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_____________________________________________________________________________________ 
 

Abstract. Carbon nanotubes (CNs) are hexagonally shaped arrangements of carbon atoms that have been rolled into 

tubes with outstanding properties. Carbon nanotubes are among the stiffest and strongest fibers known, and have 

remarkable electronic properties and many other unique characteristics. All properties of the carbon nanotubes are 

determined by its electronic structure. The main focus of this study has been to investigate the basic electronic band 

structure of carbon nanotubes and to understand the origin of the cutting lines. For this purposes brief introduction to 

the electronic properties of carbon nanotubes was given and then 3D electronic band structure was plotted. For 

different chirality vectors (n, m) 1D and 2D first Brillouin zones and cutting lines of SWNT were calculated and 

plotted. 
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______________________________________________________________________________________________ 

 
 

1. INTRODUCTION 

Following the discovery of carbon nanotubes (CTNs) in 1991 [1], the interest in carbon 

nanotubes increased rapidly because of their excellent mechanical and electrical properties and 

potential technological applications [2, 3, 4, 5, 6 and 7]. To obtain a typical carbon nanotube the 

graphene layer is bent in such a way that both ends of the vector lie on top of each other. The 

molecular structure is thus continuous around the tube [8, 9, 10 and 11].  

 

2. THEORETICAL BACKGROUND 

Graphene is a carbon allotrope whose structure consists of a stacking of two-

dimensional, sp
2
-bonded carbon layers. CTNs are composed only of carbon atoms (C60) 

arranged in a three-dimensional cylindrical shape and cage structure.  

__________________ 
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In general, carbon nanotubes are divided into two categories; single-walled carbon 

nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT). SWNT consisting only of 

one graphene sheet and MWNT with typically more than one rolled up sheets [2, 4, 5 and 6]. 

The geometry of SWNT can be imagined as one layer of graphite rolled in a seamless cylinder 

with a typical diameter of 1−2 nm. The lengths of the two types of tubes can be up to hundreds 

of microns or even centimeters. Band structure of SWNT will perform simple tight-binding 

model for a two dimensional (2D) sheet of graphene [11, 12 and 13].  

The unit cell of the graphene sheet contains two carbon atoms and each of them has four 

valence electrons (see in figure 1), where three of them make sp
2
 bonds forming σ-orbits and 

fourth electron resides in a π-orbit extending perpendicular to the graphene plane. Since the π–

bonds are much weaker than the σ–bonds the electronic properties of carbon nanotubes can be 

described taking into account only the π–electrons [4, 5, 6, 14 and 15]. Using the tight binding 

approximation [5, 6, 15 and 16], energy dispersion of the π–electrons of a graphene sheet is 

given by equation 1 and 2 [2, 4, 5, 6 and 7]. The energy structure of crystals depends on the 

interactions between orbits in the lattice. The tight binding approximation neglects interactions 

between atoms separated by large distances, an approximation which greatly simplifies the 

analysis and calculates the electronic band structure using an approximate set of wave-functions 

based upon superposition of orbits located at each individual atomic site [16]. The band 

structure of graphene is obtained from the tight binding approximation including only first-

nearest-neighbor carbon-carbon interactions of –orbits of a single honeycomb graphite sheet. 

This is given by a simple analytical relation, derived by diagonalization of the 2×2 Bloch 

Hamiltonian for the diatomic graphene unit cell [1, 3, 15, 17, 18 and 19]. 
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where o = 2.5 eV is the energy overlap integral (tight binding hopping parameter) between the 

nearest neighbors,  is the on-site energy parameter, s is the overlap parameter, a is lattice 

parameter of graphene, the v and c indices stand for valence and conduction bands, respectively, 

and k = (kx, ky) represents the 2D wave-vector components along the x and y directions in the 

2D Brillouin zone (BZ) of graphene. The parameters o and  are expressed in electron-volt 

units (eV), whereas s is given in non-dimensional units. Conduction and valence bands are the 
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consequence of two carbon atoms per unit cell. The conduction band and the valence band meet 

at six distinct points corresponding to the corners of the first BZ. These points are referred to as 

K-points. Three out of the six K-points are equivalent due to the spatial symmetry of the 

hexagonal lattice, thus two distinguishable points remain called K and K’. At the special points 

K and K' of the graphene BZs the valence and conduction bands cross at the Fermi level (energy 

at 0 eV). Because of the same number of states in the first BZ as in real space and two carbon 

atoms per unit cell, at T =0K only the valence states are occupied, with a Fermi energy lying 

exactly at the position where the two bands cross [4, 5, 6, 14 and 15]. 

In figure 1 is illustrated a hexagonal lattice of a graphene sheet and corresponding 

lattice vectors (a1, a2) in real space. The lattice vectors make of an angle 60° [1, 2, 4, 5, 6 and 

15]. 

 

 
 

Figure 1. Graphene lattice and lattice vectors 

 

In real space lattice vectors                     are determined by Eq. 4a and b [2, 4, 5, 6, 7 and 20]. 
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Where                  and         is unitary basis vectors. Unit cell is arbitrary due to 

random selection of the coordinate system [20].  

A specific carbon nanotube is defined by a chiral vector (eq. 5) which is shown in figure 

2 with the unit vectors of the hexagonal lattice                     and n, m are integers (          ). 

Axis with special symmetries are the zigzag (n, 0), armchair (n, n) and chiral (n, m) directions 

named according to the line-shape of a tube circumference following the carbon atoms. They 
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are shown in figure 2. A SWNT is formed by joining the parallel lines which are defined by the 

starting and ending point of the chiral vector [2, 4, 5, 6, 7, 13, 17, 20 and 21]. 

 

 
 

Figure 2. Sketch of a graphene sheet, special symmetries and unit cell 
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Single-walled carbon nanotube diameter r and chiral angle ; 
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θ represents the angle between the chiral vector and the direction (n; n).  

 

The reciprocal vectors            
      are given in eq. 8 and 9 and they are related to the real 

lattice vectors according to the equation 10 [7, 8 and 21]. 

 

  
     

   

    
    

   

 
                               (8) 

  
      

   

    
    

   

 
                   (9) 

         
                            (10) 

 

Where     is the Kronecker function.  

 

The fundamental property of an infinitely long SWNT is its translational periodicity and 

it is described by translation vector         . The translation vector defines the length of the nanotube 
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unit cell and it is shown in fig.3. In a plain graphene sheet,          vector along the axial direction of 

the SWNT and is the orthogonal to the chiral vector [17 and 21]. 
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Where dc is the greatest common devisor (gcd) of (2n+m) and (2m+n). 

 

 
Figure 3. Sketch of a translation vector 

 

 

The chiral vector and translation vector define the translational unit cell of the SWNT. 

The number of unit cells of the translation unit cell is given by eq. 13. 
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The reciprocal lattice vectors   
      and   

      for a carbon nanotube are defined by eq.14a and b. 
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The   
      and   

      vectors define the seperation between the adjanted cutting lines and the length of 

cutting lines, respectively. In terms of the vectors   
      and   

     , the quantization condition 

expressed by eq.15 [15 and 21]. 
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If there are N hexagons in the translational unit cell of the SWNT, the first Brillouin 

zone of the SWNT consists of N cutting lines. These cutting lines must be arranged into a 

rectangle with the sides parallel to the   
      and   

      vectors. Only then can the first BZ be folded 

into one dimensional reciprocal space of the SWNT. These BZs have rectangular shapes of 

different dimensions [9 and 21]. 

The reciprocal lattice of SWNT is obtained by folding reciprocal lattice of the graphene 

sheet. This is known as zone-folding approximation. The zone-folding approximation is that the 

electronic band structure of a nanotube is given by the superposition of the graphene electronic 

energy bands along the corresponding allowed k lines. The standing waves are characterized by 

their angular momentum (µ). The angular momentum of a standing wave in the SWNT 

corresponds to the linear momentum k of a plane wave of graphene sheet such that:  

 

                  =2.µ                 (16) 

 

The allowed wave-vectors in the reciprocal space of graphene is 
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Where k is the linear momentum along the SWNT axis [10, 19 and 21]. 

 

If we use eq. 17 for ky, discreteness of the ky values, leads to a one dimensional (1D) dispersion 

relation in the eq 18. 
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For discrete values of µ, the above expression generates a set of equidistant parallel 

lines. These lines are known as cutting lines [21]. If we assumed that there are N hexagons in 

the translational unit cells of SWNT, we conclude that the fist BZ of the SWNT consist of N 

cutting lines. The cutting lines must be arranged into a rectangle with a side parallel to the 

reciprocal lattice vectors. The dimensions of the rectangular BZ are determined by the choice of 

the reduced unit cell [21]. 
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The graphene sheet is a zero-gap semiconductor with the Fermi surface reduced to two 

points,   
      and   

     . The electrons at the Fermi surface are thus scattered either within the same 

  
      or   

      point by the phonon modes around the Γ point, or between different   
      and   

      points 

by the phonon modes near the   
      or   

      point [4 and 15]. The allowed wave vectors are on the 

so called cutting lines [21]. 

The cutting lines are that the one-dimensional (1D) BZ plotted on the extended two-

dimensional (2D) BZ of graphene. The conduction and the valence bands meet at six distinct 

points (K-points) corresponding to the corners of the first BZ [15, 21 and 22]. Three of them are 

equivalent due to the spatial symmetry of the hexagonal lattice, thus two distinguishable points 

remain called K and K’ [21]. 

There are N cutting lines for (n,m) SWNTs. The ordinal number µ of the cutting lines starting 

from the Γ point µ =0 [21]. The k points on the µth cutting line of the (n,m) SWNT in the 2D 

BZ of graphite is given by eq. 19 [21]. 
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3. SIMULATIONS and RESULTS 

 

In this study, all simulations and calculations were carried out in wolfram Mathematica. 

Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice. The energy 

structure of crystals depends on the interactions between orbits in the lattice. The tight binding 

approximation neglects interactions between atoms separated by large distances an 

approximation that greatly simplifies the analysis. Thus, the electronic band structure of 

graphene can be calculated by using the tight binding approximation. In this study, the band 

structure of graphene is obtained from the tight binding approximation including only first-

nearest-neighbor carbon-carbon interactions of -orbits of a single honeycomb graphite sheet 

and then, the band structure of graphene was plotted by solving eq.1, 2 and 3 for 2D and 3D 

honeycomb crystal lattice of graphene under the tight binding approximation.  

In this study, all simulations and calculations were carried out by using a computer code 

given in Mathematica. Figure 4 shows 3D electronic band structure of SWNT, where the bands 

cross the Fermi level (energy E=0 eV) for the electron energy dispersion for  and *-bands in 

the first BZ at equidistant energies as pseudo-3D representations for the 2D structures. In this 



70 

Erdem UZUN 

figure, the valence band and the conduction band touch each other at K-points on the corner of 

the first BZ. Figure 5 shows the 2D tight-binding electronic band structure of a SWNT of any 

chirality (n, m) vector according to the zone-folding method. High symmetry points, , K and 

K' of the first Brillouin zone are also plotted. 

 

 
 

Figure 4. 3D electronic band structure of SWNT 

 

 
 

Figure 5. 2D electronic band structure of a SWNT 
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For different chirality vectors, the one dimensional dispersion relation (eq. 18) was used 

and the band structure of nanotube was plotted in figure 6. One can be seen from figure 6 that 

when the ky values are aligned with the special corner points K of the Brillouin zone, the SWNT 

behaves as a metal. For armchair SWNT (n, n) there are in total 2n dispersion relations in the 

valence and 2n in the conduction band. Each band is doubly degenerate, except for the ones 

crossing E = 0 and the ones with maximal and minimum energy. Only, the ky =0 (µ = n) band 

and the two outermost bands are non degenerate. However, for different chiral vectors the 

boundary conditions on     around the circumference of a SWNT are not as simple as in the case 

of armchair or zig-zag SWNT. This situation can be visualized by the rotated orientation of 

quantized ky values in reciprocal space (Fig 6a, c and f. See also fig 7a, c and f). In specific 

cases it is possible that none of the allowed ky values cross the K points, which results in an 

energy gap, i.e. semiconducting properties (Fig 6b, d, e).  

In the directions of the nanotube axis the wavevector kx is bounded to first Brillouin 

zone, -/a  kx /a. Although the graphene sheet can be rolled-up in an infinite number of ways, 

three different classes of energy dispersion emerge near the Fermi level, as shown in fig 6 (i- 6a, 

c, f;  ii- 6b, e;  iii- 6d). In fig. 6a, c and f no states are available near the Fermi energy; these 

nonotubes are semiconducting. The two other energy dispersion (6b and e) have states at the 

Fermi energy; these nonotubes are metallic. In fig. 6d that nanotubes are in fact metallic tubes, 

but due to perturbation the lowest conduction band and the highest valence band do not touch 

each other in at K-points. 

   
                          (a)                                                                                (b) 

 



72 

Erdem UZUN 

   
                                        (c)                                                                               (d) 

 

 

   
                                        (e)                                                                               (f) 

 

Figure 6. 1D electronic band structure of a SWNT 

 

 

For different chirality vectors cutting lines of SWNT were calculated and plotted in 

figure 7. Figure 7 shows the construction of the first Brillouin zone of a SWNT superimposed 

on the 2D hexagonal first Brillouin zone of graphene. The first BZ of a SWNT is given by 

cutting-lines whose spacing and length are related to the chiral indices (n, m) of the nanotube. 

These are diameter, chiral angle, length of the unit cell along the tube axis, number of graphene 

unit cells inside the SWNT unit cell. All the points on the cutting lines belong to the SWNT BZ, 

thus it is a subset of points belonging to the graphene BZ. The SWNT electronic band structures 

are given by eq. 19, where K1 and K2 are the basis wave-vectors in the SWNT BZ. The spacing 

between cutting lines is inversely proportional to the SWNT diameter (∆k= r / 2, see fig 7a), 

while the length of the lines is inversely proportional to the length of the SWNT unit cell along 

the tube axis (equals 2π/    , see fig 7a). The irreducible number of bands is equal to the 

irreducible number of cutting lines, which is given by the number N of graphene unit cells 

inside the SWNT unit cell. From the characteristic features of the band plots for any given (n, 

m) chirality one can verify the close relationship existing between geometry and electronic 

structure in SWNTs. The different chirality of zigzag and chiral nanotubes means that the 

allowed k-lines for these nanotubes are rotated (by /6 degrees for zigzag nanotubes) and 
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orientated differently around the K points. Zigzag and chiral tubes will be metallic if the 

allowed k-lines do cross the K points and semiconducting otherwise. 

 

    
                                             (a)                                                                  (b) 

 

   
                                             (c)                                                                               (d) 
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                                     (e)                                                                                    (f) 

 

Figure 7. Cutting lines of SWNT were calculated by using different chiral vectors. 

 

 

4. CONCLUSIONS 

 

A SWNT is usually characterized by its chiral vector C which is defined by two integers 

(n;m) as well as two base vectors (Fig. 1 and 2). These two integers (n;m) determine the tube 

diameter r, the chiral angle  of the tube, the chirality and the physical properties of a SWNT 

(Eq. 6 and 7). C also defines the two points in the graphite sheet that are joined together when 

we roll the sheet into a carbon nanotube. There are two special types of SWNTs: armchair-tubes 

(n,n) and zig-zag-tubes (n,0). All other tubes are called chiral-tubes (Fig 2). The translation 

vector, T, define the length of the nanotube unit cell (Fig. 3). 

To understand the electronic properties of SWNTs, a simple way is to start with the band 

structure of graphene, which underlies also the band structure of the nanotubes. We performed a 

calculation of the SWNT band structure starting from a simple tight-binding model for a two 

dimensional sheet of graphene. Using the tight binding approximation and dispersion relation 

for a 2D graphene sheet (Eq. 1, 2 and 3) band structure of graphene were plotted. Band structure 

simulations show that the 3D valence and conduction band of graphene meet at six points 

corresponding to the corners of the first Brillouin zone shown in Fig. 4. Due to spatial 

symmetry, two sets of these points, K and K’, are inequivalent and they coincide with the 

corners of the first Brillouin zone (Fig. 5).  

The electronic properties of a SWNT vary in a periodic way from metallic to 

semiconducting and are calculated by imposing periodic boundary conditions on the wave 

function along its circumference. The one dimensional dispersion relation (Eq. 18) for the -

electrons of the graphene is plotted in Fig. 6 for different chirality vectors (n, m). For different 

chiral vectors the boundary conditions of a SWNT are not as simple as in the case of armchair 
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or zig-zag SWNT. This situation can be visualized by the rotated orientation of quantized ky 

values in reciprocal space (Fig 7a, c, d and f). In specific cases it is possible that none of the 

allowed ky values cross the K points, which results in an energy gap (Fig 6a, c and f). For 

discrete values of µ, the one dimensional dispersion relation expression (Eq. 18) generates a set 

of equidistant parallel lines. These lines are known as cutting lines. The dispersion relation can 

now be found by slicing the dispersion relation for graphene along the lines with allowed wave 

vectors. If one of these slices happens to cut through the K point the nanotube will be metallic 

and if the slice does not cut through a K point it will be semiconducting. Zigzag and chiral tubes 

will be metallic if the allowed k-lines do cross the K points and semiconducting otherwise. The 

size of the energy gap of semiconducting nanotubes and the subband spacing of both 

semiconducting and metallic nanotubes is inversely proportional to the diameter. The interline 

spacing cutting lines depends only on the diameter as r/2. Since the distance between the center 

and edge of a hexagon in reciprocal space equals       , see in Fig. 7a. 
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