

Türkiye-Erzurum Orijinli *Micromeria fruticosa* Yaprak Etil Asetat Ekstresinin Fitokimyasal Profili

Handan UĞUZ BAYRAKÇEKEN ^{1*} Şeyma BULUT ² Açelya Kardelen KARADAĞ ³

¹ Atatürk University, Faculty of Agriculture, Department of Field Crops, Erzurum, Türkiye

² Necmettin Erbakan University, Faculty of Science, Department of Biotechnology, Konya, Türkiye

³ Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Trabzon, Türkiye

Makale Bilgisi

Geliş Tarihi: 21.05.2025

Kabul Tarihi: 16.10.2025

Yayın Tarihi: 31.12.2025

Anahtar Kelimeler:

Micromeria fruticosa,
Gaz Kromatografisi -Kütle
Spektroskopisi,
Etil asetat ekstraksiyonu,
Piperitenone.

ÖZET

Bitkiler, eski zamanlardan beri beslenmenin yanı sıra tıbbi ve geleneksel amaçlarla kullanılmaktadır. Bitkilerin yapısında yer alan çeşitli bioaktif bileşikler ve ikincil metabolitlerden, ilaç ve biyoteknoloji endüstrilerinde çeşitli amaçlarla etkin bir şekilde yararlanılmaktadır. Türkiye bitki çeşitliliği bakımından oldukça zengin bir coğrafya sahiptir ve bu nedenle ilaç etken maddesi olarak kullanılabilecek çok sayıda bitki türü mevcuttur. Bu bitkilerden biri olan *Micromeria fruticosa*, *Lamiaceae* ailesine ait çok yıllık aromatik bir çalıdır. Bitki, geleneksel tipta birçok rahatsızlığın tedavisinde semptomları hafifletmek için yaygın olarak mevculmaktadır. Biyotik ve abiyotik koşullara göre bitkinin içeriği bileşenler ve oranları büyük ölçüde değişebilmektedir. Bu nedenle, bu çalışma Türkiye'nin Erzurum ili Tortum ilçesinde yetiştiği bilinen *M. fruticosa* bitkisinin yapraklarından elde edilen etil asetat ekstraktındaki bioaktif bileşiklerin belirlenmesi amacıyla gerçekleştirilmiştir. Analizin gerçekleştirilmesi için ilk adım olarak, *M. fruticosa* yaprak etil asetat (EA-MFL) ekstraksiyonu maserasyon yöntemi kullanılarak elde edildi. *M. fruticosa* bitkisinin kimyasal bileşenlerinin belirlenmesi için Gaz Kromatografisi Kütle Spektroskopisi (GC-MS) yöntemi kullanılmış ve yaprakta 7 bileşik tanımlanmıştır. Major bileşenler heptacosane (%73,939) ve piperitenone (%12,658) olup; tespit edilen diğer bileşenler sırasıyla ethyl iso-alloolate (%5,722), 3-ethyl-5-(2-ethylbutyl) octadecane (%3,861), pulegone (%2,590), toluene (%0,898) ve o-acetylserine (0,332) olarak belirlenmiştir.

Phytochemical Profile of *Micromeria fruticosa* Leaf Ethyl Acetate Extract from Erzurum, Türkiye

Article Info

Received: 21.05.2025

Accepted: 16.10.2025

Published: 31.12.2025

ABSTRACT

The utilization of plants for nutritional, medicinal, and traditional purposes dates back to ancient times. Various bioactive compounds and secondary metabolites found in plants are effectively utilized for various purposes in the pharmaceutical and biotechnology industries. Türkiye's extensive plant biodiversity has led to the identification of numerous plant species as potential active pharmaceutical ingredients. One of these plants, *Micromeria fruticosa*, is a perennial aromatic shrub belonging to the Lamiaceae family. The plant is widely used in traditional medicine to alleviate symptoms associated with the treatment of numerous ailments. The components and proportions contained in the plant can vary greatly depending on biotic and abiotic conditions. Therefore, this study was conducted to determine the bioactive compounds present in the ethyl acetate extract obtained from the leaves of *M. fruticosa*, a plant species known to be native to the Tortum district of Erzurum province, Türkiye. The initial phase of analysis involved the extraction of *M. fruticosa* leaf ethyl acetate (EA-MFL) through the maceration method. The chemical components of *M. fruticosa* were determined by Gas Chromatography Mass Spectrometry (GC-MS). The analysis revealed the presence of seven compounds in the leaf. The major components were identified as heptacosane (73.939%) and piperitenone (12.658%). Other detected components included ethyl iso-alloolate (5.722%), 3-ethyl-5-(2-ethylbutyl) octadecane (3.861%), pulegone (2.590%), toluene (0.898%), and o-acetylserine (0.332%).

To cite this article:

Uğuz Bayrakçeken, H., Bulut, S. & Karadağ, A.K. (2025). Phytochemical profile of *micromeria fruticosa* leaf ethyl acetate extract from Erzurum, Türkiye. *Necmettin Erbakan University Journal of Science and Engineering*, 7(3), 488-496.
<https://doi.org/10.47112/neufmbd.2026.108>

***Corresponding Author:** Handan Uğuz Bayrakçeken, handanuguz@atauni.edu.tr

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

INTRODUCTION

The most important sources of bioactive compounds are plant-based products [1]. In recent years, there has been a growing interest in natural products rich in these compounds especially phenolics and flavonoids due to their antiviral, antioxidant, antibacterial, anti-inflammatory and antitumor potential [2,3]. In this regard, the focus of research has shifted to medicinal and aromatic plants that are notable for their high levels of phenolic and flavonoid compounds [4, 5].

The *Lamiaceae* family, historically of significant interest due to its pleasant aromatic odor, medicinal properties, and consumption as tea, consists of 236 genera and over 7000 species [6]. Like many other *Lamiaceae* species, plants belonging to the *Micromeria* genus are a component of the typical Mediterranean flora [7]. The genus is represented in the Turkish flora by 14 species and 22 taxa, 12 of which are endemic [8].

Micromeria species are widely used as herbal tea and as a substitute for mint in folk medicine. Studies have also reported sedative, analgesic, anesthetic, eye infections, wound healing, antiseptic, abortifacient, antirheumatic, antioxidant, antimicrobial activity, insecticidal effect, myeloperoxidase inhibition, CNS stimulant, antimutagenic, hypertension, anti-biofilm formation, fatigue, acaricidal effect and cold, insecticidal effect [9-18].

M. fruticosa is a widely distributed perennial plant found in rocky areas in the Eastern Anatolia Region of Türkiye [9, 19]. It grows up to 0.2-0.8 m in height and gives off an aromatic mint odor when pressure is applied to it [20]. Its dried leaves are used as flavoring in beverages, foods and especially soups in villages and districts of Erzurum Province, Türkiye [9, 21]. Previous studies on *Micromeria* species and other medicinal plants have shown that the composition of extracts prepared using different solvents may vary due to differences in cultivation, origin, vegetative stage and growing season of the plants [22]. Several attempts have been made to investigate the chemical composition of some *Micromeria* species growing in various regions of Türkiye [23-26]. However, our literature review revealed that no study has yet investigated the chemical content of ethyl acetate extracts of *Micromeria fruticosa* (L.). Druce ssp. *serpyllifolia* (Bieb.) PH Davis. leaves growing in Tortum District of Erzurum Province, Türkiye. The present study aims to investigate the chemical composition of *M. fruticosa* ssp. collected in Tortum district of Erzurum province, Türkiye. The aim of the study was to analyze the chemical composition of leaf ethyl acetate extract of *M. fruticosa* plants.

MATERIALS AND METHODS

Materials

Micromeria fruticosa (L.). Druce ssp. *serpyllifolia* (Bieb.) PH Davis. The plant leaves selected for analysis were obtained from the Tortum district of Erzurum (Türkiye) during the flowering period (2023).

Methods

Preparation of Leaf Ethyl Acetate Extract of M. fruticosa for Analysis

The leaves of *Micromeria fruticosa* were separated and then washed with distilled water. The drying process involved the application of a thin layer of blotting paper, which was used to absorb moisture from the surface of the samples. This procedure was carried out at room temperature, protected from direct sunlight to minimize possible damage to the integrity of the samples [27, 28]. Most of the work was conducted in the Molecular Biology and Genetics and Organic Chemistry Laboratories of the Faculty of Science, Ataturk University.

Ethyl Acetate Extract of Aerial Part of *M. fruticosa* Plant

The leaves of the *M. fruticosa* plant were subjected to desiccation at ambient temperature, subsequently resulting in their transformation into a pulverised state. A quantity of 10 g of the powdered plant material was taken, 50 ml of ethyl acetate ($C_4H_8O_2$) was added and the mixture left to stir for 72 hours at room temperature (25 ± 3 °C) with a standard heated magnetic stirrer. Following the maceration process, the pulp part (i.e. the plant waste) in the glass bottle was filtered with Whatman No. 1 filter paper [9]. The residual liquid extract was then removed by means of an evaporator device at the boiling point of ethyl acetate, with a rotational speed of 155 rpm. This process was repeated on four occasions for the pulp part [29, 30].

Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis

The chemical constituents of *M. fruticosa* leaf extracts in ethyl acetate were ascertained by means of GC-MS analysis.

GC-MS System and Chromatographic Conditions

GC-MS analysis was performed using an Agilent 7820A with Chemstation software and a 7673 autosampler. The separation process used an HP-5 MS column (0.25 μ m) and the temperatures of the inlet and transfer line were set at 250°C and 300°C. The injection parameters were as follows: helium (1 mL/min), 1 μ L splitless, ionisation energy of 70 eV [31, 32].

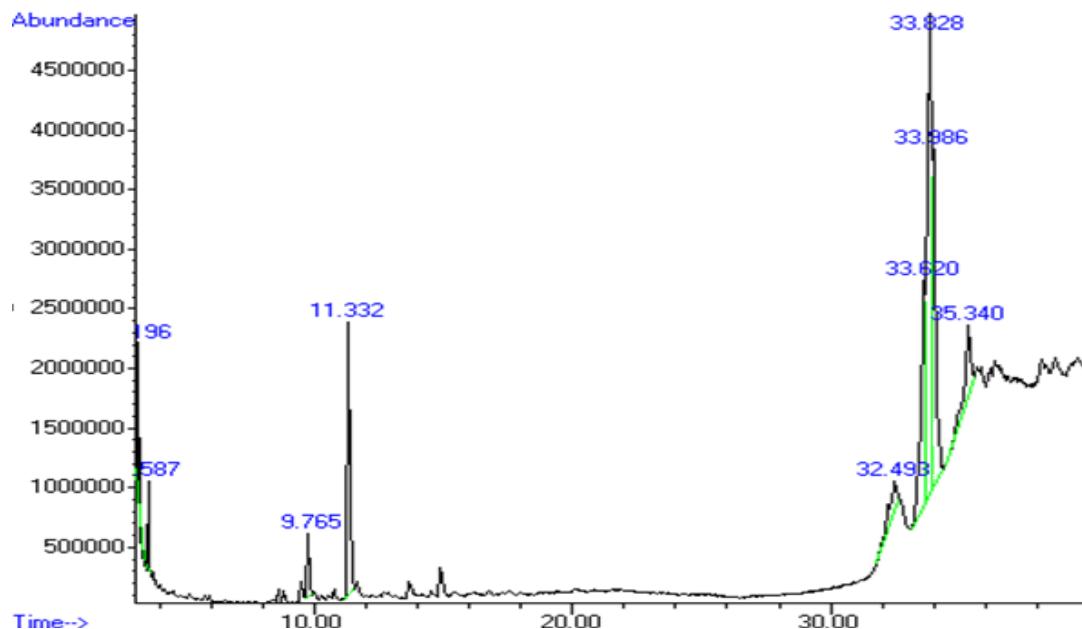
During the procedure, a programmed temperature gradient was applied: initially increased by 50°C for one minute, followed by a ramp of 20°C per minute up to 100°C, then 10°C up to 180°C and finally 5°C per minute for an additional minute. The chromatographic peaks and mass spectra of the extract were identified through comparison with reference standard substances.

Identification of Components

The 2005 version of the National Institute of Standards and Technology (NIST) Library, specifically the Turbomass 5.2 software, analysed the obscure segment's range in comparison to the reference section. The direct Kovats retention index, evaluated with mass spectra data from the MS library, differentiated components. The NIST database, which contains 62,000 records, facilitated insights into the GC-MS mass range. The relative concentration of each component was determined by assessing its peak area compared to the overall detected areas. This analysis identified the test materials, revealing their respective names, molecular weights, and structural compositions.

RESULTS

During the extraction process, the chemical composition of the materials obtained from different parts of the plant (tissues and organs) changes [33]. This discrepancy is attributable to physiological processes such as synthesis, storage and transportation of primary and secondary metabolites in plants [34]. The variation in chemical content is not solely attributable to the plant material employed; the preferred solvent and the method applied during the extraction process can also influence this change. As posited by Alawode *et al.* [35], it is evident that plants contain a variety of bioactive components, which have been demonstrated to influence their biological activities.


The chemical composition of *Micromeria fruticosa* leaf ethyl acetate (EA-MFL) extraction was determined by gas chromatography-mass spectrometry (GC-MS) analysis. Following GC-MS analysis, 7 compounds were identified in EA-MFL. These compounds are shown in Table 1, Figure 1 and Figure

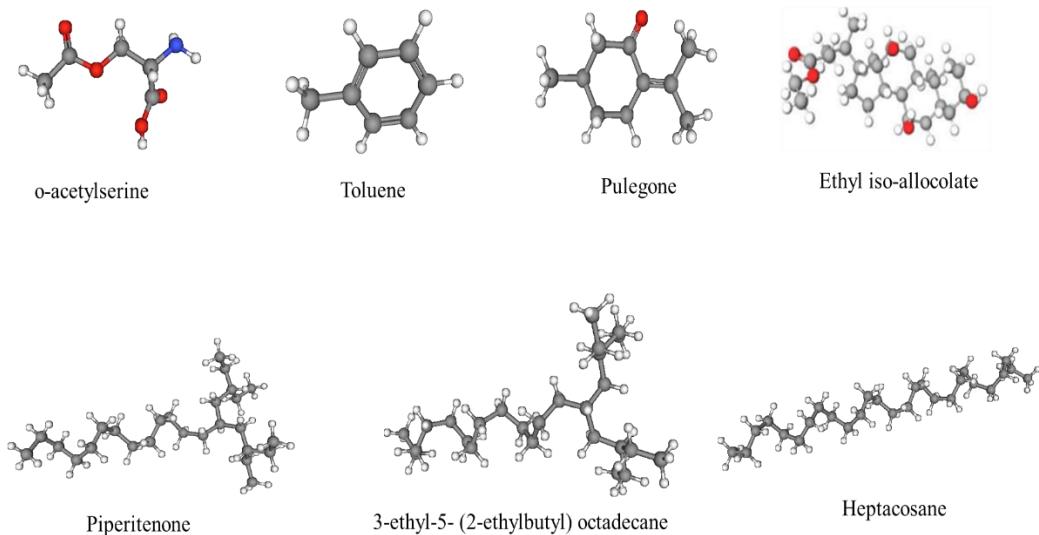
2.

Table 1
Chemical Composition of Compounds Identified in EA-MFL Extract.

Peak	t _R (min) ^a	% of total	Compound	Molecular Formula
1	3.196	0.332	o-acetylserine	C ₅ H ₉ NO ₄
2	3.587	0.898	Toluene	C ₆ H ₅ CH ₃
3	9.765	2.590	Pulegone	C ₁₀ H ₁₆ O
4	11.332	12.658	Piperitenone	C ₁₀ H ₁₄ O
5	32.493	3.861	3-ethyl-5-(2-ethylbutyl) octadecane	C ₂₆ H ₅₄
6	33.620	73.939	Heptacosane	C ₂₇ H ₅₆
7	35.340	5.722	Ethyl iso-allocolate	C ₂₆ H ₄₄ O ₅

^aRetention time

Figure 1
GC-MS Chromatogram of EA-MFL.


During the 40-minute gas chromatography-mass spectrometry (GC-MS) analysis period, the compounds began to appear between 3 and 36 minutes. During this period, heptacosane (73.939%) and piperitenone (12.658%) were the major components; other components were ethyl iso-allocolate (5.722%), 3-ethyl-5-(2-ethylbutyl) octadecane (3.861%), pulegone (2.590%), toluene (0.898%) and o-acetylserine (0.332), respectively. As illustrated in Table 1, a comprehensive account of the bioactive compounds is provided, as determined by GC-MS analysis of *M. fruticosa* leaf ethylacetate extract. Furthermore, the gas chromatography-mass spectrometry (GC-MS) chromatogram of these substances is presented in Figure 1, and their three-dimensional (3D) representation is shown in Figure 2.

DISCUSSION

A review of the extant literature on medicinal plants reveals that the most salient aspect of these plants is the presence of effective, natural, and readily accessible therapeutic agents with minimal or

nonexistent side effects from the compounds in their structure [36].

The findings obtained in this study revealed that the extract obtained from *M. fruticosa* leaves with ethyl acetate solvent had a phytochemical-rich content. The most prevalent components, as determined by GC-MS analysis, were identified as heptacosane (73.939%) and piperitenone (12.658%).

Figure 2
3D Structure Visualization of Bioactive Components of EA-MFL (MolView).

In the literature, some studies on *M. fruticosa* have investigated the composition of essential oils and different results have been obtained. For example, Güllüce *et al.* [9] identified 29 components in the essential oil obtained from *M. fruticosa*, accounting for 93.9% of the total content. The most significant components were piperitone (50.61%) and pulegone (29.19%). However, when compared with the composition of the ethyl acetate extraction obtained in our study, significant differences were found in terms of both the number of chemical components and the ratios of common chemical components. In our study, the main components were heptacosane (73.939%) and piperitenone (12.658%). The amounts of piperitenone (12.658%) and pulegone (2.590%) differed between the two studies. The results differed from those in the literature in many ways. The content and composition of active ingredients in extracts and essential oils may vary depending on the genetic structure of the plants, their developmental periods, the region where they are grown (ontogenetic variability), biotic and abiotic factors, diurnal variability, the method and solvent used [22]. Consequently, the observation that the active ingredients obtained in this study differ from those reported in the extant literature is a common phenomenon in the study of medicinal and aromatic plants. In this context, it is understood that extractions with solvents of medium polarity such as ethyl acetate can yield different bioactive profiles compared to essential oil distillation.

Heptacosane, one of the primary compounds identified in our study, is a straight-chain alkane with 27 carbon atoms and it acts as an oil component and plant metabolite. While it is a component of petroleum products, it is also naturally present in a variety of plants [37]. A multitude of research studies have demonstrated that heptacosane possesses a variety of biological activities, including antioxidant, anti-inflammatory [38], antimicrobial [39, 40], and anticancer properties [41]. In this regard, heptacosane is considered a potential contributor to the therapeutic efficacy of the *M. fruticosa*.

Another important component identified in the *M. fruticosa* leaf ethyl acetate extract in our study is piperitenone, a monoterpane commonly found in various *Mentha* species and plants belonging to the Lamiaceae family. This chemical has been shown to have biological effects such as antimicrobial [42], antioxidant [43], anti-inflammatory [44], and acetylcholinesterase inhibitor properties [45]. These

properties align with the utilization of *M. fruticosa* in traditional medicine.

Furthermore, the presence of other compounds, though at low concentrations, such as ethyl isovalerate, pulegone, and o-acetylserine, detected in the extract, may enhance its biological activity through synergistic interactions. This finding supports the concept of phytocomplex, which posits that complex plant extracts are more effective when used in conjunction with multiple components rather than a single active ingredient.

CONCLUSION

In recent years, a multitude of chronic and infectious diseases have emerged as significant global health concerns, including cancer, diabetes, immune system disorders, and bacterial and fungal infections. The identification of effective, safe, and innovative drug compounds for the treatment of these diseases is a primary objective of contemporary medicine. Extensive scientific research conducted in recent years has revealed the therapeutic potential of compounds obtained from natural sources, particularly. Herbal products have been utilized in folk medicine since ancient times and continue to serve as a valuable source of inspiration in novel drug development processes to the present day. In this context, the ethyl acetate extract of *M. fruticosa* leaves was subjected to GC-MS analysis, which revealed the presence of compounds with pharmacological potential, including heptacosane and piperitenone, as reported in our study. It is hypothesized that the detailed biological activities of these compounds, to be investigated in future studies, will contribute to the development of new generation therapeutic agents.

Ethical Statement

The present study is an original research article designed and produced by the authors.

Acknowledgements

We would like to thank Prof. Dr. Bilal Yılmaz, Faculty Member of Atatürk University Faculty of Pharmacy, for his support and contributions to the GC-MS analysis of the study.

Author Contributions

Research Design (CRediT 1) H.U.B. (%100)

Data Collection (CRediT 2) H.U.B. (%100)

Research- Data Analysis- Validation (CRediT 3-4-6-11) H.U.B (%70) – Ş.B. (%30)

Writing the Article (CRediT 12-13) H.U.B. (%60) – Ş.B. (%30) – A.K.K. (%10)

Revision and Improvement of the Text (CRediT 14) H.U.B. (%60) – Ş.B. (%30) – A.K.K. (%10)

Financing

This research was not supported by any public, commercial, or non-profit organization.

Conflict of Interest

The authors declare no conflict of interest for the present study.

Sustainable Development Goals (SDG)

Sustainable Development Goals: Not supported.

REFERENCES

[1] T.C. Kömürcü, N. Bilgiçli, Functional content and sensory properties of madımak (*Polygonum cognatum*) powder added noodles formulated with and without eggs, *Necmettin Erbakan University Journal of Science and Engineering*. 6(1) (2024), 124–138. doi:10.47112/neufmbd.2024.37

[2] D. Özbalcı, E. Aydin, G. Özkan, Phytochemical profile and pharmaceutical properties of mulberry fruits, *Food and Health*. 9(1) (2023), 69–86. doi:10.3153/FH23007

[3] D.T. Algan, E. Kocabas, Encapsulation of some flavonoid mixtures using electrospinning technique for enhanced bioactivity and controlled release studies, *Necmettin Erbakan University Journal of Science and Engineering*. 7(1) (2025), 141–152. doi:10.47112/neufmbd.2025.81

[4] S. Zielińska, A. Matkowski, Phytochemistry and bioactivity of aromatic and medicinal plants from the genus *Agastache* (Lamiaceae), *Phytochemistry Reviews*. 13 (2014), 391–416. doi:10.1007/s11101-014-9349-1

[5] R.M. Spréa, C. Caleja, J. Pinela, T.C. Finimundy, R.C. Calhelha, M. Kostić, M. Sokovic, M.A. Prieto, E. Pereira, J.S. Amaral, L. Barros, Comparative study on the phenolic composition and in vitro bioactivity of medicinal and aromatic plants from the Lamiaceae family, *Food Research International*. 161 (2022), 111875. doi:10.1016/j.foodres.2022.111875

[6] J. Uíkey, Reviewing of Plant Belonging to Lamiaceae Family, *International Journal of Scientific Development and Research*. 9(3) (2024), 186–191. doi:10.5281/zenodo.13309903

[7] I.M. Abu-Reidah, D. Arráez-Román, M. Al-Nuri, I. Warad, A. Segura-Carretero, Untargeted metabolite profiling and phytochemical analysis of *Micromeria fruticosa* L. (Lamiaceae) leaves, *Food Chemistry*. 279 (2019), 128–143. doi:10.1016/j.foodchem.2018.11.144

[8] P.H., Davis, *Micromeria* Benth, Davis P.H. (Ed.), Flora of Turkey and the East Aegean Islands, Vol. 7. Edinburgh, UK: Edinburgh University Press, 1982: pp. 329–331.

[9] M. Güllüce, M. Sökmen, F. Şahin, A. Sökmen, A. Adıgüzel, H. Özer, Biological activities of the essential oil and methanolic extract of *Micromeria fruticosa* (L.) Druce ssp *serpyllifolia* (Bieb) PH Davis plants from the eastern Anatolia region of Turkey, *Journal of the Science of Food and Agriculture*. 84(7) (2004), 735–741. doi:10.1002/jsfa.1728

[10] İ. Aslan, Ö. Çalmaşur, F. Şahin, Ö. Çaglar, Insecticidal effects of essential plant oils against *Ephestia kuehniella* (Zell.), *Lasioderma serricorne* (F.) and *Sitophilus granarius* (L.), *Journal of Plant Diseases and Protection*. (2005), 257–267.

[11] O. Sagdic, S. Yasar, A.N. Kisioglu, Antibacterial effects of single or combined plant extracts. *Annals of Microbiology*. 55 (2005), 67–71. doi:10.5555/20053067118

[12] Ö. Calmaşur, İ. Aslan, F. Şahin, Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against *Tetranychus urticae* Koch and *Bemisia tabaci* Genn, *Industrial Crops and Products*. 23(2) (2006), 140–146. doi:10.1016/j.indcrop.2005.05.003

[13] E.F. Abu-Gharbieh, Y.K. Bustanji, M.K. Mohammad, In vitro effects of *Micromeria fruticosa* on human leukocyte myeloperoxidase activity, *Journal of Pharmacy Research*. 3(10) (2010), 2492–2493.

[14] S. Toroglu, In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils, *Journal of Environmental Biology*. 32(1) (2011), 23–29.

[15] N.G. Shehab, E. Abu-Gharbieh, Constituents and biological activity of the essential oil and the aqueous extract of *Micromeria fruticosa* (L.) Druce subsp. *serpyllifolia*, *Pakistan Journal of Pharmaceutical Sciences*. 25(3) (2012), 687–692.

[16] E. Abu-Gharbieh, N.G. Shehab, S.A. Khan, Anti-inflammatory and gastroprotective activities of the aqueous extract of *Micromeria fruticosa* (L.) Druce ssp *Serpullifolia* in mice, *Pakistan Journal*

of *Pharmaceutical Sciences*. 26(4) (2013), 799–803.

[17] R. Boran, A. Ugur, Inhibitory effect of *Micromeria fruticosa* ssp. *brachycalyx* on *Streptococcus mutans* biofilm formation and its antimutagenic and antioxidant activities, *Journal of Selcuk University Natural and Applied Science*. 4(3) (2015), 25–38.

[18] M. Al-Hamwi, M. Aboul-Ela, A. El-Lakany, N. El Achi, N. Ghanem, B. El Hamaoui, Y. Bakkour, F. El Omar, Chemical composition, antimicrobial and antioxidant activities of the ethanolic extract of *Micromeria fruticosa* growing in Lebanon, *International Journal of Chemical Sciences*. 13(1) (2015), 325–335.

[19] I. Telci, M. Ceylan, Essential oil composition of *Micromeria fruticosa* Druce from Turkey, *Chemistry of Natural Compounds*. 43(5) (2007), 629–631. doi:10.1007/s10600-007-0211-1

[20] N. Dudai, Z. Yaniv, Endemic aromatic medicinal plants in the holy land vicinity, *Medicinal and Aromatic Plants of the Middle-East*. (2014), 37-58. doi:10.1007/978-94-017-9276-9_4

[21] G. Bayat, Traditional Dishes Consumed in the Eastern Anatolian Region of Turkey, *Livre de Lyon*, Lyon France, 2021.

[22] M.K. Stefanakis, C. Papaioannou, V. Lianopoulou, E. Philotheou-Panou, A.E. Giannakoula, D.M. Lazari, Seasonal variation of aromatic plants under cultivation conditions, *Plants*. 11(16) (2022), 2083. doi:10.3390/plants11162083

[23] I.M. Abu-Reidah, D. Arráez-Román, M. Al-Nuri, I. Warad, A. Segura-Carretero, Untargeted metabolite profiling and phytochemical analysis of *Micromeria fruticosa* L. (Lamiaceae) leaves, *Food Chemistry*. 279 (2019), 128–143. doi:10.1016/j.foodchem.2018.11.144

[24] MM. Al-Hamwi, Y. Bakkour, M. Abou-Ela, A. El-Lakany, M. Tabcheh, F. El-Omar, Chemical composition and seasonal variation of the essential oil of *Micromeria fruticosa*, *Journal of Natural Products*. 4 (2011), 147-149.

[25] M. Al-Hamwi, M. Aboul-Ela, A. El-Lakany, N. El-Achi, N. Ghanem, B. El Hamaoui, Y. Bakkour, F. El-Omar, Chemical composition, antimicrobial and antioxidant activities of the ethanolic extract of *Micromeria fruticosa* growing in Lebanon, *International Journal of Chemical Sciences*. 13(1) (2015), 325–335.

[26] E. Ersoy, R.B. Yıldızhan, M.A. Yılmaz, Y. Yeşil, H. Şahin, E.E. Özkan, M. Boğa, Investigating the pharmacological potential of *Micromeria myrtifolia* Boiss. & Hohen.: Phenolic profiling and biological activity assessments, *Commagene Journal of Biology*. 8(2) (2024), 103–114. doi:10.31594/commagene.1576852

[27] S. İşıldak, M. Elmastaş, B.S. Erdoğdu, M. Erdoğdu, Combined antibacterial and antioxidant effect of graphene structures with biogenic silver nanoparticles synthesized by using black pepper extract, *Necmettin Erbakan University Journal of Science and Engineering*. 7(1) (2025), 77–91. doi:10.47112/neufmbd.2025.76

[28] H. Uğuz, S. Aşkın, B. Eminaoğlu, Y. Karatas, Y. Kaya, B. Yılmaz, H. Aşkın, Herbal content analysis of ethanol extract of aerial part of *Berberis vulgaris* plant originating from Artvin (Türkiye), *Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi*. 26(1) (2025), 80–89. doi:10.17474/artvinofd.1642057

[29] A. Adiguzel, H. Ozer, M. Sokmen, M. Gulluce, A. Sokmen, H. Kilic, F. Sahin, O. Baris, Antimicrobial and antioxidant activity of the essential oil and methanol extract of *Nepeta cataria*. *Polish Journal of Microbiology*. 58 (2009), 69–76.

[30] E. Palabıyık, H. Uğuz, B. Avcı, A.N. Sulumer, B. Yılmaz, H. Aşkın, Bioactive Component Analysis of Seed Coat Hexane Extract of Ardahan (Turkey) Walnut, *Frontiers in Life Sciences and Related Technologies*. 5(2) (2024), 89–94. doi:10.51753/flsrt.1410006

[31] O.A. Mawlid, H.H. Abdelhady, M.S. El-Deab, Highly active novel K₂CO₃ supported on MgFe₂O₄ magnetic nanocatalyst for lowtemperature conversion of waste cooking oil to biodiesel: RSM optimization, kinetic, and thermodynamic studies. *Journal of Environmental*

Chemical Engineering. 11(5) (2023), 110623. doi:10.1016/j.jece.2023.110623

- [32] E. Rutkowska, E. Wołejko, P. Kaczyński, S. Luniewski, B. Lozowicka, High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. *Chemosphere.* 313 (2023), 137498. doi:10.1016/j.chemosphere.2022.137498
- [33] J. H. Doughari, Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents, Venketeshwar Rao (Ed.), Phytochemicals- A Global Perspective of Their Role in Nutrition and Health, *InTech*, 2012: pp. 1-34. doi:10.5772/26052
- [34] M. Wink, Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites, Michael Wink (Ed.), *Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, Second Edition*, Wiley, 2010: pp. 1-19. doi:10.1002/9781444320503.ch1
- [35] T.T. Alawode, L. Lajide, M. Olaleye, B. Owolabi, Stigmasterol and β -sitosterol: Antimicrobial compounds in the leaves of *Icacina trichantha* identified by GC-MS. *Beni-Suef University Journal of Basic and Applied Sciences.* 10 (2021), 1-8. doi:10.1186/s43088-021-00170-3
- [36] A.K., Shakya, Medicinal plants: Future source of new drugs. *International Journal of Herbal Medicine.* 4(4) (2016), 59-64.
- [37] M. Labbozzetta, P. Poma, M. Tutone, J.A. McCubrey, M. Sajeva, M. Notarbartolo, Phytol and heptacosane are possible tools to overcome multidrug resistance in an *in vitro* model of acute myeloid leukemia. *Pharmaceuticals.* 15(3) (2022), 356. doi:10.3390/ph15030356
- [38] H.J. Justil-Guerrero, J.L. Arroyo-Acevedo, J.P. Rojas-Armas, C.O. García-Bustamante, M. Palomino-Pacheco, R.D. Almonacid-Román, J.W. Calva Torres, Evaluation of bioactive compounds, antioxidant capacity, and anti-inflammatory effects of lipophilic and hydrophilic extracts of the pericarp of *Passiflora tripartita* var. *mollissima* at two stages of ripening. *Molecules.* 29(20) (2024), 4964. doi:10.3390/molecules29204964
- [39] T. Marrufo, F. Nazzaro, E. Mancini, F. Fratianni, R. Coppola, L. De Martino, A.B. Agostinho, V. De Feo, Chemical composition and biological activity of the essential oil from leaves of *Moringa oleifera* Lam. cultivated in Mozambique. *Molecules.* 18(9) (2013), 10989-11000.
- [40] I. Carev, A. Gelemanović, M. Glumac, K. Tutek, M. Dželalija, A. Paiardini, G. Grosseda, *Centaurea triumfetti* essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds, *Scientific Reports.* 13 (2023), 7475. doi:10.1038/s41598-023-34058-2.
- [41] H.İ. Binici, İ.G. Şat, B. Yilmaz, Comparison of antioxidant, phenolic profile, melatonin, and volatile compounds of some selected plant samples, *Food Science & Nutrition.* 12 (2024), 7158-7165. doi:10.1002/fsn3.4334.
- [42] M. Ghazyadeh, D. Abolfazl, S. Kazemi, A. Harandi, M. Ghasempour, Evaluation of the Antibacterial Activity of *Mentha Longifolia* Essential Oil against *Enterococcus faecalis* and its Chemical Composition. *Journal of Dentistry.* (2025). doi:10.30476/dentjods.2025.101488.2304
- [43] A. Gazizova, U. Datkhayev, A. Amirkhanova, G. Ustenova, K. Kozhanova, Y. Ikhsanov, E. Kapsalyamova, G. Kadyrbayeva, Z. Allambergenova, A. Kantureyeva, A. Baidullayeva, M. Öztürk, A. Berdgaleyeva, Phytochemical profiling of *Mentha asiatica* Boriss. leaf extracts: Antioxidant and antibacterial activities, *ES Food & Agroforestry.* 19 (2025), 1355.
- [44] P. Singh, R. Kumar, O. Prakash, M. Kumar, A.K. Pant, V.A. Isidorov, L. Szczepaniak, Reinvestigation of chemical composition, pharmacological, antibacterial and fungicidal activity of essential oil from *Mentha longifolia* (L.) Huds. *Research Journal of Phytochemistry.* 11 (2017), 129-141. doi:10.3923/rjphyto.2017.129.141
- [45] R. El Brahimi, A. El Barnossi, A. El Moussaoui, M. Chebaibi, R. Kachkoul, A. Baghouz, H.-A. Nafidi, A.M. Salamatullah, M. Bourhia, A. Bari, Phytochemistry and biological activities of essential oils from *Satureja calamintha* Nepeta. *Separations.* 10(6) (2023), 344. doi:10.3390/separations10060344