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Abstract. In this paper a class of quadratic nonlinear Schrödinger equation in four space
dimensions with an attractive potential is considered. We investigate asymptotic stability
of the nonlinear bound states, i.e. periodic in time localized in space solutions. We show
that all solutions with small initial data, converge to a nonlinear bound state. Therefore,
the non-linear bound states are asymptotically stable.

1. Introduction

In this paper we study the long time behavior of solutions of the nonlinear Schrödinger
equation (NLS) with potential in four space dimensions (4-d):

i∂tu(t, x) = [−∆x + V (x)]u+ g(u), t ∈ R, x ∈ R4 (1)

u(0, x) = u0(x) (2)

where g(u) = |u|u is quadratic nonlinearity. This nonlinear equation admits periodic
in time, localized in space solutions (bound states or solitary waves). They can
be obtained via both variational techniques [1, 18, 23] and bifurcation methods
[13, 17, 18]. Moreover the set of periodic solutions can be organized as a manifold
(center manifold). Orbital stability of solitary waves, i.e. stability modulo the group
of symmetries u 7→ e−iθu, was first proved in [18, 25], see also [8, 9, 20].

Asymptotic stability studies of solitary waves were initiated in the work of A.
Soffer and M. I. Weinstein [21, 22], see also [2, 3, 4, 6, 10]. Center manifold analysis
was introduced in [17], see also [24]. In this (4d-5d makalesi) it was shown that
solutions of (1)-(2) with small initial data converge to the orbit of a certain bound
state. In this work it will be shown that convergence is asymptotic. The main
challenge is to obtain good estimates for the semigroup of operators generated by
the time dependent linearization that we use. This is accomplished in [11]. The
technique is perturbative, and similar to the one developed by E. Kirr, A. Zarnescu
and Ö. Mızrak for Schrödinger type operators in [11, 12, 13, 14]. The main difference
between [11] is the decomposition of the dynamics. The decomposition used in [11]
works for all nonlinearities. The decomposition used in this paper works for at least
quadratic nonlinearities but gives asymptotic stability.
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Notations: H = −∆ + V ;

Lp = {f : R4 7→ C | f measurable and
∫
R4 |f(x)|pdx <∞}, ‖f‖p =

(∫
R4 |f(x)|pdx

)1/p
denotes the standard norm in these spaces;

< x >= (1 + |x|2)1/2, and for σ ∈ R, L2
σ denotes the L2 space with weight

< x >2σ, i.e. the space of functions f(x) such that < x >σ f(x) are square integrable
endowed with the norm ‖f(x)‖L2

σ
= ‖ < x >σ f(x)‖2;

〈f, g〉 =
∫
R4 f(x)g(x)dx is the scalar product in L2 where z = the complex

conjugate of the complex number z;
Pc is the projection on the continuous spectrum of H in L2;
Hn denote the Sobolev spaces of measurable functions having all distributional

partial derivatives up to order n in L2, ‖ · ‖Hn denotes the standard norm in this
spaces.

2. Preliminaries. The center manifold.

The center manifold is formed by the collection of periodic solutions for (1):

uE(t, x) = e−iEtψE(x) (3)

where E ∈ R and 0 6≡ ψE ∈ H2(R4) satisfy the time independent equation:

[−∆ + V ]ψE + g(ψE) = EψE (4)

Clearly the function constantly equal to zero is a solution of (4) but (iii) in the
following hypotheses on the potential V allows for a bifurcation with a nontrivial,
one parameter family of solutions:

(H1) Assume that

(i) V (x) sutisfies the following properties:

1. < x >ρ V (x) : Hη → Hη, for some ρ > 8 and η > 0;

2. ∇V ∈ Lp(R4) for some 2 6 p 6∞ and |∇V (x)| → 0 as |x| → ∞;

3. the Fourier transform of V is in L1.

(ii) 0 is a regular point‡ of the spectrum of the linear operator H = −∆+V acting
on L2.

(iii) H acting on L2 has exactly one negative eigenvalue E0 < 0 with correspond-
ing normalized eigenvector ψ0. It is well known that ψ0(x) is exponentially
decaying as |x| → ∞, and can be chosen strictly positive.

Conditions (i) and (ii) guarantee the applicability of dispersive estimates in [15] and
[?] to the Schrödinger group e−iHtPc. Condition (i)2. implies certain regularity of
the nonlinear bound states while (i)3. allows us to use commutator type inequalities,

‡see [19, Definition 7] or Mµ = {0} in relation (3.1) in [15]
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Asymptotic stability of ground states of quadratic nonlinear Schrödinger

see [12, Theorem 5.2]. All these are needed to obtain estimates for the semigroup of
operators generated by our time dependent linearization, see Theorem 4.1 and 4.2
in [11]. In particular (i)1. implies the local well posedness in H1 of the initial value
problem (1)-(2), see section 3.

By the standard bifurcation argument in Banach spaces [16] for (4) at E = E0,
condition (iii) guarantees existence of nontrivial solutions. Moreover, these solutions
can be organized as a C1 manifold (center manifold), see [13, section 2]. Since our
main result requires, we are going to show in what follows that the center manifold
is C2.

3. Main Result

Theorem 3.1. Assume that hypothesis (H1) and either (H2) or (H2’) hold. Then
there exists an ε0 such that for all initial conditions u0(x) satisfying

max{‖u0‖Lp′ , ‖u0‖H1} ≤ ε0,
1

p′
+

1

p
= 1

the initial value problem (1)-(2) is globally well-posed in H1 and the solution de-
composes into a radiative part and a part that asymptotically converges to a ground
state.

More precisely, there exist a C1 function a : R 7→ C such that, for all t ∈ R we
have:

u(t, x) = a(t)ψ0(x) + h(a(t))︸ ︷︷ ︸
ψE(t)

+η(t, x) (5)

where ψE(t) is on the central manifold (i.e it is a ground state) and η(t, x) ∈ Ha(t),
see [12]. Moreover there exists the ground states states ψE±∞ and the C1 function
θ : R 7→ R such that lim|t|→∞ θ(t) = 0 and:

lim
t→±∞

‖ψE(t)− e−it(E±−θ(t))ψE±∞‖H2
⋂
L2
σ

= 0,

while η satisfies the following decay estimates:

‖η(t)‖Lp ≤ C
ε0

(1 + |t|)4(
1
2−

1
p )
, 2 ≤ p ≤ ∞

where the constant C independent of ε0.

Remark 3.1. Our results for these cases are stronger than the ones in [17, 21, 22]
because we do not require the initial condition to be in L2

σ, σ > 1. Compared to [10]
we have sharper estimates for the asymptotic decay to the ground state but we require
the initial data to be in Lp

′
.

Proof of Theorem 3.1 It is well known that under hypothesis (H1)(i) the initial
value problem (1)-(2) is locally well posed in the energy space H1 and its L2 norm
is conserved, see for example [5, Cor. 4.3.3 at p. 92]. Global well posedness follows
via energy estimates from ‖u0‖H1 small, see [5, Remark 6.1.3 at p. 165].
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We choose ε0 6 δ1 given by Lemma 2.1 in [12]. Then, for all times, ‖u(t)‖L2 6 δ1
and we can decompose the solution into a solitary wave and a dispersive component
as in (5):

u(t) = a(t)ψ0 + h(a(t)) + η(t) = ψE(t) + η(t)

Moreover, by possible making ε0 smaller we can insure that that ‖u(t)‖L2 6 ε0
implies |a(t)| 6 δ2, t ∈ R where δ2 is given by Lemma 2.2 in [12]. In addition, since

u ∈ C(R, H1(R4)) ∩ C1(R, H−1(R4)),

and u 7→ a respectively u 7→ η are C1, we get that a(t) is C1 and η ∈ C(R, H1) ∩
C1(R, H−1).

The solution is now described by the C1 function a : R ∈ C and η(t) ∈ C(R, H1)∩
C1(R, H−1). To obtain estimates for them it is useful to remove their dominant
phase. Consider the C2 function:

θ(t) =

∫ t

0

E(|a(s)|)ds

and
ũ(t) = eiθ(t)u(t),

then ũ(t) satisfies the differential equation:

i∂tũ(t) = −E(|a(t)|)ũ(t) + (−∆ + V )ũ+ |ũ(t)|ũ(t), (6)

moreover, like u(t), ũ(t) can be decomposed:

ũ(t) = ã(t)ψ0 + h(ã(t))︸ ︷︷ ︸
ψ̃E(t)

+η̃(t) (7)

where
ã(t) = eiθ(t)a(t), η̃(t) = eiθ(t)η(t) ∈ Hã(t)

By plugging in (7) into (6) we get

i
∂η̃

∂t
+ iDψ̃E |ã

dã

dt
= (−∆ + V − E)(ψ̃E + η̃) + g(ψ̃E) + g(ψ̃E + η̃)− g(ψ̃E)

= Lψ̃E η̃ + F2(ψ̃E , η̃)

or, equivalently,

∂η̃

∂t
+
∂ψ̃E
∂a1

da1
dt

+
∂ψ̃E
∂a2

da2
dt︸ ︷︷ ︸

∈spanR{
∂ψ̃E
∂a1

,
∂ψ̃E
∂a2
}

= −iLψ̃E η̃︸ ︷︷ ︸
∈Hã

−iF2(ψ̃E , η̃) (8)

where Lψ̃E is defined by

Lψ̃E η̃ = (−∆ + V − E)η̃ +
d

dε
g(ψ̃E + εη̃)|ε=0
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and F2 denotes the nonlinear terms in η̃

F2(ψ̃E , η̃) = g(ψ̃E + η̃)− g(ψ̃E)− d

dε
g(ψ̃E + εη̃)|ε=0 (9)

and we also used the fact that ψ̃E is a solution of the eigenvalue problem (4).

We now project (8) onto the invariant subspaces of−iLψ̃E , namely span{∂ψ̃E∂a1
, ∂ψ̃E∂a2

},
and Hã. [

<〈Ψ1(ã), ∂η̃∂t 〉
<〈Ψ2(ã), ∂η̃∂t 〉

]
+
d

dt

[
ã1
ã2

]
=

[
F21(ψ̃E , η̃)

F22(ψ̃E , η̃)

]
where Ψ1,2 are given by

Ψ1(a1, a2) = −i∂ψE
∂a2

(
<〈−i∂ψE

∂a2
,
∂ψE
∂a1
〉
)−1

, Ψ2(a1, a2) = i
∂ψE
∂a1

(
<〈i∂ψE

∂a1
,
∂ψE
∂a2
〉
)−1

.

(10)
F2j = <〈Ψj ,−iF2(ψ̃E , η̃)〉, j = 1, 2. (11)

To calculate <〈Ψj ,
∂η̃
∂t 〉, j = 1, 2 we use the fact that η̃ ∈ Hã, for all t ∈ R, i.e.

<〈Ψj(ã(t)), η̃(t)〉 ≡ 0

Differentiating the latter with respect to t we get:

<〈Ψj ,
∂η̃

∂t
〉 = −<〈∂Ψj

∂a1

dã1
dt

+
∂Ψj

∂a2

dã2
dt

, η̃〉, j = 1, 2

which replaced above leads to:

d

dt

[
ã1
ã2

]
= (IR2 −Mũ)−1

[
F21(ψ̃E , η̃)

F22(ψ̃E , η̃)

]
(12)

where the two by two matrix Mũ is the Jacobi matrix given in [12]. In particular[
<〈Ψ1,

∂η̃
∂t 〉

<〈Ψ2,
∂η̃
∂t 〉

]
= −Mũ(IR2 −Mũ)−1

[
F21(ψ̃E , η̃)

F22(ψ̃E , η̃)

]
which we use to obtain the component in Hã = span{Ψ1(ã),Ψ2(ã)}⊥ of (8):

∂η̃

∂t
= −iLψ̃E η̃ − iF2(ψ̃E , η̃)− (I−Mũ)−1F3(ψ̃E , η̃)

where F3 is the projection of −iF2 onto span{∂ψ̃E∂a1
, ∂ψ̃E∂a2

}:

F3(ψ̃E , η̃) = <〈Ψ1(ã),−iF2(ψ̃E , η̃)〉 · ∂ψ̃E
∂a1

+ <〈Ψ2(ã),−iF2(ψ̃E , η̃)〉 · ∂ψ̃E
∂a2

(13)

and I−Mũ is the linear operator on the two dimensional real vector space span{∂ψ̃E∂a1
, ∂ψ̃E∂a2

}
whose matrix representation relative to the basis span{∂ψ̃E∂a1

, ∂ψ̃E∂a2
} is IR2 −Mũ. It is

easier to switch back to the variable η(t) = e−iθ(t)η̃(t) ∈ Ha:

∂η

∂t
= −i(−∆ + V )η − iDgψEη − iF2(ψE , η)− (I−Mu)−1F3(ψE , η) (14)
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where we used the equivariant symmetry and its obvious consequences for the sym-
metries of Dg, F2, F3 and M . Since by Lemma 2.2 in [12] it is sufficient to get
estimates for z(t) = Pcη(t), we now project (14) onto the continuous spectrum of
−∆ + V and for Mu we switch to the notation.

∂z

∂t
= −i(−∆+V )z−iPcDgψERaz−iPcF2(ψE , Raz)−Pc(I−Ma[Raz])

−1F3(ψE , Raz)

(15)
where Ra : H0 7→ Ha is the inverse of Pc restricted to Ha, see Lemma 2.2 in [12].

Consider the initial value problem for the linear part of (15):

∂ζ

∂t
= −i(−∆ + V )ζ − iPcDgψERa(t)ζ (16)

ζ(s) = v

and write its solution in terms of a family of operators:

Ω(t, s) : H0 7→ H0, Ω(t, s)v = ζ(t)

In [11] it has shown that such a family of operators exists. In particular Ω(t, s)
satisfies certain dispersive decay estimates in weighted L2 spaces and Lp, p > 2
spaces, see Theorem 4.1 and Theorem 4.2 in [11].

Then using Duhamel formula, the solution of (15) also satisfies:

z(t) = Ω(t, 0)z(0)−i
∫ t

0

Ω(t, s)Pc[F2(ψE(s), Ra(s)z(s))−i(I−Ma(s)[Ra(s)z(s)])−1F3(ψE(s), Ra(s)z(s))]ds

(17)
In order to apply the linear estimates in [11], we fix σ > 2 and 6 ≤ q, then we

consider the ε1(q) > 0 given by Theorem 4.1 and choose ε0 > 0 in the hypothesis
such that

‖〈x〉4σψE(t)(x)‖L∞ ≤ ε1, for all t ∈ R (18)

In order to apply a contraction mapping argument for (17) we use the following
Banach spaces. Recall r > 0 defined in Remark 2.4 in [12], then

Y = {u ∈ L2 ∩ Lq : sup
t

(1 + |t|)4(
1
2−

1
q )‖u‖Lq <∞, sup

t
‖u‖L2 6 r}

endowed with the norm

‖u‖Y = max{sup
t

(1 + |t|)4(
1
2−

1
q )‖u‖Lq , sup

t
‖u‖L2}.

Consider the nonlinear operator in (17):

N(u) = i

∫ t

0

Ω(t, s)Pc[F2(ψE , u)− i(I−Ma[u])−1F3(ψE , u)]ds

Lemma 3.1. Assume (18) holds then, N : Y → Y is well defined, and locally
Lipschitz, i.e. there exists C̃ > 0, such that

‖Nu1 −Nu2‖Y ≤ C̃(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y .
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Note that the Lemma gives the estimates for z(t) then using Lemma 2.2 in [12]
we get the estimates for η(t) in the Theorem 3.1. Indeed, if we denote:

v = Ω(t, 0)z(0),

then
‖v‖Y ≤ C0‖z(0)‖Lq′∩H1 ,

where C0 = max{C,Cp}, see theorem 4.1 in [11]. We choose ε0 in the hypotheses of
theorem 3.1, such that R = 2‖v‖Y satisfies

Lip = 2C̃R < 1.

In this case the integral operator given by the right hand side of the (17):

K(z) = v +N(z)

leaves the ball B(0, R) = {z ∈ Y : ‖z‖Yi ≤ R} invariant and it is a contraction on
B(0, R) with Lipschitz constant Lip. Consequently the equation (17) has a unique
solution in B(0, R). In particular, z(t) satisfies the Lp estimates as claimed by the
theorem. Then η(t) = Ra(t)z(t) satisfies the Lp estimates claimed in the Theorem
3.1 by Lemma 2.2 in [12]. We now have two solutions of (17), one in C(R, H1) from
classical well posedness theory and one in C(R, L2 ∩Lq), from the above argument.
Using uniqueness and the continuous embedding of H1 in L2 ∩Lq, we infer that the
solutions must coincide. Therefore, the time decaying estimates in the space Y hold
also for the H1 solution.
Proof of Lemma 3.1 Let u1, u2 be in the space Y. Then at each s ∈ R we have:

|F2(ψE(s), u1(s))−F2(ψE(s), u2(s))| = |g(ψE + u1)− g(ψE + u2)− F1(ψE , u1) + F1(ψE , u2)|
≤ C(|u1|+ |u2|)|u1 − u2| (19)

For a linear operatorM acting on the two dimensional vector space span{∂ψE∂a1
, ∂ψE∂a2

},
using (13) we have, for any 1 6 p 6∞ :

‖MF3(ψE , u1)‖Lp ≤
∥∥∥∥M<〈Ψ1(a),−iF2(ψE , u1)〉 · ∂ψE

∂a1

∥∥∥∥
Lp

+

∥∥∥∥M<〈Ψ2(a),−iF2(ψE , η)〉 · ∂ψE
∂a2

∥∥∥∥
Lp

≤ ‖M‖ · |<〈Ψ1(a),−iF2(ψE , u1)〉| ·
∥∥∥∥∂ψE∂a1

∥∥∥∥
Lp

+ ‖M‖ · |<〈Ψ1(a),−iF2(ψE , u1)〉| ·
∥∥∥∥∂ψE∂a1

∥∥∥∥
Lp

where ‖M‖ denotes the operator norm with respect to the euclidian distance in R2

of the representation of M with respect to the basis {∂ψE∂a1
, ∂ψE∂a2

}. By (19) (with

u2 = 0), and Hölder inequality inside the L2 scalar product we get:

‖MF3(ψE , u1)‖Lp ≤ C‖M‖
(∥∥∥Ψ1

∥∥∥
Lq

∥∥∥∂ψE
∂a1

∥∥∥
Lp

+
∥∥∥Ψ2

∥∥∥
Lq

∥∥∥∂ψE
∂a2

∥∥∥
Lp

)∥∥|u1|2∥∥Lq′ (20)

where the uniform bounds on ∂ψE
∂aj

, Ψj(a), j = 1, 2 follow from the continuous

dependence on scalar a, |a(t)| 6 δ2, t ∈ R of ∂ψE
∂aj
∈ H2(R3), j = 1, 2, and from the

definitions (10) together with the estimate

<〈i∂ψE
∂a1

,
∂ψE
∂a2
〉 = <〈−i∂ψE

∂a2
,
∂ψE
∂a1
〉 > 1

2
.
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Using now the estimates in Remark 2.4 in [12], the matrix identity

(I−Ma[u1])−1 − (I−Ma[u2])−1 = (I−Ma[u1])−1Ma[u1 − u2](I−Ma[u2])−1

the estimate (20) and again (19) we get, for any 1 6 p 6∞ :

‖(I−Ma[u1])−1F3(ψE , u1)− (I−Ma[u2])−1F3(ψE , u2)‖Lp ≤ (21)

≤ ‖[(I−Ma[u1])−1 − (I−Ma[u2])−1]F3(ψE , u1)‖Lp + ‖(I−Ma[u2])−1(F3(ψE , u1)− F3(ψE , u2)‖Lp
≤ 4CM‖u1 − u2‖L2C1‖u21‖Lq′ + 2C1‖(|u1|+ |u2|)|u1 − u2|‖Lq′

Note that ‖u21‖Lq′ is exactly ‖(|u1|+ |u2|)|u1−u2|‖Lq′ with u2 = 0. So the estimates
for the latter will be valid for the former provided we make u2 = 0.

Now let us consider the difference Nu1 −Nu2 :

(Nu1 −Nu2)(t) = i

∫ t

0

Ω(t, s)Pc
[
F2(ψE(s), u1(s))− F2(ψE(s), u2(s))

− i(I−Ma(s)[u1(s)])−1F3(ψE(s), u1(s))

+ i(I−Ma(s)[u2(s)])−1F3(ψE(s), u2(s))
]
ds
(22)

• Lq Estimate :

‖Nu1−Nu2‖Lq ≤
∫ t

0

‖Ω(t, s)‖Lq′→LqC
(
‖(|u1|+|u2|)|u1−u2|‖Lq′+CM‖u1−u2‖L2‖u21‖Lq′

)
ds

To estimate the integral observe that

‖(|u1|+ |u2|)|u1 − u2|‖Lq′ ≤ (‖u1‖L2 + ‖u2‖L2)‖u1 − u2‖Lq
‖u21‖Lq′ ≤ ‖u1‖L2‖u1‖Lq

with 1
q′ = 1

2 + β
q . Using Theorem 4.2 in [11], we have for u1, u2 ∈ Y :

‖Nu1 −Nu2‖Lq ≤
∫ t

0

C(q)(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y
|t− s|4(

1
2−

1
q )(1 + |s|)4(

1
2−

1
q )

ds

≤ C(q)C1C2

(1 + |t|)4(
1
2−

1
q )

(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y

where C1 = supt(1 + |t|)4(
1
2−

1
q )
∫ t
0

ds

|t−s|4(
1
2
− 1
q
)
(1+|s|)4(

1
2
− 1
q
)
<∞ since 6 ≤ q.

• L2 Estimate : To estimate L2 norm we cannot use L2 → L2 estimate for
Ω(t, s) because that would force us to control L4 which cannot pe interpolated
between L2 and Lq, 6 ≤ q. We avoid this by using the decomposition:

Ω(t, s) = (T (t, s)− T̃ (t, s)) + (T̃ (t, s) + e−iH(t−s)Pc)
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where

T̃ (t, s) =

∫ min{t,s+1}

s

e−iH(t−τ)Pcgu(τ)Rae
−iH(τ−s)Pcdτ

=

∫ min{t,s+1}

s

eiH(t−s)Pce
iH(τ−s)Pcgu(τ)Rae

−iH(τ−s)Pcdτ

For T (t, s) − T̃ (t, s) we will use Lq
′ → L2 estimates, see Theorem 4.2 in [11],

while for T̃ (t, s) we will use duality argument with Stricharz estimates and for
e−iH(t−s)Pc we will use Stricharz estimates L∞t L

2
x. All in all we have:

‖Nu1 −Nu2‖L2 ≤
∫ t

0

‖Ω(t, s)Pc‖Lp′→L2

∥∥− i(I−Ma(s)[u1(s)])−1F3(ψE(s), u1(s))

+ i(I−Ma(s)[u2(s)])−1F3(ψE(s), u2(s))
∥∥
Lp′
ds

+

∫ t

0

‖T (t, s)− T̃ (t, s)‖Lq′→L2‖(|u1|+ |u2|)|u1 − u2|‖Lq′ds

+ ‖
∫ t

0

e−iH(t−s)Pc(|u1|+ |u2|)|u1 − u2|ds‖L2

+ ‖
∫ t

0

T̃ (t, s)Pc(|u1|+ |u2|)|u1 − u2|ds‖L2

For the first integral we use Theorem 4.2 part (i) in [11], (21) with p = 2 and
the estimates we have already obtained for (|u1| + |u2|)|u1 − u2| and |u1|u1
and similarly for the second integral we use Theorem 4.2 part (iv) in [11] the
estimates we have already obtained for (|u1|+ |u2|)|u1 − u2|. We deduce that
these integrals are uniformly bounded by:

C̃(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y .

For the third integral we use Stricharz estimate:

sup
t∈R
‖
∫ t

0

e−iH(t−s)Pc(|u1|+|u2|)|u1−u2|ds‖L2 ≤ Cs
(∫

R
‖(|u1|+ |u2|)|u1 − u2|‖γ

′

Lq′
ds

) 1
γ′

where 1
γ′ + 1

γ = 1, and 2
γ = 4( 1

2 −
1
q ). Using again the estimates we obtained

before for (|u1|+ |u2|)|u1 − u2| we get:

‖(|u1|+ |u2|)|u1 − u2|‖Lγ′s Lq′ ≤ C11

[ ∫
R

ds

(1 + |s|)8(
1
2−

1
q )γ
′

] 1
γ′

(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y

≤ C11C8(‖u1‖Y + ‖u2‖Y )‖u1 − u2‖Y (23)

where C8 =
∫
R

ds

(1+|s|)8(
1
2
− 1
q
)γ′ ds <∞ since 8( 1

2 −
1
q )γ′ > 1.

Now for the last integral consider

Ã = ‖
∫ t

0

T̃ (t, s)Ads‖L2
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Ö. Mızrak

with A = (|u1|+ |u2|)|u1 − u2|. Fix t ≥ 0. By duality

Ã = sup
‖ṽ‖L2=1

∣∣∣〈ṽ,∫ t

0

T̃ (t, s)Ads〉
∣∣∣

≤ sup
‖ṽ‖L2=1

∫ t

0

∣∣∣〈eiH(t−s)Pcṽ,

∫ min{t,s+1}

s

eiH(τ−s)Pcgu(τ)Rae
−iH(τ−s)PcAdτ〉

∣∣∣ds
≤ sup
‖ṽ‖L2=1

∫ t

0

‖eiH(t−s)Pcṽ‖Lp
∫ min{t,s+1}

s

‖eiH(τ−s)Pcgu(τ)Rae
−iH(τ−s)Pc‖Lp′→Lp′dτ‖A‖Lp′ds

≤ sup
‖ṽ‖L2=1

∫ t

0

‖eiH(t−s)Pcṽ‖Lp sup
τ∈[s,s+1]

‖ĝu(τ)‖L1‖A‖Lp′ds

Note that

‖eiH(t−s)ṽ‖LγLqx ≤ Cs‖ṽ‖L2 = Cs

by Stricharz estimate and using (23) for ‖A‖Lγ′Lq′ we get the required esti-

mates for Ã.

The L2 estimates are now complete and the proof of Lemma 3.1 is finished. 2

We now finish the proof of Theorem 3.1 by analyzing the dynamics on the center
manifold and showing it converges to a ground state. From equation (12) we have

|ã′| = C
√
F 2
21 + F 2

22 = b(t)

and ∣∣∣[a(t)ei
∫ t
0
E(s)ds]′

∣∣∣ = b(t)

Since b(t) = C
√
F 2
21 + F 2

22, and

F21 ≤
∥∥∥∥∂ψE∂a2

∥∥∥∥
Lp2

‖A‖Lq′ ≤ C‖η‖
2
Lq

F22 ≤
∥∥∥∥∂ψE∂a1

∥∥∥∥
Lp2

‖A‖Lq′ ≤ C‖η‖
2
Lq

we get 0 6 b(t) 6 C(1 + |t|)1+δ for some δ > 0, in the Theorem 3.1. Then, for any
ε > 0 we have ∣∣∣a(t)ei

∫ t
0
E(s)ds − a(t′)ei

∫ t′
0
E(s)ds

∣∣∣ 6 ∫ t

t′
b(s)ds < ε (24)

for t, t′ sufficiently large respectively sufficiently small. Therefore a(t)ei
∫ t
0
E(s)ds has

a limit when t→ ±∞. This means

ei
∫ t
0
E(s)dsψE = a(t)ei

∫ t
0
E(s)dsψ0+ei

∫ t
0
E(s)dsh(a(t)) = a(t)ei

∫ t
0
E(s)dsψ0+h(a(t)ei

∫ t
0
E(s)ds)→ ψE±∞
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Above we used h(eiθa) = eiθh(a), see Proposition 2.1 in [12]. In addition |a(t)| → a±
as t → ± at a rate |t|−δ. Since E(s) = E(|a(s)| is C1 in |a| on |a| 6 δ2, we deduce
|E(±s)− E±| 6 C(1 + s)−δ for s > 0 and some constant C > 0. If we denote

θ(±t) =
1

±t

∫ ±t
0

E(s)− E±ds, t > 0

then lim|t|→∞ θ(t) = 0 and

lim
t→±

eit(E±−θ(t))ψE(t) = ψE± .

This finishes the proof of Theorem 3.1. 2
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