

proposed method based on innovation performance 

criteria. The discussion section elaborates on the 

quantitative results. 

 

2. Materials and Methods 
2.1. Some MCDM Methods and Their Properties 

MCDM methods play a fundamental role in complex 

decision-making processes, particularly in selecting the 

most appropriate solution among various alternatives 

and evaluating the performance of each alternative based 

on specific criteria (Munier, 2024). In today’s decision-

making landscape, decision-makers are often faced with 

a wide array of alternatives possessing diverse attributes, 

making it essential to identify the optimal choice 

(Munier, 2021). This process becomes especially crucial 

in contexts characterized by high uncertainty and 

complexity, where considering multiple criteria enables 

more comprehensive and balanced decisions compared 

to single-criterion evaluations (Zardari et al., 2014). 

The literature offers a wide range of MCDM methods, 

each grounded in different computational techniques. 

These methods contribute to decision support processes 

by analyzing alternative performance according to their 

unique structural frameworks (Thanh, 2021). Such 

approaches allow decision-makers to assess the 

strengths and weaknesses of each alternative while 

maintaining a balance among criteria. The significance of 

MCDM lies in its ability to facilitate more effective and 

informed decisions across various spheres of life. From 

business and public administration to education and 

healthcare, MCDM methods serve as valuable tools for 

solving complex problems and achieving optimized 

outcomes. Moreover, these methods are critical for the 

efficient allocation of resources, minimizing risks, and 

promoting sustainable decision-making practices. As 

such, MCDM methodologies are indispensable in 

contemporary decision-making environments where 

complexity, diversity, and uncertainty are inherent. 

As a result, it is commonly observed that researchers 

make extensive use of methods such as Simple Additive 

Weighting (SAW) (Azadfallah, 2025), the Weighted 

Product Method (WPM) (Fan et al., 2025), the Technique 

for Order of Preference by Similarity to the Ideal Solution 

(TOPSIS) (Paradhita et al., 2025), the Weighted 

Aggregated Sum Product Assessment (WASPAS) (Chen et 

al., 2025), the Measurement of Alternatives and Ranking 

according to Compromise Solution (MARCOS) 

(Roshanravan et al., 2025), the multi-attributive border 

approximation area comparison (MABAC) (Mehdiabadi, 

et al., 2025), CRADIS (Aghamammadli et al., 2024), the 

Multiple Attribute Utility Theory (MAUT) (Permata et al., 

2025), the range of value (ROV) (Anđić, 2024), the 

Complex Proportional Assessment (COPRAS) (Ballamudi, 

2024) the ranking of alternatives through functional 

mapping of criterion sub-intervals into a single interval 

(RAFSI) (Trung et al., 2022), the combined compromise 

solution (COCOSO) (Lendvai et al., 2025), the proximity 

indexed value (PIV) (Ersoy, 2024), the multi attributive 

ideal-real comparative analysis (MAIRCA) (Öztaş and 

Öztaş, 2024), and the additive ratio assessment (ARAS) 

(Aydemir, 2025). 

The SAW method, also known as the scoring method, is 

applicable exclusively to numerical and comparable data 

sets (Demirci, 2020). The quantitative performances of 

the alternatives are evaluated based on normalized and 

weighted values corresponding to the criteria (Sutoyo et 

al., 2025). The method begins with the construction of a 

decision matrix. Subsequently, the data are normalized, 

and the normalized values are multiplied by the 

respective criterion weights to obtain the weighted 

normalized decision matrix (Ciardiello and Genovese, 

2023). In the final step, the overall score for each 

alternative is calculated. These scores are then ranked in 

descending order, thereby facilitating the selection 

process and concluding the decision-making procedure 

(Ciardiello and Genovese, 2023) 

The WPM evaluates each decision alternative by 

computing the product of the normalized values 

corresponding to each criterion, raised to the power of 

the respective criterion weights (Kaya and Karaşan, 

2020). In this context, the quantitative performance of 

alternatives is based on weighted normalized values 
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(Chinnasamy et al., 2023). The method involves the 

following steps: constructing the decision matrix, 

normalizing the matrix, and then applying exponential 

weighting to the normalized values using the 

corresponding criterion weights (Chinnasay et al., 2023). 

In the final step, the weighted values for each criterion 

are multiplied for each alternative to obtain the overall 

performance score. These scores are then ranked in 

descending order to complete the decision-making 

process (Alali et al., 2023). 

The TOPSIS evaluates decision alternatives based on 

their proximity to a positive ideal solution and their 

distance from a negative ideal solution (Başdar, 2019; 

Çankaya Kurnaz, 2025). The positive ideal solution 

represents the best values for each criterion, whereas the 

negative ideal solution represents the worst (Aktaş et al., 

2015). In this context, the quantitative superiority of 

alternatives is associated with being closer to maximum 

values for benefit-oriented criteria and farther from 

minimum values (Kaymaz et al., 2020). The TOPSIS 

method involves several steps: constructing the decision 

matrix, normalizing the data, and generating the 

weighted decision matrix by multiplying normalized 

values with corresponding criterion weights (Çelikbilek, 

2018). Subsequently, the ideal (positive) and anti-ideal 

(negative) values are determined, and the Euclidean 

distances of each alternative to these reference points are 

calculated (Tepe, 2021; Han et al., 2025). In the final step, 

the relative closeness of each alternative to the positive 

ideal solution is computed, and the alternatives are 

ranked in descending order according to these scores 

(Chaipetch et al., 2025: Han et al., 2025; Alqoud et al., 

2025). 

The WASPAS method is an integrated multi-criteria 

decision-making technique that combines the principles 

of the SAW and WPM approaches (Özdemir, 2018; Chen 

et al., 2025). The methodology involves the construction 

of a decision matrix, normalization of the input data, and 

subsequent calculation of relative importance scores 

using both SAW and WPM formulations (Arisantoso et al., 

2023; Radomska-Zalas, 2023). In the final step, a 

composite optimality score is computed for each 

alternative. These scores are then ranked in descending 

order to determine the most suitable alternative 

(Zavadskas et al., 2012; Handayani et al., 2023). 

The MARCOS method evaluates decision alternatives 

through a compromise-based approach that considers 

their proximity to the ideal (AI) and anti-ideal (AAI) 

solutions (Ecer, 2020). The alternative that is closest to 

the ideal solution and farthest from the anti-ideal 

solution is regarded as the most preferable option (El-

Araby et al., 2024). The method begins with the 

normalization of the decision matrix, followed by the 

application of weights, and then the computation of 

criterion total for each alternative (Muni et al., 2024). 

The quantitative superiority of alternatives is associated 

with their closeness to ideal values and distance from 

anti-ideal values, particularly in benefit-oriented criteria 

(Trung, 2021). Utility degrees are determined by relating 

these totals to both the ideal and anti-ideal solutions. In 

the final step, performance scores are calculated using a 

ratio-based approach that simultaneously considers both 

reference points (Munier et al., 2024; Andrejic and 

Vukasin, 2025). 

The MABAC method is an evaluation approach based on 

the distance of each alternative from the boundary 

approach area of the criterion functions (Ecer, 2020). In 

the first three steps, a decision matrix is created, 

normalized, and the weighted normalized decision 

matrix is obtained (Keleş, 2023). In the fourth step, the 

boundary approach area matrix is determined, and in the 

fifth step, the distances of the alternatives to this area are 

calculated (Akmaludin et al., 2024). The quantitative 

performance of the alternatives is related to the height of 

the weighted normalized values and their distance to the 

boundary approach values of the criteria (Bektaş, 2023). 

In the final step, the distance values of each alternative 

across all criteria are summed, and the performance 

scores are ranked in descending order. (Doković and 

Doljanica, 2023; Yadav et al., 2025). 

The CRADIS method is MCDM approach that evaluates 

alternatives based on their deviations from the ideal, 

anti-ideal, and optimal solutions through a utility 

function (Çilek and Şeyranlıoğlu, 2025). The method 

begins with the creation, normalization, and weighting of 

the decision matrix. Subsequently, the ideal and anti-

ideal solution values are determined, and deviations from 

these values are calculated (Puška et al., 2023). The 

utility functions for the alternatives are derived based on 

these deviation levels. In the final step, both the ideal and 

anti-ideal solutions are equally weighted, and the average 

performance of each alternative is determined. In this 

context, the quantitative superiority of the alternatives 

depends on the low deviation levels from the ideal and 

anti-ideal solutions (Özekenci, 2024). 

The MAUT method is an approach aimed at maximizing 

total utility through real-valued utility functions in 

decision problems involving multiple, conflicting criteria 

(Atan and Altan, 2020). Preferences are expressed 

through the utility functions defined for each criterion 

(Begam, 2024). The method begins with the creation of 

the decision matrix and the normalization of the data 

(Çetinkaya et al., 2023). The normalized values are 

integrated into the exponential form of the base of the 

natural logarithm, e, and then the ratio of 1 minus this 

value to 1.71 is calculated, allowing the marginal utility 

scores of the alternatives to be determined. The 

quantitative superiority of the alternatives is related to 

the magnitude of these marginal utility values based on 

the exponential values (Ecer, 2020). Finally, the total 

utility score for each alternative is determined by 

summing the weighted marginal utilities, and the 

alternatives are ranked in descending order based on 

these scores (Özkaya, 2024). 
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The ROV method begins with the creation of the decision 

matrix, similar to the SAW method (Turan and Bulak, 

2023). In the second step, the matrix values are 

normalized, and in the third step, the normalized values 

are weighted, with benefit and cost-oriented criteria 

summed separately (Madić and Radovanović, 2015). In 

the final step, the averages of these sums are calculated 

to determine the performance scores of the alternatives 

(Madić et al., 2016). In this method, the quantitative 

superiority of the alternatives is directly related to the 

magnitude of the weighted normalized criterion values 

(Ulutaş and Topal, 2020). 

The COPRAS method provides a percentage-based 

analysis by separately considering benefit- and cost-

oriented criteria in the evaluation of decision alternatives 

(Goswami et al., 2021). The method begins with the 

construction of the decision matrix, followed by 

normalization of the data and application of the criterion 

weights. Based on the weighted normalized values, the 

benefit and cost criteria are aggregated separately 

(Taherdoost and Mohebi, 2024). The relative significance 

of each alternative is determined using these values, and 

performance indices are then calculated. In this context, 

higher values for benefit criteria and lower values for 

cost criteria indicate the quantitative superiority of the 

alternatives (Paksoy, 2017). Finally, the alternatives are 

ranked in descending order according to their 

performance indices (Organ and Yalçın, 2016). 

The RAFSI method diverges from conventional 

normalization processes by introducing a distinctive 

standardization approach capable of transforming data 

variations within the decision matrix across any 

subinterval. This feature aims to fulfill the conditions of 

ideal decision-making (Alossta et al., 2021). The method 

begins with the construction of the decision matrix. In 

the second step, the matrix values are matched with their 

corresponding criterion weights. In the third step, both 

arithmetic and harmonic means are calculated for each 

alternative (Žižovic et al., 2020). Subsequently, a 

normalized decision matrix is derived based on these 

averages. In the final step, the criterion functions for each 

alternative are aggregated to determine their overall 

performance scores (Demir, 2021). 

The COCOSO method, developed through the integration 

of the SAW and WPM techniques, offers a unified 

compromise decision-making strategy by combining two 

distinct aggregation logics. Accordingly, the quantitative 

superiority of alternatives aligns with the dominance 

structures inherent in both SAW and WPM approaches 

(Ecer, 2020). The method begins with the construction of 

the decision matrix, followed by the formation of the 

normalized decision matrix. In the third step, the sum of 

the weighted normalized values (S) and the product of 

the exponential weighted values (P) are calculated 

(Rasoanaivo et al., 2024). In the fourth step, three distinct 

evaluation strategies are applied based on the magnitude 

of the S and P values. In the final step, the arithmetic and 

geometric means of these strategies are used to derive 

the performance scores of the alternatives. In this 

context, higher values of S and P indicate greater 

quantitative superiority of the alternatives (Tesic et al., 

2023). 

The PIV method is based on the principle that the best 

decision alternatives should be closest to the positive 

ideal solution. In this method, the proximity index is used 

to measure the deviations of the normalized values of the 

alternatives from the ideal values, which vary according 

to whether the criteria are benefit or cost-oriented 

(Goswami et al., 2022). These indices are calculated by 

incorporating the weights of the criteria and are linearly 

aggregated across all attributes to determine the overall 

proximity value of each alternative. Within this 

framework, the alternative with the greatest total 

weighted normalized proximity is considered the optimal 

decision alternative (Trung and Tan, 2023). The 

procedure involves the following steps: construction of 

the decision matrix, generation of the normalized 

decision matrix, formation of the weighted normalized 

decision matrix, calculation of the Weighted Proximity 

Index for each alternative, and finally, the evaluation of 

the Overall Proximity Values of the alternatives (Khan et 

al., 2019). 

The MAIRCA method is based on determining the 

discrepancy between the theoretical solution and the 

actual outcomes. In this method, the total deviation of 

each alternative from the expected performance for each 

criterion is considered (Aksoy, 2021). Accordingly, 

alternatives with the smallest difference between the 

theoretical and actual evaluations are deemed to have 

the greatest quantitative superiority. The procedure 

begins with the construction of the decision matrix in the 

first step, followed by the formulation of the preference 

values for the alternatives in the second step (Zolfani et 

al., 2020). In the third step, a theoretically derived matrix 

is developed, while in the fourth step, the actual 

evaluation matrix is constructed (Işık et al., 2025). 

Subsequently, a deviation matrix is obtained, and finally, 

the functional values or performance scores for each 

alternative are calculated in the last step (Ulutaş, 2019). 

In the ARAS method, decision alternatives are evaluated 

based on their benefit levels, and the optimality value of 

each alternative is compared with a reference alternative 

(Altın, 2020). The process begins with the construction of 

the decision matrix and the normalization of the data. 

Subsequently, the normalized values are weighted, and 

the optimality function value for each alternative is 

calculated accordingly (Arslan, 2017). In the final stage, 

these values are compared to the reference alternative to 

determine the performance levels of all alternatives, 

which are then ranked in descending order (Özbek and 

Erol, 2017). Therefore, in this method, the quantitative 

superiority of the alternatives is directly associated with 

the magnitude of their weighted normalized values 

(Özbek, 2019). 
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2.2. Proposed Method: ENTROPY-Based Performance 

Measurement (EBPM) 

Shannon entropy, one of the fundamental concepts of 

information theory, was introduced by Claude E. 

Shannon in 1948 (Krippendorff, 2019). First defined in 

his seminal work "A Mathematical Theory of 

Communication", this concept aims to quantitatively 

measure the level of uncertainty contained within a 

system or probability distribution (Nanda, 2020). 

Moreover, entropy is widely employed to determine the 

average amount of information conveyed by a message 

or dataset (Robinson, 2008). In this context, the entropy 

formula is presented in equation 1 (Cincotta et al., 2021). 

𝐸 = −∑(𝑝𝑖𝑗 ∗ 𝐼𝑛(𝑝𝑖𝑗))

𝑚

𝑖=1

 (1) 

In the entropy equation presented in Equation 1, 𝐸 

denotes the total entropy (i.e., the information content or 

degree of uncertainty); 𝑝𝑖𝑗represents the probability of 

occurrence of the 𝑖 − 𝑡ℎ event in the 𝑗 − 𝑡ℎ condition; ln 

refers to the natural logarithm (logarithm to the base 𝑒); 

and 𝑚 indicates the number of data points. Accordingly, 

the fundamental assumption of Shannon entropy is that 

events or communication processes occur with specific 

probabilities (Stevenson, 2021). In this context, low-

probability (low entropy) events are considered to carry 

more information, whereas high-probability (high 

entropy) events are assumed to provide less information. 

This characteristic renders the entropy measure an 

effective indicator for evaluating the overall 

informational potential of a system by taking into 

account the probability distribution of events (Bahadır 

and Türkmençalıkoğlu, 2021). 

However, some limitations of Shannon entropy have also 

been highlighted in the literature. Particularly in systems 

involving continuous variables, the entropy value may 

yield negative results or possess units with ambiguous 

physical interpretations. Such issues complicate the 

practical applicability of the method (Rudnicki, 2011). 

Despite these challenges, Shannon entropy remains one 

of the most fundamental and widely accepted measures 

for quantitatively assessing information content in the 

field of information theory (van Stokkum, 2024). In 

summary, Shannon entropy serves as a critical tool for 

quantitatively evaluating the uncertainty or 

unpredictability inherent in a random variable or 

probability distribution. Within the framework of 

information theory, it plays a significant role in assessing 

the informational potential of systems and is extensively 

applied across various decision-making domains 

(Zaeemzadeh and Tononi, 2024). 

The principal aim of Shannon entropy is to quantitatively 

measure the “amount of information” conveyed by a 

random variable. When the probabilities associated with 

a variable are characterized by high uncertainty meaning 

that each outcome has an equal likelihood of occurring 

the entropy value becomes high. This indicates a low 

level of existing informational performance and suggests 

that more information is required to adequately describe 

the system (Mishra et al., 2019). Conversely, when the 

outcomes of a variable are more distinct and predictable 

such that one particular outcome has a much higher 

probability than the others the entropy value is low. This 

implies that there is already sufficient informational 

performance to understand or describe the system, and 

less additional information is needed (Sharma et al., 

2015). 

In information theory, entropy is generally associated 

with concepts such as “uncertainty,” “disorder,” or 

“randomness.” It is also directly related to “information 

content,” as the realization of an uncertain (i.e., high-

entropy) event introduces new information. In cases 

where entropy is high, the informational performance is 

low, meaning that each observed event contributes 

substantially to new knowledge. In contrast, when 

entropy is low, the information performance per event is 

considered adequate, or only a limited amount of new 

information is required. This underscores the notion that 

enhancing the potential to gain information about an 

event is only feasible by reducing the uncertainty 

surrounding that event. High entropy reflects increased 

complexity or disorder, and the occurrence of low-

probability (high-entropy) events is typically associated 

with a need for greater information acquisition (Aksakal 

and Çalışkan, 2020). 

In the MCDM literature, Shannon entropy is commonly 

utilized in the criterion weighting process (Ecer, 2020). 

In this context, entropy emerges as a crucial tool for 

ensuring a more objective and balanced weighting when 

evaluating different alternatives (Ayçin, 2019). By 

considering the uncertainties and diversity among the 

criteria, entropy serves as a method that contributes to 

the decision-making process (Dinçer, 2019). The entropy 

equation used in criterion weighting is detailed in 

equation 2 (Öztel and Alp, 2020). Subsequently, equation 

3 is utilized to measure the importance weights of the 

criteria within the scope of MCDM (Öztel and Alp, 2020). 

𝐸𝑗 = −
1

𝐼𝑛(𝑚)
∑(𝑝𝑖𝑗 ∗ 𝐼𝑛(𝑝𝑖𝑗))

𝑚

𝑖=1

 (2) 

𝑤𝑗 = 1 − 𝐸𝑗   (3) 

Within the framework of Equation 2, the criterion 

exhibiting the lowest entropy value corresponds to the 

one possessing the least uncertainty and, consequently, 

the highest information capacity (Uludağ and Doğan, 

2021). This observation leads to the inference that such a 

criterion represents the most significant factor, thereby 

commanding the highest weight. In this context, Shannon 

entropy, as a quantifier of uncertainty, effectively serves 

as an indicator of information-carrying potential (Demir 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Furkan Fahri ALTINTAŞ 1378 

 

et al., 2021). Accordingly, entropy, or uncertainty, can be 

conceptualized as an independent variable, while the 

performance related to information acquisition may be 

treated as the dependent variable. 

In the MCDM literature, the application of entropy is 

predominantly confined to its role as an independent 

variable within the criterion weighting process. However, 

a notable gap exists in the extant literature, as no studies 

have been identified that mathematically model the 

influence of entropy itself representing the inherent 

information potential on the performance evaluation of 

the alternatives. Consequently, it is postulated that, 

analogous to the utilization of Shannon entropy as an 

independent variable for criterion weighting, the 

information capacity signified by entropy should also be 

considered a pertinent factor potentially influencing the 

performance outcomes of the alternatives. 

Conventionally within MCDM literature, entropy is 

employed almost exclusively as an independent variable 

for the purpose of deriving weights (Bircan, 2020; Baş, 

2021). Nevertheless, a mathematical framework that 

explicitly models the information potential engendered 

by uncertainty, within the scope of entropy throughout 

the decision-making process, remains conspicuously 

absent. It is therefore proposed that, just as entropy 

serves as an independent variable for criterion weighting 

in MCDM methodologies, low entropy indicative of high 

information potential associated with alternatives could 

be recognized as a factor that positively modulates their 

information-based performance capabilities. In this 

regard, the entropy method can be regarded as a potent 

instrument within decision-making paradigms, 

contributing significantly to the clarification and 

refinement of the information presented to the decision-

maker (Öztel and Alp, 2020).  

Stated differently, when the decision-making process is 

conceptualized as an information processing sequence, 

decision-pertinent information characterized by low 

uncertainty, which impacts the alternatives, is conveyed, 

perceived, and processed via the inherent attributes of 

these alternatives. Within this paradigm, the attributes of 

the alternatives constitute the fundamental conduits of 

information. The comprehensiveness and diversity of the 

information presented through these attributes under 

conditions of low entropy at the critical decision point 

directly correlate with the magnitude of their influence 

on the final decision (Chakraborty et al., 2015). 

From an alternative viewpoint, the concept of entropy, or 

information content, can be defined as the capacity to 

generate signals possessing communication potential. 

The principal objective herein is the faithful transmission 

of the intended information or information content 

without degradation or loss. Indeed, the necessity for 

information concerning an event arises only when 

uncertainty pervades that event. Therefore, if an event 

exhibits a low probability of occurrence, corresponding 

to high entropy, it implies that the available information 

potential is diminished, necessitating the acquisition of 

further information (Uludağ and Doğan, 2021). In this 

context, the information performance of alternatives is 

amenable to quantification through an entropy-based 

approach, potentially utilizing the entropy method itself. 

It is well-established that the standard Entropy method, 

particularly when applied using normalized data 

constrained to the [0, 1] interval, exhibits a non-

monotonic behaviour initially increasing and 

subsequently decreasing. This characteristic is 

inconsistent with the inherent expectation within the 

MCDM context of achieving quantitative superiority 

when evaluating alternative performance. For instance, 

in methods such as SAW, WPM, COCOSO, and WASPAS, 

the quantitative dominance of alternatives is directly 

proportional to the magnitude of the criterion weights 

and the normalized performance values; as these values 

increase, the overall performance scores of the 

alternatives correspondingly rise (Thakkar, 2021).  

Conversely, other MCDM techniques, including TOPSIS, 

MARCOS, and ARAS, assess alternative performance 

based on their proximity to ideal solutions (maximum for 

benefit criteria, minimum for cost criteria) (Munier, 

2024). In light of these divergences, it can be asserted 

that, particularly within the framework of Multi-Criteria 

Decision-Making (MCDM) utilizing [0, 1] normalized 

values, the Entropy method exhibits inconsistent 

behavior in reflecting the quantitative superiority 

derived from the magnitudes of criterion weights and 

normalized data when assessing the performance of 

alternatives. 

Conversely, the monotonically increasing nature of 

Shannon entropy provides a more robust and widely 

accepted metric for information measurement. This 

aligns with the established principle, observed across 

natural and social-sciences, that entropy tends 

perpetually towards an increase. A prime exemplification 

of this is Heisenberg's Uncertainty Principle, which 

stipulates that the position and momentum of a particle 

cannot be simultaneously determined with absolute 

precision. This limitation arises not from an inability to 

measure the momentum transferred during, for instance, 

a photon-electron collision, but rather from the inherent 

constraints of the measurement process itself (Köksal 

and Köseoğlu, 2010). In quantum mechanics, predicting 

both the position and momentum of an electron with 

certainty is impossible; an increase in the uncertainty of a 

particle's position corresponds to a decrease in the 

uncertainty (entropy) related to its momentum, and vice 

versa. Consequently, nature exhibits an inherent 

tendency towards increasing entropy (Apaydın, 2004; 

Sakurai and Napolitano, 2012). 

Similarly, the Second Law of Thermodynamics defines 

entropy and dictates its directionality in thermal 

processes, asserting that the entropy of the universe is 

constantly increasing (Shankar, 2014). Furthermore, 

Boltzmann's H-Theorem, which examines the statistical 
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behavior of gas molecules, mathematically substantiates 

the monotonic increase of entropy over time (Gressman 

and Strain, 2010). The Clausius inequality offers another 

mathematical perspective, asserting that entropy cannot 

decrease in any cyclic process; rather, it is constrained to 

increase or remain constant (Narang et al., 2024). From a 

social science perspective, Gini (2000) posits that human 

interactions within social systems perpetually augment 

entropy. Moreover, considering the principle of 

information conservation alongside the non-additive 

nature of information and the additive property of 

entropy collectively underscores the continuity and 

persistent increase of entropy within isolated systems 

(Zhang, 2008). The continuous formation of Shannon 

entropy can be achieved without manipulating the 

entropy equation, but by ensuring that the process 

operates under equal conditions for all values, thereby 

maintaining the continuity of the entropy function’s 

increase. In this context, the proposed method ensures 

the continuous increasing position of the entropy 

function in order to establish quantitative superiority in 

measuring the performance of alternatives within the 

MCDM framework. Initially, the weighted normalized 

values and their original entropy simulation positions are 

presented in Table 1, while their graphical 

representation is illustrated in Figure 1. 

 

Table 1. Entropy values of the weighted normalized values 

(𝑤𝑑𝑖𝑗
∗ ) m=2 m=3 m=4 m=5 

0.1 0.332193 0.209590 0.166096 0.143068 

0.2 0.464386 0.292995 0.232193 0.200000 

0.3 0.521090 0.328771 0.260545 0.224421 

0.4 0.52877124 0.33361751 0.26438562 0.22772938 

0.400001 0.52877112 0.33361743 0.26438556 0.22772932 

0.5 0.500000 0.315465 0.250000 0.215338 

0.6 0.442179 0.278984 0.221090 0.190436 

0.7 0.360201 0.227262 0.180101 0.155130 

0.8 0.257542 0.162491 0.128771 0.110918 

0.9 0.136803 0.086313 0.068401 0.058918 

0.999999 0.0000014 0.0000009 0.0000007 0.0000005 

(𝑤𝑑𝑖𝑗
∗ ) m=6 m=7 m=8 m=9 

0.1 0.12851 0.11833 0.11073 0.10480 

0.2 0.17965 0.16542 0.15480 0.14650 

0.3 0.20159 0.18562 0.17370 0.16439 

0.4 0.20455664 0.18835212 0.17625708 0.16680875 

0.400001 0.20455659 0.18835207 0.17625704 0.16680872 

0.5 0.19343 0.17810 0.16667 0.15773 

0.6 0.17106 0.15751 0.14739 0.13949 

0.7 0.13934 0.12831 0.12007 0.11363 

0.8 0.09963 0.09174 0.08585 0.08125 

0.9 0.05292 0.04873 0.04560 0.04316 

0.999999 0.0000055 0.0000055 0.0000055 0.0000055 

m: number of components 
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Figure 1. Positions of entropy values. 

 

When Table 1 and Figure 1 are examined together, it is 

observed that the values of 𝑤𝑑𝑖𝑗
∗ , representing the 

weighted normalized scores of each criterion 

corresponding to each alternative, fall within the range of 

0 to 1, as required by the structural nature of MCDM 

methods. In the simulation analysis, based on Equation 3, 

it was found that when the 𝑤𝑑𝑖𝑗
∗  value reached 0.4 in the 

fourth scenario, the entropy attained its maximum value. 

However, beyond this point, the entropy began to exhibit 

a decreasing trend. Accordingly, when the weighted 

normalized decision matrix contains values exceeding 

0.4, the decreasing behavior of the entropy function 

introduces a contradiction regarding the quantitative 

superiority of alternatives within the framework of 

MCDM methodologies.  

In contrast, the proposed method, similar to widely used 

MCDM approaches such as SAW, WPM, COCOSO, and 

WASPAS, assumes that the quantitative superiority of 

alternatives is positively correlated with both the 

magnitude of the criteria weights (𝑤) and the normalized 

values (𝑑𝑖𝑗
∗ ). In this context, for the entropy function to 

demonstrate a monotonically increasing behavior, it is 

necessary to constrain the weighted normalized values 

within the interval 0 <  𝑤𝑑𝑖𝑗
∗ ≤  0.387. When each 𝑤𝑑𝑖𝑗

∗  

value is multiplied by the coefficient 0.387, the entropy 

function becomes strictly increasing, thereby allowing 

the decision matrix to be standardized in alignment with 

the proposed approach, as illustrated in Table 2 and 

Figure 1. 

In various simulation experiments, when the 𝑤𝑑𝑖𝑗
∗  values 

were standardized using the coefficient 0.4, it was 

observed also reflected in Table 3 that the 𝑤𝑑𝑖𝑗
∗ value 

initially increased up to approximately 0.939, after which 

it began to decline. Consequently, through extensive 

simulations, it was determined that the 𝑤𝑑𝑖𝑗
∗  value that 

yields a strictly increasing entropy function within the 

[0,1] interval is approximately 0.387. In each of these 

scenarios, the weighted normalized values standardized 

by the coefficient 0.387 consistently exhibited a 

monotonically increasing trend (Table 2 and Figure 1). 

The proposed result has been repeatedly tested and 

validated across a wide range of scenario sets, including 

simulations where the number of alternatives (m) 

reached up to 1,000. In each scenario, the entropy value 

was consistently observed to increase monotonically in a 

positive direction. This indicates that the method 

remains stable even under large-scale data conditions 

and is capable of producing computationally reliable 

outcomes. Therefore, under such conditions, the 

proposed method (EBPM) transforms into a continuously 

increasing entropy function, thereby ensuring 

consistency in reflecting the quantitative superiority of 

alternatives. 
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Table 2. Standardization entropy scores of weighted normalized values ((𝑤𝑑𝑖𝑗
∗ ) *0.387) 

(𝑤𝑑𝑖𝑗
∗ ) ∗ 0.387 m=2 m=3 m=4 m=5 

0.03870 (0.1*0.387) 0.182 0.115 0.091 0.182 

0.07740 (0.2*0.387) 0.286 0.180 0.143 0.286 

0.11610 (0.3*0.387) 0.361 0.228 0.180 0.361 

0.15480000 (0.4*0.387) 0.4166477 0.2628754 0.20832385 0.4166477 

0.15480004 (0.400001*0.387) 0.4166478 0.2628755 0.20832388 0.4166478 

0.19350 (0.5*0.387) 0.459 0.289 0.229 0.459 

0.23220 (0.6*0.387) 0.489 0.309 0.245 0.489 

0.27090 (0.7*0.387) 0.510 0.322 0.255 0.510 

0.30960 (0.8*0.387) 0.524 0.330 0.262 0.524 

0.34830 (0.9*0.387) 0.529 0.3343 0.264 0.529 

0.38700 (0.999999*0.387) 0.530 0.3344 0.265 0.530 

(𝑤𝑑𝑖𝑗
∗ ) ∗ 0.387 m=6 m=7 m=8 m=9 

0.03870 (0.1*0.387) 0.078 0.070 0.065 0.061 

0.07740 (0.2*0.387) 0.123 0.111 0.102 0.095 

0.11610 (0.3*0.387) 0.155 0.140 0.128 0.120 

0.15480000 (0.4*0.387) 0.17944040 0.16118133 0.14841291 0.13888257 

0.15480004 (0.400001*0.387) 0.17944042 0.16118135 0.14841292 0.13888258 

0.19350 (0.5*0.387) 0.197 0.177 0.163 0.153 

0.23220 (0.6*0.387) 0.211 0.189 0.174 0.163 

0.27090 (0.7*0.387) 0.220 0.197 0.182 0.170 

0.30960 (0.8*0.387) 0.226 0.203 0.187 0.175 

0.34830 (0.9*0.387) 0.22825 0.20502 0.18878 0.17666 

0.38700 (0.999999*0.387) 0.22827 0.20504 0.18880 0.17667 

m= number of components 

 

Table 3. Standardization entropy scores of weighted normalized values ((𝑤𝑑𝑖𝑗
∗ ) *0.4) 

(𝑤𝑑𝑖𝑗
∗ ) ∗ 0.4 m=2 m=3 m=4 m=5 

0.04 (0.1*0.4) 0.186 0.117 0.093 0.080 

0.08 (0.2*0.4) 0.292 0.184 0.146 0.126 

0.12 (0.3*0.4) 0.367 0.232 0.184 0.158 

0.16 (0.4*0.4) 0.42301699 0.26689401 0.21150850 0.18218350 

0.16000004 (0.41*0.4) 0.42301704 0.26689404 0.21150852 0.18218352 

0.2 (0.5*0.4) 0.464 0.293 0.232 0.200 

0.24 (0.6*0.4) 0.494 0.312 0.247 0.213 

0.28 (0.7*0.4) 0.51422 0.324437 0.257110 0.221463 

0.32 (0.8*0.4) 0.52603 0.331890 0.263017 0.226551 

0.36 (0.9*0.4) 0.53061 0.334781 0.265308 0.228524 

0.3756 (0.4*0.9390) 0.530622 0.334785 0.2653109 0.228526 

0.37564 (0.4*0.9391) 0.530621 0.334784 0.2653103 0.228525 

(𝑤𝑑𝑖𝑗
∗ ) ∗ 0.4 m=6 m=7 m=8 m=9 

0.04 (0.1*0.4) 0.072 0.066 0.062 0.059 

0.08 (0.2*0.4) 0.113 0.104 0.097 0.044 

0.12 (0.3*0.4) 0.142 0.131 0.122 0.055 

0.16 (0.4*0.4) 0.16364531 0.1506816 0.14100566 0.06380966 

0.16000004 (0.41*0.4) 0.16364533 0.1506817 0.14100568 0.06380967 

0.2 (0.5*0.4) 0.180 0.165 0.155 0.070 

0.24 (0.6*0.4) 0.191 0.176 0.165 0.075 

0.28 (0.7*0.4) 0.198928 0.183169 0.171407 0.162218 

0.32 (0.8*0.4) 0.203498 0.187377 0.175345 0.165945 

0.36 (0.9*0.4) 0.205270 0.189009 0.176872 0.167390 

0.3756 (0.4*0.9390) 0.2052725 0.189011 0.1768739 0.1673925 

0.37564 (0.4*0.9391) 0.2052721 0.189010 0.1768735 0.1673922 

m= number of components 
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As illustrated in Table 3 and Figure 1, a noticeable 

upward trend in entropy values has been observed 

following the standardization process applied to ensure 

that the entropy values or the entropy function attain a 

monotonically increasing structure. Specifically, this 

standardization involves multiplying the weighted 

normalized values by a coefficient of 0.387.  

Within this context, the Entropy method demonstrates 

the capability to distinguish between criteria during the 

weighting phase, and as emphasized in the literature 

[45], it enhances the discriminative power of the criteria. 

Similarly, by transforming the entropy function into a 

monotonically increasing form, it is considered that the 

performance levels of alternatives can be more clearly 

differentiated based on their own intrinsic quantitative 

superiority. In line with this, the implementation steps of 

the proposed method are systematically presented 

below. 

𝐴𝐿𝑇: Alternative 

𝐶𝑅𝑇: Criteria 

𝐶𝑅𝑇𝑖: 𝑖 − 𝑡ℎ evaluation criterion 

𝑚: number of criteria 

𝑛: number of alternative 

𝑑𝑖𝑗: value of the 𝑗 − 𝑡ℎ alternative according to the 𝑖 − 𝑡ℎ 

evaluation criterion 

𝑤𝑗: weight of the 𝑖 − 𝑡ℎ evaluation criterion (𝑖 =

 1, 2,… ,𝑚) 

𝑚𝑎𝑥(𝑑𝑖𝑗): maximum value of the alternative according to 

the 𝑖 − 𝑡ℎ criterion 

min(𝑑𝑖𝑗): minimum value of the alternative according to 

the 𝑖 − 𝑡ℎ criterion. 

Step 1. Obtaining Decision Matrix (𝐷𝑀) 

In the first step of the proposed method, the decision 

matrix is constructed using equation 4. 
 

𝐷𝑀 = [𝑑𝑖𝑗]𝑚𝑥𝑛
 

=

𝐴𝐿𝑇
𝐶𝑅𝑇1

𝐶𝑅𝑇2

⋮
𝐶𝑅𝑇𝑚 [

 
 
 
 
𝐴𝐿𝑇1 𝐴𝐿𝑇2 … 𝐴𝐿𝑇𝑛

𝑑11 𝑑12 … 𝑑1𝑛

𝑑21 𝑑22 … 𝑑2𝑛

⋮ ⋮ … ⋮
𝑑𝑚1 𝑑𝑚2 … 𝑑𝑚𝑛 ]

 
 
 
 

 
(4) 

 

Step 2. Obtaining Normalized Decision Matrix (𝐷𝑀∗) 

In the second phase of the methodology, the decision 

matrix is normalized by applying Equation 5 for benefit-

type criteria and equation 6 for cost-type criteria. 

Following this step, the normalized decision matrix is 

constructed in accordance with equation 7, taking into 

account the nature (i.e., orientation) of each criterion. 

For benefit-oriented criteria: 
 

𝑑𝑖𝑗
∗ =

𝑑𝑖𝑗

max(𝑑𝑖𝑗)
 (5) 

 

For cost-oriented criteria: 
 

𝑑𝑖𝑗
∗ =

min(𝑑𝑖𝑗)

𝑑𝑖𝑗
 (6) 

 

Normalized matrix: 
 

𝐷𝑀∗ = [𝑑𝑖𝑗]
∗

𝑚𝑥𝑛
 

=

𝐴𝐿𝑇
𝐶𝑅𝑇1

𝐶𝑅𝑇2

⋮
𝐶𝑅𝑇𝑚 [

 
 
 
 
𝐴𝐿𝑇1 𝐴𝐿𝑇2 … 𝐴𝐿𝑇𝑛

𝑑∗
11 𝑑∗

12 … 𝑑∗
1𝑛

𝑑∗
21 𝑑∗

22 … 𝑑∗
2𝑛

⋮ ⋮ … ⋮
𝑑∗

𝑚1 𝑑∗
𝑚2 … 𝑑∗

𝑚𝑛]
 
 
 
 

 
(7) 

 

Step 3. Obtaining Weighted Normalized Decision Matrix 

(𝑤𝐷𝑀∗) 

In this step, the normalized values corresponding to each 

criterion for a given alternative, as presented in equation 

8, are multiplied by the respective criterion weights. 

Subsequently, the weighted normalized decision matrix 

is obtained using equation 9. 
 

𝑤𝑑∗
𝑖𝑗 = 𝑤 ∗ 𝑑∗

𝑖𝑗 (8) 

𝑤𝐷𝑀∗ = [𝑑𝑖𝑗
∗]

𝑚𝑥𝑛
 

=

𝐴𝐿𝑇
𝐶𝑅𝑇1

𝐶𝑅𝑇2

⋮
𝐶𝑅𝑇𝑚 [

 
 
 
 

𝐴𝐿𝑇1 𝐴𝐿𝑇2 … 𝐴𝐿𝑇𝑛

𝑤𝑑∗
11 𝑤𝑑∗

12 … 𝑤𝑑∗
1𝑛

𝑤𝑑∗
21 𝑤𝑑∗

22 … 𝑤𝑑∗
2𝑛

⋮ ⋮ … ⋮
𝑤𝑑∗

𝑚1 𝑤𝑑∗
𝑚2 … 𝑤𝑑∗

𝑚𝑛]
 
 
 
 

 
(9) 

 

Step 4. Construction of the Standardized Matrix (𝑆𝑤𝐷𝑀∗) 

In this step, the weighted normalized values are scaled by 

a factor of 0.387, based on the rationale provided in 

Table 3, to ensure that none of the values exceed the 

specified threshold. As a result of this transformation, the 

entropy function defined in equation 10 is converted into 

a structure that increases monotonically. Subsequently, 

the standardized matrix is constructed using equation 11. 
 

𝑆𝑤𝑑∗
𝑖𝑗 = 0.387 ∗ 𝑤𝑑∗

𝑖𝑗 (10) 

𝑆𝑤𝐷𝑀∗ = [𝑆𝑤𝑑∗
𝑖𝑗]𝑚𝑥𝑛

 

=

𝐴𝐿𝑇
𝐶𝑅𝑇1

𝐶𝑅𝑇2

⋮
𝐶𝑅𝑇𝑚 [

 
 
 
 

𝐴𝐿𝑇1 𝐴𝐿𝑇2 … 𝐴𝐿𝑇𝑛

𝑆𝑤𝑑∗
11 𝑆𝑤𝑑∗

12 … 𝑆𝑤𝑑∗
1𝑛

𝑆𝑤𝑑∗
21 𝑆𝑤𝑑∗

22 … 𝑆𝑤𝑑∗
2𝑛

⋮ ⋮ … ⋮
𝑆𝑤𝑑∗

𝑚1 𝑆𝑤𝑑∗
𝑚2 … 𝑆𝑤𝑑∗

𝑚𝑛]
 
 
 
 

 
(11) 

 

Step 5. Measurement of entropy score of alternatives (𝐸𝑗) 

In this step, based on Equation 1, entropy values of each 

alternative are measured using Equation 2, within the 

framework of the increasing entropy function defined in 

Equation 12. According to the theoretical foundation of 

entropy in the literature, an increase in entropy implies a 

decrease in existing information performance and, 

consequently, a rise in information requirements. 

Conversely, a lower entropy value indicates higher 

information performance. Following this step, the 
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performance values are ranked from the lowest to the 

highest (equation 12). 

 

𝐸𝑗 = −
1

𝐼𝑛(𝑚)
∗ ∑(𝑆𝑤𝑑∗

𝑖𝑗 ∗ 𝐼𝑛(𝑆𝑤𝑑∗
𝑖𝑗))

𝑚

𝑖=1

 (12) 

 

Step 6. The knowledge performances of the alternatives 

(𝐾𝑃𝑗) 

In this step, in order to achieve a quantitative superiority 

ranking of the alternatives from highest to lowest, the 

information performances of the alternatives are 

calculated as shown in equation 13, by subtracting their 

entropy values from 1, similar to the approach used for 

determining criterion weights in Equation 3 of the 

entropy method. Accordingly, the higher the value 

obtained by subtracting the entropy from 1, the greater 

the information performance of the alternative. 
 

𝐾𝑃𝑗 = 1 − 𝐸𝑗  (13) 

 

When the proposed method is examined, it offers several 

notable advantages from multiple perspectives. First, 

unlike traditional MCDM approaches, the EBPM method 

evaluates the information contribution of alternatives to 

the decision-maker directly through an entropy-based 

function, thereby providing a more qualified decision 

support mechanism. By preserving the structural 

integrity of Shannon entropy, the method integrates 

scientific rigor into the decision-making process through 

information generation.  

Second, the method emphasizes objectivity in the 

evaluation process, as it does not rely on subjective 

weighting and operates based on a predefined threshold 

value. This feature minimizes decision-maker biases and 

enables consistent and systematic analysis. 

Third, due to its mathematically simple structure and 

straightforward data processing steps, EBPM is highly 

applicable to large datasets and across various sectors. 

Another advantage is its capacity to prevent excessive 

data dispersion during the standardization phase. As a 

result, extreme values within the decision matrix are 

brought under control, and the influence of such values is 

appropriately considered within the proposed method. 

Despite its advantages, the proposed method also has 

certain limitations. The first limitation arises from the 

logarithmic computation involved in the method, which 

makes it sensitive to zero and negative values. In this 

context, Zhang et al. (2014) emphasized that the decision 

matrix should be positively oriented and free from zero 

values, which can be ensured through Z-score 

standardization. The second limitation pertains to the 

formation of the standardized matrix, where a significant 

reduction in values can lead to excessive sensitivity. The 

inclusion of these highly sensitive values in the 

computational process may complicate the calculation 

steps. Moreover, when the original data points are very 

close to each other, the sensitivity of the standardized 

values increases, potentially affecting the overall stability 

and robustness of the method. 

The proposed method, when compared with certain 

MCDM methods, demonstrates similarities in terms of 

the computational logic underlying the evaluation of 

alternatives. Specifically, methods such as SAW 

(Radulescu and Radulescu, 2024). WPM (Özbek, 2019), 

WASPAS (Chakraborty et al., 2015), COCOSO (Yazdani et 

al., 2019), MAUT (Keeney and Raiffa, 1976), ROV 

(Yakowitz et al., 1993), ARAS (Zavadskas and Turskis, 

2010) and COPRAS (Zavadskas et al., 1994) share a 

common foundation with the proposed approach, in that 

the quantitative superiority of alternatives is based on 

the relationship between the weighted normalized values 

and the numerical magnitude of the criterion weights. 

This resemblance highlights the fact that these methods 

adopt a similar calculation framework in determining the 

performance of alternatives. In contrast, the 

computational logic of the proposed method significantly 

differs from that of methods such as TOPSIS (Hwang and 

Yoon, 1981), MARCOS (Stević et al., 2020), MABAC 

(Pamućar and Ćirović, 2015) CRADIS (Taşcı, 2024), PIV 

(Goswami et al., 2022), MAIRCA (Pamućar et al., 2018), 

and RAFSI (Alossta et al., 2021). In these methods, the 

performance or quantitative dominance of alternatives is 

determined based on their proximity to an ideal solution 

point (either maximum or minimum reference values). 

Therefore, while these methods rely on an evaluation 

approach grounded in the distance of alternatives from 

the ideal solution, the proposed method emphasizes the 

direct quantitative contribution and the effect of 

weighted normalized score. 

When compared to other MCDM methods, the proposed 

approach offers several notable advantages. Firstly, the 

EBPM method does not merely evaluate the overall 

performance of the alternatives; it also quantifies their 

respective information potentials. This dual functionality 

allows for a more comprehensive assessment of 

alternatives beyond conventional performance metrics. 

Secondly, from the perspective of entropy analysis, the 

theoretical foundation of the proposed method is 

inherently associated with both natural and social 

sciences. This interdisciplinary foundation enhances the 

applicability of the method in real-world decision-making 

contexts, particularly when the decision matrix includes 

criteria drawn from diverse scientific fields. Thirdly, 

unlike many other MCDM methods, the proposed 

approach is grounded in the entropy equation, which has 

previously been employed in both natural and social 

sciences and is recognized for its validity and reliability 

in the literature. Accordingly, the theoretical basis of the 

method is indirectly supported by a broader range of 

academic disciplines, reinforcing its scientific credibility 

and cross-disciplinary relevance. 

2.3. Data Set 

In this study, a dataset was constructed within the scope 

of a sample application to demonstrate that the 
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performance of alternatives in decision-making problems 

can be evaluated using the entropy method, and thereby 

to validate the applicability of the proposed approach. 

The dataset consists of the 2024 Global Innovation Index 

(GII) criterion values of seven selected countries 

exhibiting varying levels of performance (World 

Intellectual Property Organization, 2024). These 

countries were deliberately chosen to prevent the 

criterion values from dominating the overall 

performance outcomes and to ensure that the differences 

among alternatives are not excessively large. 

Accordingly, there are no dominant values for any 

alternative within the dataset. Through this approach, 

the proposed method aims to reveal an ideal 

differentiation in the performance of alternatives. For the 

sake of clarity, the abbreviations of the countries and GII 

criteria are provided in Table 4. 

 

Table 4. Data set 

GII Criteria Abbreviations 

Institutions CRT1 

Human Capital and Research CRT2 

Infrastructure CRT3 

Market Sophistication CRT4 

Business Sophistication CRT5 

Knowledge and Technology Outputs CRT6 

Creative Outputs CRT7 

Countries/Alternatives Abbreviations 

Saudi Arabia ALT1 

Romania ALT2 

Qatar ALT3 

Brazil ALT4 

Chile ALT5 

Serbia ALT6 

Philippines ALT7 

 

3. Results 

3.1. Computational analysis 

In the study, the decision matrix was initially constructed 

using Equation 4. Subsequently, in the second step of the 

proposed method, the normalized decision matrix was 

obtained by applying Equation 5 and Equation 7 to the 

decision matrix values. In this context, the corresponding 

values are presented in Table 5. 

In the third step of the method, the normalized values 

were weighted using the Entropy method as defined in 

equation 8, and the weighted normalized decision matrix 

was constructed using equation 9. All procedural steps 

related to the calculation of criterion weights within the 

scope of the entropy method are presented in detail in  

Appendix A in a systematic and transparent manner. This 

appendix enhances the traceability of the computational 

process and provides concrete support for the practical 

applicability of the method. In this context, the weighted 

normalized values are explained in Table 6. 

 

Table 5. Decision and normalized decision matrix 

Decision Matrix 
CRT ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 
CRT1 64.9 42.2 73.4 31.8 56.3 46.5 47.2 
CRT2 43.4 30.8 36.6 33.9 33.5 35.7 26.2 
CRT3 46.1 51.4 50.2 45.5 45.6 52.3 34.3 
CRT4 48.7 32.4 34.7 38.2 38.6 42.2 29.7 
CRT5 23.7 31.1 25.7 36.2 30.5 22.2 36.7 
CRT6 20.6 29.9 17.5 24.5 21.2 29.6 28.7 
CRT7 24.4 28.5 25.9 32.3 27.5 17.9 26.2 

Normalized Decision Matrix 
CRT ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 
CRT1 1.000 0.821 1.000 0.699 1.000 0.889 1.000 
CRT2 0.669 0.599 0.499 0.745 0.595 0.683 0.555 
CRT3 0.710 1.000 0.684 1.000 0.810 1.000 0.727 
CRT4 0.750 0.630 0.473 0.840 0.686 0.807 0.629 
CRT5 0.365 0.605 0.350 0.796 0.542 0.424 0.778 
CRT6 0.317 0.582 0.238 0.538 0.377 0.566 0.608 
CRT7 0.376 0.554 0.353 0.710 0.488 0.342 0.555 
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Table 6. Weighted normalized decision matrix 

CRT ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 

C1 *294 0.294 0.241 0.294 0.205 0.294 0.261 0.294 

C2 *093 0.062 0.056 0.046 0.069 0.055 0.063 0.052 

C3 *071 0.050 0.071 0.049 0.071 0.058 0.071 0.052 

C4 *110 0.083 0.069 0.052 0.092 0.075 0.089 0.069 

C5 *153 0.056 0.093 0.054 0.122 0.083 0.065 0.119 

C6 *163 0.052 0.095 0.039 0.088 0.061 0.092 0.099 

C7 *117 0.044 0.065 0.041 0.083 0.057 0.040 0.065 

 

In the fourth step, the uncertainty values of each decision 

alternative were ensured to be an increasing function, 

thereby enhancing their information levels. To achieve 

this, the matrix was standardized using Equation 10, and 

the newly standardized matrix was constructed using 

Equation 11. Consequently, the standardized matrix 

values are presented in Table 7. 

In the fifth step of the proposed method, the ENTROPY 

values representing the information capacity of each 

alternative were calculated using Equation 12. 

Subsequently, the information performance of the 

alternatives was determined using Equation 13. The 

performance rankings of the alternatives were arranged 

from the highest to the lowest value. In this context, the 

entropy and information performance values of the 

alternatives are presented in the Table 8. 

 

Table 7. Standardized matrix 

ALT ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 

CRT1 0.114 0.093 0.114 0.080 0.114 0.101 0.114 

CRT2 0.024 0.022 0.018 0.027 0.021 0.025 0.020 

CRT3 0.020 0.027 0.019 0.027 0.022 0.027 0.020 

CRT4 0.032 0.027 0.020 0.036 0.029 0.034 0.027 

CRT5 0.022 0.036 0.021 0.047 0.032 0.025 0.046 

CRT6 0.020 0.037 0.015 0.034 0.024 0.036 0.038 

CRT7 0.017 0.025 0.016 0.032 0.022 0.015 0.025 

 

Table 8. Performance scores of alternatives 

ALT Entropy Score Performance Score Rank 

ALT1 0.388 0.612 2 

ALT2 0.428 0.572 5 

ALT3 0.351 0.649 1 

ALT4 0.455 0.545 7 

ALT5 0.412 0.588 3 

ALT6 0.418 0.582 4 

ALT7 0.442 0.558 6 

 

In order to further concretize the proposed method, the 

mathematical calculation of the performance value of the 

ALT1 alternative is presented below. 

Step 2. Obtaining Normalized Decision Matrix (𝐷𝑀∗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5: 𝑑𝐶𝑅𝑇1−𝐴𝐿𝑇1
∗ =

64.9

64.9
= 1 

Step 3. Obtaining Weighted Normalized Decision Matrix 

(𝑤𝐷𝑀∗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8: 𝑤𝑑𝐶𝑅𝑇1−𝐴𝐿𝑇1
∗ = 0.294 ∗ 1 = 0.294 

Step 4. Construction of the Standardized Matrix (𝑆𝑤𝐷𝑀∗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10: 𝑆𝑤𝑑𝐶𝑅𝑇1−𝐴𝐿𝑇1
∗ = 0.387 ∗ 0.294 = 0.114 

Step 5. Meuserement of entropy score of alternatives (𝐸𝑗) 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12: 𝐸𝐴𝐿𝑇1 

= (0.114 ∗ −2.174) + (0.024 ∗ −3.727) 

+(0.020 ∗ −3.996) + (0.032 ∗ −3.444) 

+(0.022 ∗ −3.834) + (0.020 ∗ −3.911) 

+(0.017 ∗ −4.073) = −7.5438 

𝐸𝐴𝐿𝑇1 =
−7.5438

−1.9469
 = 0,3877 

Step 6. Meuserement of performance score of 

alternatives (𝐾𝑃𝑗) 

𝐾𝑃𝐴𝐿𝑇1 = 1 − 0.388 = 0.612 

 

Upon examining Table 8, it can be observed that the 

obtained ENTROPY values range between 0.649 and 

0.545. In this context, the alternative with the highest 

ENTROPY value, ALT3 (0.649), is the option that 

provides the most information to the decision-maker. 

This is followed by ALT1 (0.612), ALT5 (0.588), ALT6 

(0.582), ALT2 (0.572), ALT7 (0.558), and ALT4 (0.545). 

This ranking reflects the contribution of the alternatives 

to the decision-making process, i.e., their potential for 

generating information. The results obtained 

demonstrate that the Entropy-based information 
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measurement approach objectively reveals the 

distinctiveness of each alternative within the system and 

the value of the information it provides to the decision-

maker. In this context, a low Entropy value indicates that 

the alternatives have high information performance.  

Consequently, an increase in entropy (uncertainty) 

suggests high information performance, while a high 

entropy value indicates low information performance. 

Therefore, entropy contributes to assisting the decision-

maker in making a selection. For instance, the fact that 

ALT3 has the highest information value indicates that 

this alternative possesses a stronger and clearer 

performance profile compared to others under the given 

alternative, thus providing the decision-maker with more 

meaningful information. These results demonstrate that 

the EBPM method yields consistent outcomes both 

theoretically and mathematically. 

3.2. Sensitivity Analysis  

Assessing the robustness of MCDM approaches 

frequently necessitates the deliberate alteration of the 

decision environment either through the integration of 

additional criteria or by eliminating criteria deemed less 

competitive within the initial evaluation scope. In such 

scenarios, it is expected that a resilient MCDM framework 

will demonstrate a high level of methodological stability, 

particularly by maintaining a consistent ordinal structure 

among the ranked entities. This characteristic is vital to 

ensuring the reliability and validity of the decision 

outcomes, even in the face of modifications to the input 

dataset (Demir and Arslan, 2022).  

To investigate this dimension of methodological 

robustness, a comprehensive sensitivity analysis was 

carried out. The process began with the progressive 

exclusion of those criteria which, according to the 

proposed weighting methodology, exhibited the lowest 

relative significance. By incrementally removing these 

less influential parameters, the analysis aimed to explore 

the extent to which the ranking of alternatives remained 

unaffected or fluctuated under varying model 

configurations. The corresponding values are presented 

in Table 9, and the graphical representation of the 

sensitivity analysis is illustrated in Figure 2. 

 

Table 9. Rank reversal score 

Alternatives S0 S1 S2 S3 S4 S5 

ALT6 7 7 7 7 7 7 

ALT7 6 6 6 6 6 6 

ALT4 5 5 5 5 5 5 

ALT2 4 4 4 4 4 4 

ALT5 3 2 3 3 3 3 

ALT3 2 3 2 2 2 2 

ALT1 1 1 1 1 1 1 

  

 

Figure 2. Rank reversal graph. 

 

A simultaneous examination of Figure 2 and Table 9 

clearly reveals that the proposed decision-making 

method, EBPM, exhibits a high level of structural stability 

in terms of sensitivity. As part of the sensitivity analysis, 

eight scenarios—ranging from S0 to S7 were 

systematically evaluated to assess the model’s 

performance under varying sets of criteria. In each 

scenario, the number of criteria included in the model 

was gradually reduced; specifically, the criterion with the 

lowest weight was sequentially eliminated from the 

decision model, and the resulting impact on the ranking 

of alternatives was meticulously analyzed. While Table 9 

provides the numerical representation of alternative 

rankings under each scenario, Figure 2 offers a visual 
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depiction of these variations. The base scenario, S0, 

represents the inclusion of all criteria within the model. 

Accordingly, the ability to trace changes in rankings holds 

critical importance for evaluating the model's sensitivity. 

According to the findings, a limited change in ranking 

was observed only in the first scenario (S1), during which 

CRT3 the criterion with the lowest weight based on the 

ENTROPY method was removed from the model. 

Specifically, the alternative ALT1 dropped from second to 

third place, while ALT5 advanced from third to second. 

Apart from this exceptional case, the rankings of all other 

alternatives remained unchanged across subsequent 

scenarios. In the following steps, CRT2 (6th), CRT4 (5th), 

CRT7 (4th), CRT5 (3rd), CRT6 (2nd), and finally CRT1 

(1st) were removed from the model, yet none of these 

eliminations resulted in any further modifications to the 

ranking structure. 

Particularly notable is the consistent performance of 

ALT4, which maintained its first-place position 

throughout all scenarios, thereby underscoring its 

dominant and stable standing in the decision-making 

context. Similarly, the rankings of ALT2, ALT3, ALT6, and 

ALT7 also remained entirely unaffected during the 

sensitivity analysis, indicating their robustness against 

structural changes in the set of criteria. This consistency 

highlights the model's capacity for effectively 

distinguishing between both dominant and marginal 

alternatives. The fact that a ranking shift occurred solely 

between ALT1 and ALT5, and only within a single 

scenario, demonstrates the strong rank-preserving 

capability of the proposed method. As depicted in Figure 

2, the graphical representation clearly illustrates this 

singular deviation, while the horizontally stable lines of 

the remaining alternatives further emphasize the 

structural resilience of the approach. In conclusion, the 

EBPM method demonstrates a high level of resistance to 

variations in the set of decision criteria and is capable of 

preserving the ranking stability of alternatives under 

different structural conditions. This characteristic 

confirms the method’s theoretical consistency and 

practical applicability. Therefore, EBPM can be regarded 

as a reliable, robust, and methodologically stable 

decision-support tool with superior rank-preserving 

capabilities in MCDM problems. 

3.3. Comparative Analysis 

This comparative investigation aims to systematically 

evaluate the interconnections and relative alignment of 

the proposed method approach in relation to several 

well-established techniques within the MCDM domain. 

The principal objective is to substantiate the 

effectiveness, dependability, and methodological 

coherence of the proposed framework by highlighting its 

alignment with traditional MCDM procedures and its 

statistically significant and positive correlation with 

alternative models, as emphasized by Keshavarz-

Ghorabaee et al. (2021).  

To initiate this comparative analysis, a comprehensive 

set of benchmark 15 MCDM methods (SAW, WPM, 

TOPSIS, WASPAS, MARCOS, MABAC, CRADIS, MAUT, ROV, 

COPRAS, RAFSI, COCOSO, PIV, MAIRCA, ARAS) applied to 

determine the performance scores of alternatives. These 

methods were specifically selected due to their 

widespread adoption and methodological rigor in MCDM 

literature. The computed scores, along with the 

corresponding alternative rankings derived from each 

method, are systematically illustrated in Table 10, Table 

11 and visually represented in Figure 3 and Figure 4. 

A comprehensive examination of Table 8, Table 10, Table 

11, along with Figures 3 and 4, reveals that the proposed 

method (EBPM) exhibits a high level of consistency and 

robustness in ranking decision alternatives. According to 

the EBPM results, ALT3 emerges as the top-performing 

alternative, followed by ALT1 and ALT5, indicating that 

the method offers a balanced and discriminative 

structure from both statistical and decision-making 

perspectives. 

Table 11 presents a comparative ranking analysis, where 

the performance trends derived from EBPM both 

increases and decreases closely resemble those produced 

by widely used MCDM methods such as SAW, WPM, 

TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, PIV 

(adjusted by 180 degrees due to reverse ranking logic), 

and ARAS. This strong similarity indicates that EBPM not 

only maintains internal consistency but also generates 

externally valid rankings that align with conventional 

methods frequently applied in decision science. 

Importantly, a complete rank concordance is observed 

between EBPM and the MARCOS method. The exact 

matching of rankings across all alternatives suggests a 

substantial structural and mathematical alignment 

between the underlying logic of MARCOS and the 

formulation of the EBPM model. This harmony not only 

validates the theoretical foundation of EBPM but also 

enhances its practical credibility and applicability in real-

world decision-making problems. The findings presented 

in Table 10 further support this assertion. The 

performance scores generated by EBPM show a high 

level of correlation with results from other dominant 

MCDM techniques such as SAW, WPM, TOPSIS, WASPAS, 

MARCOS, CRADIS, COPRAS, PIV, and ARAS. For example, 

the top-ranked position of ALT5 is similarly supported by 

SAW, WPM, TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, 

PIV and ARAS.  

The findings presented in Table 10 further support this 

assertion. The performance scores generated by EBPM 

show a high level of correlation with results from other 

dominant MCDM techniques such as SAW, WPM, TOPSIS, 

WASPAS, MARCOS, CRADIS, COPRAS, PIV, and ARAS. For 

example, the top-ranked position of ALT5 is similarly 

supported by SAW, WPM, TOPSIS, WASPAS, MARCOS, 

CRADIS, COPRAS, PIV and ARAS. 
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Table 10. Performance score in scope of methods 

ALT SAW WPM TOPSIS WASPAS MARCOS 

ALT1 0.824 0.814 0.699 0.819 0.474 

ALT2 0.773 0.756 0.348 0.764 0.404 

ALT3 0.815 0.800 0.743 0.807 0.480 

ALT4 0.749 0.712 0.260 0.730 0.379 

ALT5 0.788 0.786 0.569 0.787 0.438 

ALT6 0.747 0.730 0.392 0.738 0.406 

ALT7 0.762 0.747 0.421 0.754 0.403 

ALT MABAC CRADIS MAUT ROV COPRAS 

ALT1 0.114 1.000 0.629 0.296 0.152 

ALT2 0.045 0.929 0.586 0.262 0.140 

ALT3 0.065 0.986 0.624 0.272 0.151 

ALT4 0.013 0.895 0.581 0.246 0.135 

ALT5 0.044 0.949 0.519 0.261 0.145 

ALT6 -0.021 0.893 0.559 0.229 0.136 

ALT7 -0.003 0.914 0.574 0.238 0.139 

ALT RAFSI COSOSO PIV MAIRCA ARAS 

ALT1 6.934 3.568 0.069 0.058 0.827 

ALT2 6.335 1.814 0.107 0.068 0.764 

ALT3 6.504 2.023 0.075 0.065 0.820 

ALT4 6.048 2.745 0.126 0.073 0.738 

ALT5 6.320 1.609 0.094 0.068 0.787 

ALT6 5.753 1.382 0.099 0.078 0.742 

ALT7 5.914 2.196 0.106 0.075 0.758 

Table 11. Performance ranks in scope of methods 

ALT SAW WPM TOPSIS WASPAS MARCOS 

ALT1 1 1 2 1 2 

ALT2 4 4 6 4 5 

ALT3 2 2 1 2 1 

ALT4 6 7 7 7 7 

ALT5 3 3 3 3 3 

ALT6 7 6 5 6 4 

ALT7 5 5 4 5 6 

ALT MABAC CRADIS MAUT ROV COPRAS 

ALT1 1 1 1 1 1 

ALT2 3 4 3 3 4 

ALT3 2 2 2 2 2 

ALT4 5 6 4 5 7 

ALT5 4 3 7 4 3 

ALT6 7 7 6 7 6 

ALT7 6 5 5 6 5 

ALT RAFSI COSOSO PIV MAIRCA ARAS 

ALT1 1 1 1 1 1 

ALT2 3 5 6 3 4 

ALT3 2 4 2 2 2 

ALT4 5 2 7 5 7 

ALT5 4 6 3 4 3 

ALT6 7 7 4 7 6 

ALT7 6 3 5 6 5 
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Figure 3. Position of EBPM method. 

 

 
 

Figure 4. Position of other methods. 

 

A comprehensive examination of Table 8, Table 10, Table 

11, along with Figures 3 and 4, reveals that the proposed 

method (EBPM) exhibits a high level of consistency and 

robustness in ranking decision alternatives. According to 

the EBPM results, ALT3 emerges as the top-performing 

alternative, followed by ALT1 and ALT5, indicating that 

the method offers a balanced and discriminative 

structure from both statistical and decision-making 

perspectives. 

Table 11 presents a comparative ranking analysis, where 

the performance trends derived from EBPM both 

increases and decreases closely resemble those produced 

by widely used MCDM methods such as SAW, WPM, 

TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, PIV 

(adjusted by 180 degrees due to reverse ranking logic), 

and ARAS. This strong similarity indicates that EBPM not 

only maintains internal consistency but also generates 

externally valid rankings that align with conventional 

methods frequently applied in decision science. 

Importantly, a complete rank concordance is observed 

between EBPM and the MARCOS method. The exact 

matching of rankings across all alternatives suggests a 

substantial structural and mathematical alignment 

between the underlying logic of MARCOS and the 

formulation of the EBPM model. This harmony not only 

validates the theoretical foundation of EBPM but also 

enhances its practical credibility and applicability in real-

world decision-making problems. 

The findings presented in Table 10 further support this 

assertion. The performance scores generated by EBPM 

show a high level of correlation with results from other 

dominant MCDM techniques such as SAW, WPM, TOPSIS, 

WASPAS, MARCOS, CRADIS, COPRAS, PIV, and ARAS. For 

example, the top-ranked position of ALT5 is similarly 

supported by SAW, WPM, TOPSIS, WASPAS, MARCOS, 

CRADIS, COPRAS, PIV and ARAS.  
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Visual interpretations in Figure 3 clearly illustrate the 

relative distances among alternatives based on EBPM 

scores, with ALT3 exhibiting a distinctly higher 

performance level. In contrast, Figure 4, which includes 

the output distributions of other methods, reveals more 

pronounced performance fluctuations, suggesting that 

these conventional approaches may offer less stable or 

consistent rankings compared to EBPM. In summary, the 

EBPM method demonstrates a strong capability in 

producing stable, interpretable, and reliable rankings 

across decision alternatives. Its close alignment with 

methods like MARCOS not only confirms its theoretical 

soundness but also establishes it as a practical, data-

driven alternative within the MCDM landscape. 

Consequently, the performance rankings obtained 

through the EBPM method exhibit a high degree of 

consistency when compared with both directly 

proportional and inversely oriented MCDM methods. In 

particular, a joint evaluation of Figure 3 and Figure 4 

reveals that the performance fluctuations of the 

alternatives are highly aligned with those derived from 

methods such as SAW, WPM, TOPSIS, WASPAS, MARCOS, 

CRADIS, COPRAS, PIV and ARAS. This strong alignment 

indicates that the EBPM method demonstrates a 

positively strong correlation with these widely 

recognized MCDM approaches. In support of this 

conclusion, the correlation coefficients reflecting the 

degree of association between the EBPM method and the 

aforementioned MCDM techniques are presented in 

Table 12. 

 

Table 12. Correlation scores 

M SAW WPM TOPSIS WASPAS MARCOS 

S 0.834** 0.820** 0.920** 0.832** 0.943** 

M MABAC CRADIS MAUT ROV COPRAS 

S 0.631** 0.834** 0.508* 0.631** 0.869** 

M RAFSI COSOSO PIV MAIRCA ARAS 

S 0.631** 0.063* -0.904** -0.631** 0.866** 

P**<01, P*<.05, M=method, S= score 

 

As presented in Table 12, the EBPM method exhibits 

strong and statistically significant correlations with 

widely recognized and frequently applied multi-criteria 

decision-making (MCDM) techniques such as SAW, WPM, 

TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, and ARAS. 

This high level of correlation indicates that the 

performance rankings derived from EBPM are largely 

consistent with those produced by well-established 

MCDM approaches. A particularly noteworthy point is 

that the PIV and MAIRCA methods employ a reverse 

ranking structure, in which alternatives are ordered from 

the worst to the best, i.e., in ascending order of 

performance. Accordingly, the negative but statistically 

significant correlation coefficients observed between 

these methods and EBPM are expected and can be 

interpreted as an indication of methodological 

consistency. In other words, these inverse correlations 

reflect the intrinsic ranking logic of the PIV and MAIRCA 

methods, and despite the opposite direction of the 

association, they confirm the existence of a strong and 

meaningful relationship. In addition, the relationships 

between EBPM and the MABAC, RAFSI, MAIRCA, MAUT, 

and ROV methods were found to be moderately 

significant. This suggests that the proposed method 

achieves an acceptable level of agreement with these 

techniques, indicating a moderate degree of 

methodological compatibility.  

On the other hand, although the correlation coefficient 

between EBPM and the COCOSO method is relatively 

lower than those observed with other methods, it 

remains statistically significant. This finding implies that, 

despite some divergence in the computational 

frameworks of the two methods, there is limited 

alignment in terms of decision-making outcomes. 

In conclusion, the correlation analysis demonstrates that 

the EBPM method not only produces stable and 

consistent rankings but also establishes a 

methodologically coherent and statistically verifiable 

relationship with a broad range of mainstream MCDM 

methods. These findings strongly support the validity 

and reliability of EBPM in addressing complex decision-

making problems. 

Overall, the correlation analysis reveals that the EBPM 

method demonstrates strong associations with both 

positively and inversely ranked MCDM methods. This not 

only confirms the statistical robustness of the proposed 

approach but also underscores its capacity to distinguish 

between alternatives in alignment with decision-maker 

preferences. Taken together, the findings suggest that 

EBPM is a reliable and valid performance assessment tool 

that yields highly compatible results with prominent 

methods in the MCDM literature. Hence, considering all 

comparative analyses, the EBPM method proves to be a 

trustworthy and effective technique in terms of capturing 

decision-makers’ preferences and discriminating 

between alternatives. 

3.4. Simulation analysis 

To evaluate the reliability and consistency of the 

proposed method, a simulation-based study was carried 

out by constructing alternative decision matrices through 

the assignment of diverse input values. As the number of 

simulated scenarios increases, it is anticipated that the 

discrepancy between the proposed technique and other 

objective MCDM methods will become more apparent. In 
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this regard, it is expected that the correlation between 

the performance scores derived from the proposed 

method and those obtained from other MCDM techniques 

will gradually decrease. Such a trend would serve as 

evidence of the proposed method’s enhanced capability 

to differentiate between criteria based on their relative 

significance. Moreover, the homogeneity observed in the 

variance distribution across all scenarios would further 

substantiate the stability and robustness of the proposed 

weighting mechanism (Keshavarz-Ghorabaee et al., 

2021). 

As part of this analysis, ten distinct scenarios were 

developed in the form of decision matrices and 

subsequently categorized into two separate groups for 

comparative purposes (Group 1: Scenario 1, Scenario 2, 

Scenario 3; Group 2: Scenario 4 through Scenario 10). 

Moreover, although the scenarios utilized in this study 

were constructed based on randomly generated datasets, 

particular attention was paid to avoiding excessively 

dominant values in order to more effectively reveal 

performance differences among alternatives within the 

proposed EBPM framework. Instead, alternatives with 

relatively close values were deliberately selected to 

enable a more accurate and meaningful assessment of the 

method’s discriminative capacity. Furthermore, the 

dataset was designed to exhibit statistical normality, 

thereby ensuring a balanced distribution of data across 

criteria. This methodological approach not only provides 

a sound foundation for conducting sensitivity analyses 

but also demonstrates that the proposed method does 

not rely on artificially exaggerated contrasts. Rather, it 

delivers a performance evaluation based on realistic and 

substantively meaningful distinctions among 

alternatives. Following this categorization, correlation 

coefficients were computed to assess the degree of 

alignment between the proposed EBPM method and 

other established weighting approaches across the 

defined scenarios. The outcomes of these correlation 

analyses are comprehensively illustrated in Table 13 and 

Figure 5. 

 

Table 13. Correlation scores 

Methods SAW WPM TOPSIS WASPAS MARCOS 

Scenario1 0.861** 0.833** 0.965** 0.863** 0.973** 

Scenario2 0.933** 0.888** 0.981** 0.901** 0.993** 

Scenario3 0.958** 0.905** 0.988** 0.905** 0.996** 

Scenario4 0.829** 0.814** 0.912** 0.849** 0.955** 

Scenario5 0.817** 0.803** 0.905** 0.831** 0.943** 

Scenario6 0.791** 0.779** 0.888** 0.823** 0.932** 

Scenario7 0.768** 0.753** 0.874** 0.807** 0.925** 

Scenario8 0.744** 0.729** 0.869** 0.800** 0.915** 

Scenario9 0.726** 0.718** 0.852** 0.779** 0.907** 

Scenario10 0.711** 0.703** 0.829** 0.759** 0.903** 

Methods MABAC CRADIS MAUT ROV COPRAS 

Scenario1 0.655** 0.873** 0.551* 0.654** 0.899** 

Scenario2 0.693** 0.913** 0.579* 0.693** 0.903** 

Scenario3 0.601** 0.927** 0.491* 0.604** 0.927** 

Scenario4 0.633** 0.869** 0.444* 0.631** 0.876** 

Scenario5 0.719** 0.855** 0.429* 0.616** 0.867** 

Scenario6 0.608** 0.839** 0.417* 0.612** 0.859** 

Scenario7 0.591* 0.826** 0.404* 0.593* 0.845** 

Scenario8 0.582* 0.817** 0.391* 0.579* 0.839** 

Scenario9 0.567* 0.808** 0.376* 0.569* 0.819** 

Scenario10 0.559* 0.800** 0.359* 0.559* 0.808** 

Methods RAFSI COSOSO ARAS PIV MAIRCA 

Scenario1 0.655** 0.071 0.894** -0.956** -0.657** 

Scenario2 0.695** 0.091 0.900** -0.978** -0.698** 

Scenario3 0.674** 0.099 0.923** -0.963** -0.679** 

Scenario4 0.636** 0.084 0.871** -0.921** -0.643** 

Scenario5 0.615** 0.077 0.864** -0.908** -0.617** 

Scenario6 0.604** 0.075 0.854** -0.889** -0.609** 

Scenario7 0.594* 0.071 0.842** -0.881** -0.600** 

Scenario8 0.586* 0.067 0.833** -0.876** -0.589* 

Scenario9 0.563* 0.061 0.815** -0.873** -0.568* 

Scenario10 0.555* 0.049 0.805** -0.869** -0.561* 

P**<0.01, P*<0.05. 
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When Table 13 and Figure 5 are examined jointly, it is 

generally observed that the correlation values between 

the EBPM method and other MCDM methods tend to 

decline as the number of scenarios increases. This trend 

suggests that increasing the number of scenarios reveals 

greater evaluation differences among the methods. 

Notably, methods such as TOPSIS, MARCOS, and PIV 

maintained high correlation levels despite changes in 

scenario structures, thereby exhibiting consistent and 

stable performance evaluations. In contrast, methods 

such as COCOSO demonstrated relatively lower 

correlation values, indicating a higher sensitivity to 

scenario variations. Meanwhile, the PIV and MAIRCA 

methods continued to yield negative correlation 

coefficients, which is consistent with their reverse 

ranking logic, wherein lower numerical values indicate 

better performance. These inverse correlations are not 

anomalies but rather expected outcomes aligned with the 

inherent evaluation structures of the respective methods. 

Additionally, the statistical significance of the correlation 

coefficients presented in Table 13 is marked at the 𝑝 <

.01 and 𝑝 < .05 levels. This reinforces the notion that the 

observed relationships are not coincidental but are 

statistically valid and meaningful. This analysis offers 

valuable insights into the sensitivity and consistency of 

different MCDM methods when subjected to varying 

decision-making scenarios. The fact that the EBPM 

method gradually diverges from other methods as the 

number of scenarios increases, and thereby becomes 

more distinguishable, highlights its ability to characterize 

and preserve stability in complex decision environments. 

Such findings emphasize the robustness and reliability of 

the proposed EBPM method in multi-scenario decision-

making contexts, further enhancing its value as a 

dependable and structured performance evaluation tool. 

In the concluding stage of the simulation analysis, the 

uniformity of variance in the performance scores 

determined through the EBPM methodology was 

rigorously evaluated using Levene's test. This statistical 

procedure offers a visual and analytical tool for assessing 

the consistency of variances across different groups. The 

graphical representation is structured around three 

essential components: the overall mean Avarage Decision 

Metric (ADM), derived from the Analysis of Means 

(ANOM) for variances based on Levene’s test, which acts 

as the central reference line; and the Upper Decision 

Limit (UDL) and Lower Decision Limit (LDL), which 

delineate the acceptable bounds for variance fluctuation. 

When the variance of a particular group or cluster 

exceeds these decision thresholds, it indicates a 

statistically significant deviation from the overall mean 

ADM, suggesting the presence of variance heterogeneity. 

Conversely, if the variances of all clusters fall within the 

UDL and LDL range, this supports the assumption of 

variance homogeneity. Such consistency reinforces the 

robustness, reliability, and methodological stability of the 

proposed methodological framework by confirming the 

homogeneity of variances under diverse simulation 

scenarios (Keshavarz-Ghorabaee et al., 2021). In this 

context, Figure 6 presents the graphical results of the 

ADM-based analysis, offering visual confirmation of these 

findings, while Table 14 complements and substantiates 

the interpretation by providing the detailed numerical 

outcomes underpinning the graphical assessment 

(Levene Test). 

 

 
 

Figure 5. Correlation positions of EBPM with other MCDM methods. 
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Figure 6. ADM graph. 

 

Figure 6 presents a visual summary of the Analysis of 

Means (ANOM) for the variances of the Average Decision 

Metric (ADM) weights calculated under different 

scenarios at a significance level of α = 0.05. This analysis 

is based on the Levene’s test, which is used to assess the 

homogeneity of variances. On the graph, the horizontal 

axis represents the different scenarios (from Scenario 1 

to Scenario 10), while the vertical axis displays the 

Average ADM Weights. 

The central blue line (AVG) indicates the overall average 

of ADM performance scores across all scenarios (0.5793), 

serving as the main reference point for the variance 

analysis. The upper red line (0.6257) and the lower red 

line (0.5329) represent the Upper Decision Limit (UDL) 

and Lower Decision Limit (LDL), respectively, indicating 

the boundaries within which the variance is considered 

acceptable. The yellow dots depict the calculated Average 

ADM Weights for each individual scenario. As shown in 

Figure 6, all the scenario-specific ADM scores lie within 

the range defined by the UDL and LDL. This clearly 

demonstrates that the variances of ADM scores across 

different scenarios are homogeneous, and there is no 

statistically significant deviation from the mean. Such 

homogeneity validates the robustness, reliability, and 

methodological consistency of the proposed framework. 

This finding aligns with the assertion of Keshavarz-

Ghorabaee et al. (2021), who emphasized that preserving 

variance homogeneity across simulation scenarios is of 

critical importance in ensuring methodological 

consistency. 

In conclusion, Figure 6 provides a clear visual depiction 

of the ANOM analysis based on Levene’s test, effectively 

confirming the homogeneity of variances in ADM 

performance scores under varying scenarios. This 

statistical homogeneity reinforces the consistency and 

credibility of the proposed methodological approach, 

indicating that the results are built upon a solid 

foundation. This visual analysis, in conjunction with the 

numerical findings presented in Table 14, significantly 

strengthens the validity and reliability of the overall 

methodological framework. Moreover, based on the 

results of the ADM diagram and Levene’s test, the 

homogeneity of performance scores generated by the 

proposed method across random different scenarios has 

been empirically validated. In this context, the Levene 

statistics obtained from scenario datasets exhibiting 

normal distribution are comprehensively reported in 

Table 14. 

 

Table 14. Correlation scores 

Levene Statistic df1 df2 Sig. (p) 

0.167 2 10 0.249 

P*<0.05 

 

Upon examining Table 14, it is observed that the 

significance level (p = 0.241) is greater than 0.05. This 

finding indicates that the variances of the performance 

scores obtained through the EBPM method across ten 

different scenarios are homogeneous, thereby supporting 

the outcomes derived from the ADM analysis. In other 

words, since there is no statistically significant difference 

in the variances of the scores obtained under different 

scenarios, it can be inferred that the model demonstrates 

consistent performance in terms of variance stability. 

From a broader perspective, when the quantitative 

findings of all simulation analyses are considered 

collectively, it can be concluded that the EBPM method 

possesses a stable and robust structure. This statistical 

consistency underscores the method’s reliability in multi-

scenario decision-making environments and reinforces 

its potential for practical application in complex decision 

contexts. 

 

4. Discussion 
MCDM methods are systematic and analytical tools 

developed to solve multidimensional problems in today’s 

increasingly complex decision-making environments [2]. 

Although existing MCDM methods offer significant 

advantages, the growing demand for information-based 

decision-making has exposed certain limitations of these 

techniques [1]. In this context, the development of novel 

MCDM approaches not only aims to overcome the 

constraints of existing models but also paves the way for 

innovative evaluation techniques grounded in alternative 

paradigms [4]. In particular, the creation of models that 

effectively provide informative value to decision-makers 

and reduce uncertainty highlights a critical, yet unmet, 

need within the MCDM literature. 

Within the scope of this study, the proposed EBPM 

method introduces a novel evaluation framework based 

on the informational potential of entropy. The theoretical 

foundation of the method is built upon two core 

principles. The first is the continuous tendency of 

entropy to increase in both natural and social systems 

[5,107]. The second is the premise that such an increase 

enhances the information performance of these systems 

[6]. Without introducing any structural modifications to 

the Shannon entropy formula, the method transforms the 

entropy function into a theoretically justified and 

literature-consistent monotonically increasing structure 

by rescaling the weighted normalized values based on a 

predefined threshold. This approach not only offers a 
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theoretically consistent model but also introduces an 

original dimension for performance evaluation in 

decision analysis grounded in information theory. 

In the application of the EBPM method to the 2024 Global 

Innovation Index dataset, the model has been rigorously 

tested in terms of ranking stability, reliability, and 

sensitivity. In the sensitivity analysis, even when specific 

criteria were systematically removed from the decision 

matrix, no significant changes were observed in the 

ranking of alternatives. The results of the comparative 

analysis demonstrate that EBPM exhibits a high degree of 

correlation with widely used MCDM methods such as 

SAW, WPM, TOPSIS, WASPAS, MARCOS, CRADIS, COPRAS, 

PIV, and ARAS, thereby confirming its reliability and 

credibility as a decision-making tool. On the other hand, 

the observation that the proposed EBPM method exhibits 

only moderate correlation with certain MCDM techniques 

such as MAUT, MABAC, RAFSI, and MAIRCA, and a 

relatively low correlation with the COCOSO method, can 

be attributed to the conceptual and computational 

divergence between these approaches. Fundamentally, 

this discrepancy arises from the differences in how each 

method interprets and computes the performance of 

alternatives. While EBPM directly evaluates the 

information contribution of each alternative through an 

entropy-based performance framework, methods like 

MAUT, MABAC, RAFSI, and MAIRCA adopt diverse 

structural models based on utility theory, approximation 

areas, or ideal-theoretical deviations. As a result, the 

divergence in evaluation paradigms naturally leads to 

differentiated correlation levels. Specifically, the COCOSO 

method aggregates performance scores through additive 

and multiplicative synthesis based on SAW and WPM 

principles, which conceptually misaligns with the 

continuously increasing entropy-based formulation of 

EBPM. Thus, the lower correlation with COCOSO does not 

indicate a methodological deficiency, but rather reflects 

the distinctive theoretical foundation and originality of 

the EBPM approach. These differences underscore 

EBPM’s unique contribution to the MCDM literature, 

offering an alternative perspective independent of 

traditional ranking logics. 

Furthermore, simulation analyses conducted under 

various correlation and homogeneity-based scenarios 

revealed a consistently high level of ranking stability, 

indicating that EBPM possesses a stable and robust 

structure. 

A key distinguishing advantage of the method lies in its 

capacity to assess performance not merely based on 

numerical magnitudes but also on the informational 

contribution it offers to the decision-maker. Unlike 

conventional MCDM techniques such as SAW (Radulescu 

and Radulescu, 2024), WPM (Özbek and Erol, 2017), 

WASPAS (Zawadskas et al., 2012), COCOSO (Yazdani et 

al., 2019), MAUT (Keeney and Raiffa, 1976), ROV 

(Yakowitz et al., 1993), ARAS (Zawadskas et al., 2010), 

and COPRAS (Zawadskas et al., 1994), which primarily 

emphasize the magnitude of normalized values and 

criterion weights (i.e., quantitative superiority), the 

EBPM method considers both quantitative dominance 

and the information-generating capacity of alternatives, 

thereby enabling a more qualitative and nuanced 

evaluation. 

Moreover, in contrast to proximity-to-ideal-solution-

based methods such as TOPSIS (Hwang and Yoon, 1981) 

MARCOS (Stević et al., 2020), MABAC (Pamućar and 

Ćirović, 2015), CRADIS (Puška et al., 2023), PIV 

(Goswami et al., 2022), MAIRCA (Pamucar et al., 2018), 

and RAFSI (Žižovic et al., 2020), EBPM evaluates each 

alternative according to its intrinsic information 

potential, rather than its closeness to an ideal maximum 

or minimum reference point. Notably, its negative 

correlation with methods such as MAIRCA and PIV, which 

operate under a reverse-ranking mechanism, not only 

reveals the ranking coherence across models but also 

underlines EBPM's capacity to maintain comparative 

compatibility with existing methods. 

In addition, the entropy-based foundation of EBPM 

grants it an inherently multi-disciplinary character, 

making it potentially more usable and insightful for 

decision-makers across various domains. Nevertheless, 

the proposed method presents certain limitations when 

compared to other multi-criteria decision-making 

(MCDM) techniques. In particular, the EBPM method is 

sensitive to zero and negative values, which may limit its 

flexibility in certain application domains. In such cases, 

the application of Z-standardization scores, as suggested 

by Zhang et al. (2014), is recommended. In other words, 

by transforming the values in the decision matrix into Z-

standardization scores, all data can be converted into 

positive numbers, thereby preserving the applicability of 

the EBPM method. Another significant limitation emerges 

when the standardized criterion values of alternatives 

are very close to one another. Under such circumstances, 

the method’s discriminative capacity and computational 

precision may diminish, making it more challenging to 

identify meaningful differences between alternatives. To 

address this issue, it is advisable to employ high-

precision numerical operations within the scope of 

advanced mathematical computation. This would allow 

for the clearer detection of subtle differences between 

alternatives, thereby enhancing the method’s 

discriminative performance. 

Moreover, this study offers significant contributions to 

the MCDM literature from several perspectives. Firstly, 

while the entropy method has traditionally been utilized 

as a tool for weighting criteria, this research introduces a 

novel application by employing it directly to measure the 

performance of alternatives, thus providing a new 

perspective to the literature. This approach broadens the 

application potential of the entropy method in decision-

making problems. 

Furthermore, by integrating information theory and the 

concept of entropy into MCDM methodology, this study 

presents an innovative framework that evaluates 

alternatives not only based on their quantitative 
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attributes but also on the informational value they 

provide. The proposed method (EBPM) constitutes an 

original methodology that assesses the knowledge-

generating capacity of alternatives, thereby enabling 

decision-makers to perform more comprehensive and 

qualitative analyses. Additionally, the use of entropy as 

the foundation of the method introduces an 

interdisciplinary perspective to the MCDM field, 

facilitating the integration of knowledge from diverse 

disciplines into decision-making processes. 

Furthermore, by integrating information theory and the 

concept of entropy into MCDM methodology, this study 

presents an innovative framework that evaluates 

alternatives not only based on their quantitative 

attributes but also on the informational value they 

provide. The proposed method (EBPM) constitutes an 

original methodology that assesses the knowledge-

generating capacity of alternatives, thereby enabling 

decision-makers to perform more comprehensive and 

qualitative analyses. Additionally, the use of entropy as 

the foundation of the method introduces an 

interdisciplinary perspective to the MCDM field, 

facilitating the integration of knowledge from diverse 

disciplines into decision-making processes. 

Although the present study demonstrates the potential of 

the proposed EBPM method in the MCDM domain, it also 

offers several avenues for future research. First, 

addressing the current limitations of the method may 

constitute a major focus for subsequent studies. 

Specifically, solutions can be sought for issues such as the 

method’s sensitivity to zero and negative values, and the 

diminished discriminatory power when the criterion 

values of alternatives are closely aligned. In this regard, 

the adoption of alternative normalization techniques or 

the development of methodological modifications may be 

considered. Second, testing the method across various 

application domains would provide greater insight into 

its effectiveness and generalizability. Implementing the 

method with data from different sectors and decision-

making problems could help to more clearly identify its 

strengths and weaknesses. Third, integrating the EBPM 

method into decision support systems could enable 

decision-makers to utilize the approach more easily and 

effectively, thereby enhancing its dissemination and 

impact on decision-making processes. Fourth, improving 

visualization techniques to better present the method’s 

outcomes is essential; effective visualization tools can 

assist decision-makers in interpreting results more 

intuitively and integrating them into their decision-

making processes. 

The proposed EBPM is not merely a theoretical tool 

grounded in the concept of entropy; it also creates a 

tangible impact on real-world decision-making processes 

by offering high informational performance to decision-

makers. In this context, EBPM reduces the level of 

uncertainty encountered during the evaluation of 

alternatives, thereby enabling decisions to be made 

based on high-quality, information-rich foundations 

rather than relying on intuition or subjective judgments. 

For instance, in the context of policy development, EBPM 

provides an objective assessment of the informative 

value of policy alternatives, guiding decision-makers in 

identifying which option possesses greater strategic 

impact potential. Similarly, in business strategy 

formulation, it facilitates the information-based 

comparison of investment projects or market offerings, 

allowing organizations to make more rational, data-

driven, and sustainable strategic decisions. Therefore, 

EBPM is not merely an abstract decision-support model 

but a practical method that enhances the strategic 

orientation of decision-makers by grounding their 

choices in measurable, reliable, and information-rich 

foundations. 

 

5. Conclusion 
This study proposes the EBPM method, which provides 

an information-based alternative performance 

measurement for MCDM problems. The developed 

method transforms the classical Shannon Entropy 

function into a continuously increasing structure through 

a specific standardization, without manipulating the 

original entropy function, and measures the potential of 

alternatives to provide information accordingly. The 

EBPM method has demonstrated stable and reliable 

results both in simulation analyses and comparative 

evaluation studies. Particularly, its high sensitivity, 

ranking stability, and structural flexibility across various 

scenarios have led to strong performance from both 

theoretical and practical perspectives. 

The high correlation of the method with different MCDM 

techniques enhances the validity of EBPM in the current 

literature and enables integrated analyses between 

methods. Additionally, its information measurement-

based approach provides a multi-dimensional evaluation 

by considering not only the criterion weights but also the 

informative value that alternatives present to the 

decision-maker.  

In conclusion, the EBPM method can be considered as an 

innovative MCDM approach that provides objective, 

stable, and information-based decision support, 

contributing both theoretically and methodologically to 

the literature. Future studies could further increase the 

method’s validity by applying it across different sectors 

and facilitating its integration into decision support 

systems. 

Although the present study demonstrates the potential of 

the proposed EBPM method in the MCDM domain, it also 

offers several avenues for future research. First, 

addressing the current limitations of the method may 

constitute a major focus for subsequent studies. 

Specifically, solutions can be sought for issues such as the 

method’s sensitivity to zero and negative values, and the 

diminished discriminatory power when the criterion 

values of alternatives are closely aligned. In this regard, 

the adoption of alternative normalization techniques or 
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the development of methodological modifications may be 

considered. Second, testing the method across various 

application domains would provide greater insight into 

its effectiveness and generalizability. Implementing the 

method with data from different sectors and decision-

making problems could help to more clearly identify its 

strengths and weaknesses. Third, integrating the EBPM 

method into decision support systems could enable 

decision-makers to utilize the approach more easily and 

effectively, thereby enhancing its dissemination and 

impact on decision-making processes. Fourth, improving 

visualization techniques to better present the method’s 

outcomes is essential; effective visualization tools can 

assist decision-makers in interpreting results more 

intuitively and integrating them into their decision-

making processes. Finally, exploring the potential 

integration of the EBPM method with other MCDM 

approaches may lead to the development of more 

comprehensive and robust decision-making frameworks.  

The scope of the EBPM method can be further expanded 

through future research endeavors. For instance, 

applying the EBPM approach to decision-making 

problems in various domains such as healthcare, energy, 

environmental management, supply chain optimization, 

and sustainable development could provide valuable 

insights into its interdisciplinary applicability. Moreover, 

integrating EBPM with uncertainty-based MCDM 

approaches—such as fuzzy logic, grey system theory, 

rough set theory, or D-numbers—has the potential to 

enhance its methodological flexibility in decision 

environments characterized by ambiguity. Another 

promising research direction involves adapting the 

method to group decision-making processes or multi-

layered (hierarchical) decision models. Additionally, 

evaluating the method's computational efficiency, 

processing time, and algorithmic performance when 

applied to large-scale datasets is crucial for assessing its 

practical scalability. Finally, conducting parameter 

sensitivity analyses on components such as 

normalization techniques, entropy coefficients, and 

weighting strategies will contribute to a deeper 

understanding of the method’s behavior across different 

data structures and decision contexts. 
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