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Asenkron motorlarda meydana gelen rulman arızalarının erken teşhisi, endüstriyel 
süreçlerin verimliliği, güvenliği ve bakım maliyetlerinin düşürülmesi açısından kritik 
öneme sahiptir. Bu çalışmada, asenkron motor rulman arızalarının tespiti ve 
sınıflandırılması amacıyla çoklu sensör veri füzyonuna dayalı bir Evrişimli Sinir Ağı 
(CNN) modeli önerilmiştir. Çalışma kapsamında deneysel düzenekten elde edilen üç 
eksenli titreşim, üç fazlı akım ve tork sinyalleri işlenerek spektrogram görüntülerine 
dönüştürülmüş ve derin öğrenme modeline giriş verisi olarak sunulmuştur. Sistemin 
uygulanabilirliğini artırmak adına, LabVIEW ve Python entegrasyonuna sahip Grafiksel 
Kullanıcı Arayüzleri (GUI) geliştirilmiştir. Bu arayüzler sayesinde veri toplama, ön 
işleme, model eğitimi ve test işlemleri gerçekleştirilebilmektedir. Deneysel sonuçlar, 
tekil sensör verileri yerine veri füzyonu yaklaşımının kullanılmasının sınıflandırma 
başarısını belirgin şekilde artırdığını göstermiştir. Tek başına akım ve titreşim 
verileriyle elde edilen doğrulama doğrulukları sırasıyla %83.91 ve %98.10 iken; 
titreşim, akım ve tork verilerinin birleştirilmesiyle oluşturulan füzyon modeli %99.48 
doğruluk oranına ulaşmıştır. Elde edilen bulgular, önerilen yöntemin endüstriyel 
ortamlarda arızaları yüksek hassasiyetle tespit edebileceğini ve kestirimci bakım 
uygulamaları için etkin bir çözüm sunabileceğini ortaya koymaktadır. 
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Early diagnosis of bearing faults in induction motors is of critical importance for 
industrial process efficiency, safety, and cost-effective maintenance. In this study, a 
Convolutional Neural Network (CNN) model based on multi-sensor data fusion is 
proposed for the detection and classification of induction motor bearing faults. Within 
the scope of the study, three-axis vibration, three-phase current, and torque signals 
obtained from the experimental setup were processed and converted into spectrogram 
images to serve as input data for the deep learning model. To enhance the applicability 
of the system, Graphical User Interfaces (GUIs) featuring integration with LabVIEW and 
Python were developed. Through these interfaces, data acquisition, preprocessing, 
model training, and testing processes can be performed. Experimental results 
demonstrated that using the data fusion approach instead of single sensor data 
significantly improved classification performance. While the validation accuracy rates 
obtained with current and vibration data individually were 83.91% and 98.10% 
respectively, the fusion model created by combining vibration, current, and torque data 
reached an accuracy rate of 99.48%. The findings reveal that the proposed method can 
detect faults with high precision in industrial environments, offering an effective 
solution for predictive maintenance applications. 
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1. Giriş 

Asenkron motorlar, güvenilirliği, sağlamlığı ve düşük 
maliyeti nedeniyle endüstride yaygın olarak kullanılan 
motor türüdür (Sengamalai, Anbazhagan, Thamizh 
Thentral, Vishnuram, Khurshaid ve Kamel, 2022). 
Ancak, zamanla aşınma, yıpranma veya arıza durumları 
motorların performansını etkileyebilir ve sistemde 
ciddi arızalara yol açabilir. Bu arızaların başında ise 
rulman arızaları gelmektedir. Asenkron motorlarda 
meydana gelen rulman arızaları, sistem performansını 
doğrudan etkileyen en yaygın arıza türlerinden biridir 
(Tyagi ve Panigrahi, 2017). Geleneksel arıza tespit 
yöntemleri, genellikle titreşim analizi, termal 
görüntüleme ya da akım sinyali analizi gibi fiziksel 
ölçümlere dayanmaktadır. Bu yöntemlerde analiz 
süreci çoğu zaman uzman operatörlerin bilgi ve 
deneyimlerine bağlıdır. Ancak uzmanlar hata yapabilir 
ve karar verme süreçleri çoğunlukla özneldir. Ayrıca bu 
yöntemlerin bazıları anlık değil, dönemsel ölçümlerle 
sınırlı kalmaktadır. Bu nedenle arızaların erken tespiti 
zorlaşmakta ve bakım maliyetleri artmaktadır (Zhao, 
Yan, Chen, Mao, Wang ve Gao, 2019). Bu yüzden, arıza 
tespiti ve arıza düzeyinin değerlendirilmesini daha 
nesnel hale getirecek yaklaşımlar geliştirmek 
gerekmektedir (Ewert, Kowalski ve Orlowska-
Kowalska, 2020). Bu noktada, insan uzmanlığını taklit 
edebilen ve büyük veri kümelerinden öğrenerek 
yüksek doğrulukta sonuçlar üretebilen yapay zeka 
teknikleri, bu süreci otomatikleştirmek ve güvenilir 
hale getirmek için güçlü bir potansiyel sunmaktadır. 
Son yıllarda yapay zeka teknikleri, özellikle de derin 
öğrenme algoritmaları, karmaşık sinyallerin analizi ve 
arıza tespiti alanlarında güçlü bir araç olarak öne 
çıkmaktadır (Demirci, Saraçbaşi, Emrah, Uzun, Genç ve 
Özkan, 2022; Dündar, Sarıçiçek, Çinar ve Yazıcı,  2021). 
Derin öğrenme algoritmalarından biri olan Evrişimli 
Sinir Ağları (CNN), görüntü işleme başta olmak üzere 
birçok alanda yüksek başarı oranları elde etmiş, ses ve 
titreşim gibi zaman serisi verilerinin 
sınıflandırılmasında da etkin biçimde kullanılmaya 
başlanmıştır. CNN, özellik çıkarımı ve sınıflandırma 
işlemlerini aynı yapıda gerçekleştirebildiği için, sinyal 
işleme süreçlerini basitleştirmekte ve daha yüksek 
doğrulukta kararlar alınmasını sağlamaktadır (Cengiz, 
Yaylak ve Gülbandilar, 2022; Han, Choi, Hong ve Kim, 
2019; Li, Deng, Wu, Chen ve Xu, 2020; Wang vd., 2021). 
Ancak sadece doğru sınıflandırma değil, aynı zamanda 
çıktıların operatör tarafından yorumlanabilir şekilde 
sunulması da önemlidir. Bu bağlamda LabVIEW 
(Laboratory Virtual Instrument Engineering 
Workbench), sinyal işleme, görsel arayüz tasarımı ve 
donanım kontrolü konularında sunduğu güçlü araçlarla 
ön plana çıkmaktadır. LabVIEW, National Instruments 
firması tarafından geliştirilmiş olup, mühendislik, 
bilimsel araştırma ve endüstriyel alanlarda test ve 
kontrol sistemlerinde yaygın olarak kullanılan bir 
görsel programlama dilidir. Özellikle veri toplama, test, 

ölçüm ve analiz sistemleri geliştirmede etkili bir 
platformdur (Mekala, Jayabharathi, Rajkumar ve 
Darshini, 2022). LabVIEW, kullanıcıların bir program 
oluşturmak için görsel öğeleri sürükleyip 
bırakabilecekleri bir grafiksel programlama yaklaşımı 
sağlar. Bu yaklaşım, kullanıcıların sistem tasarımını 
daha sezgisel ve görsel bir biçimde 
gerçekleştirmelerine olanak tanımaktadır.  

LabVIEW ile tasarlanan bir çalışmada (Chavhan ve 
Ugale, 2016) yeni satın alınan motorların 
performansının ve bütünlüğünün doğrulanması için 
motor üzerinde test yapılması üzerine bir grafiksel 
kullanıcı arayüzü (GUI) tasarımı geliştirmişlerdir. 
Tasarlanan GUI ile motorun hız ve yük kontrolü 
yapılarak motor performansını değerlendirmişlerdir. 
Başka bir çalışmada (Pavithra ve Rao, 2018) LabVIEW 
yazılımı, üç fazlı asenkron motorun hız ve dönüş yönü 
kontrolü için Programlanabilir Lojik Kontrol (PLC) ile 
iletişim kurmak amacıyla kullanılmıştır.  

LabVIEW kullanılarak asenkron motorda arıza 
tanımlama için önerilen bir çalışmada (Sasireka, 
Vidhyalakshmi, Rupasri, Sanjai ve Sanjana, 2023), 
motorun titreşimi ve akım verilerini gerçek zamanlı 
olarak izleyebilen ve analiz edebilen bir GUI 
tasarlanmıştır. Makine öğrenimi ile sinyallerden 
özellikler çıkarıp analiz etmek için LabVIEW sinyal 
işleme işlevleri kullanılmıştır. Daha sonra, çıkarılan 
özelliklerin bir arızayı gösterebilecek sapmaları tespit 
etmek için sağlıklı bir motorun referans modeliyle 
karşılaştırılması yapılmıştır. 

Yapılan bazı çalışmalar, yapay zeka modellerini 
LabVIEW ortamına entegre ederek kullanıcıya anlık 
görsel geri bildirim sağlamayı başarmıştır. Ancak 
literatürde, CNN tabanlı rulman arıza tespiti ile bu 
çıktıları LabVIEW GUI üzerinde görselleştiren 
bütünleşmiş çözümler oldukça sınırlıdır. Bu çalışma, bu 
boşluğu doldurmayı amaçlamakta; hem yüksek 
doğruluklu bir arıza tespiti modeli sunmakta hem de bu 
modeli endüstriyel kullanım için uygun bir kullanıcı 
arayüzü ile desteklemektedir. 

Literatürdeki iş akışları dikkate alınarak tasarlanan 
arayüzlerde, karmaşık teknik detayların arka planda 
tutulduğu kullanıcı dostu bir mimari hedeflenmiştir. 
“Giriş-İşlem-Sonuç” döngüsünü takip eden bu yapı, veri 
işleme süreçlerinin sıralı ve hatasız yürütülmesine 
olanak tanıyarak sistemin işlevsel performansını 
maksimize etmektedir. 

Bu çalışmada, asenkron motorlarda rulman arızalarının 
tespiti için CNN tabanlı bir model geliştirilmiştir. 
Model, asenkron motordan toplanan titreşim, akım ve 
tork verileriyle eğitilmiş ve farklı rulman arıza türlerini 
(sağlam, dış bilezik, iç bilezik ve bilye arızası) 
sınıflandırmak üzere yapılandırılmıştır. Ayrıca, 
geliştirilen sistem veri toplama, analiz ve test çıktıları 
olmak üzere kullanıcıya anlık bilgi sunma amacıyla 
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LabVIEW ortamında tasarlanmış GUI üzerinden 
görselleştirilmiştir. Bu sayede hem arıza tespiti 
otomatik hale getirilmiş, hem de operatörlerin sistem 
durumunu anlık olarak takip edebileceği kullanıcı 
dostu bir platform oluşturulmuştur. 

2. Metodoloji 

Bu bölümde, asenkron motorlarda rulman arızalarının 
tespiti amacıyla geliştirilen derin öğrenme yaklaşımı 
sunulmaktadır. Çalışmanın metodolojisi, LabVIEW 
ortamında tasarlanan üç farklı arayüz ile yönetilen üç 
temel aşamadan oluşur. Birinci aşamada; Veri Toplama 
Arayüzü kullanılarak deney düzeneğinden ham 
sinyaller kaydedilmiştir. İkinci aşamada; veri ön işleme 
ve veri füzyonu (birleştirme) ile CNN modelinin eğitimi 
için gerekli olan veri setinin oluşturulması Eğitim 
Arayüzü üzerinden gerçekleştirilmiştir. Üçüncü 
aşamada ise Test Arayüzü aracılığıyla, daha önce 
görülmemiş veriler ile tahmin yapılmış ve sonuçlar 
görselleştirilmiştir. Bölümün devamında deneysel test 
düzeneği, arıza oluşturma ve deneysel senaryolar, GUI 
tasarımları ve model mimarisi ayrıntılı olarak 
açıklanmaktadır. 

2.1 Deneysel Test Düzeneği 

Çalışmada üç fazlı 50 Hz 1.5 kW 6 kutuplu bir asenkron 
motor kullanılmıştır. Titreşim, akım ve tork verileri 
Şekil 1’de verilen deneysel test düzeneği kullanılarak 
toplanmıştır. Veri toplamak için National Instrument 
(NI) cRio 9056 veri toplama sistemi kullanılmıştır. 
Titreşim sinyalleri, 3 eksenli bir titreşim sensörü (PCB 
356a15) ve bir NI 9230 modülü ile, akım sinyalleri bir 
NI 9225 modülü ile ve tork sinyalleri de bir NI 9209 
modülü ile toplanmıştır. NI 9230 modülü 3 kanal ± 30V 
analog giriş modülü olup maksimum 12.8 kHz veri 
okuma hızına sahiptir. 6400 Hz örnekleme hızında üç 
eksen titreşim sinyallerini okumak üzere ayarlanmıştır. 
NI 9225 modülü 3 kanal ± 300 V analog giriş modülü 
olup maksimum 50 kHz veri okuma hızına sahiptir. 
6400 Hz örnekleme hızında üç faz stator akım 
sinyallerini okumak üzere ayarlanmıştır. NI 9209 
modülü ± 10V, 32 kanallı analog giriş modülü olup 
maksimum 500 Hz veri okuma hızına sahiptir. 100 Hz 
örnekleme hızında tork sinyallerini okumak üzere 
ayarlanmıştır.  
 

 

Şekil 1. Deneysel Test Düzeneği 

2.2 Arıza Oluşturma ve Deneysel Senaryolar 

Çalışmada, endüstriyel ortamdaki rulman 
bozulmalarını simüle etmek amacıyla yapay hasar 
oluşturma yöntemi izlenmiştir. Bu kapsamda, motorun 
tahrik tarafındaki rulmanlar üzerinde mekanik işlem 
uygulanarak tek nokta arızaları meydana getirilmiştir. 
Arızalar; rulmanın dış bilezik, iç bilezik ve bilye 
yüzeylerinde 1.5 mm çapında delikler açılması 
suretiyle oluşturulmuştur.  

Oluşturulan her bir arıza türü, diğerlerinden bağımsız 
olarak analiz edilmiştir. Buna göre, geliştirilen arıza 
teşhis modelinin eğitimi ve testi için toplam dört farklı 
operasyonel durum tanımlanmıştır. Deneylerde SKF 
6205 tipi rulmanlar kullanılmış olup her bir senaryo 
için tanımlanan rulmanlar Şekil 2'de gösterilmiştir. 
 

 

Şekil 2. Çalışmada kullanılan rulmanlar a) sağlam,        
b) dış bilezik arızalı, c) iç bilezik arızalı, d) bilye arızalı 

 

2.3. GUI Tasarımları 

LabVIEW ortamında geliştirilen sistem; veri toplama, 
eğitim ve test bölümlerini içeren GUI tasarımlarından 
oluşmaktadır (Şekil 3).   GUI’ler modüler bir şekilde 
tasarlanmış olup kullanıcıların farklı işlevlere hızlıca 
erişebilmesi amaçlanmıştır.  
 

 

Şekil 3. GUI tasarımı 
 

GUI-1 veri okuma ve CSV dosyasına kaydetme için 
tasarlanmıştır. GUI-1 arayüzü ile sağlam, dış bilezik 
arızalı rulman, iç bilezik arızalı rulman ve bilye arızalı 
rulman ile çalıştırılan deneysel test düzeneğinden her 
sınıf için ayrı ayrı 120 sn süre ile titreşim, akım ve tork 
verileri kaydedilmiştir. Her rulmandan kaydedilen 120 
sn’lik verilerin ilk 100 sn’lik kısmı modelin eğitimi için 
kullanılırken sonraki 20 sn’lik veriler ise modelin test 
edilmesi için ayrılmıştır. 
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GUI-2 veri ön işleme ve veri füzyonu için tasarlanmıştır. 
GUI-1’de kaydedilen ham veriler (titreşim, akım ve 
tork) veri ön işlemede Hilbert dönüşümü alınıp STFT 
ile spektrogramlara çevrilmektedir. Elde edilen 
spektrogramlar birleştirilerek Python 3.8’de hazırlanan 
CNN modelinde eğitim verisi olarak kullanılmaktadır.     

GUI-3 ise test verisini veri ön işleme, veri füzyonu, 
önceden eğitilip kaydedilen CNN modelini çağırıp, arka 
planda çalıştırma ve modelin tahmin sonucunu 
ekranda göstermek üzere tasarlanmıştır.    

2.3.1 GUI-1 Veri Toplama Arayüzü 

GUI-1 asenkron motora ait titreşim, akım ve tork 
verilerinin istenen sürede anlık olarak okunup CSV 
dosyasına kaydedilmesi için tasarlanmıştır. Verilerinin 
okunması için DAQ Assistant nesneleri kullanılmıştır. 
Blok diyagram sayfasında açılan pencerede DAQ 
Assistant nesnesi bulunarak sayfa üzerine taşınmıştır. 
Ayrıca sayfaya 6 adet Write Delimited Spreadsheet.vi 
nesnesi eklenmiştir. Bu nesne CSV dosyası oluşturmak 
için kullanılmıştır. Bu nesnelerin üçü başlık satırı 
eklemek için diğer üçü ise kayıt süresi boyunca okunan 
titreşim, akım ve tork verilerini kaydetmek için 
kullanılmaktadır. GUI-1’e ait blok diyagram Şekil 4’te, 
ön paneli ise Şekil 5’te görülmektedir. 
 

 

Şekil 4. GUI-1 Blok Diyagramı 
 
 

 

Şekil 5. GUI-1 Ön Panel 

 

Şekil 5’te titreşim, akım ve tork verilerinin anlık 
görüntüleri görülmektedir. 

2.3.2 GUI-2 Eğitim Arayüzü 

Bu modül Python 3.8’de hazırlanmış CNN modeli için 
eğitim verisi hazırlamak üzere tasarlanmıştır. Şekil 3’de 
görüldüğü gibi 2 kısımdan oluşmaktadır. Birinci kısım 
veri ön işleme, ikinci kısım veri füzyonudur.  

2.3.2.1 Veri Ön İşleme 

Veri ön işlemede Hilbert Dönüşümü (HT) ve Kısa 
Zamanlı Fourier Dönüşümü (STFT) kullanılmıştır. HT, 
günümüzde arıza teşhisinde yaygın olarak kullanılan 
gelişmiş sinyal işleme yöntemlerinden biridir.  HT, 
doğrusal olmayan ve durağan olmayan sinyalleri analiz 
etmek için kullanılan etkili bir zaman-frekans sinyal 
işleme yöntemi olarak tanımlanmaktadır (Dias ve Silva, 
2022; El Idrissi, Derouich, Mahfoud, El Ouanjli, 
Chantoufi, Al-Sumaiti ve Mossa, 2022; Mahela, Sharma, 
Kumar, Khan ve Alhelou, 2020; Ramu, Irudayaraj ve 
Subramaniam, 2020). STFT ile frekansı zamana bağlı 
olarak değişen sinyallerin analizleri yapılabilmekte 
olup, asenkron motorların arızalarını tespit etmek için 
kullanılan en popüler yöntemlerden biridir (Liu, Cheng 
ve Wen, 2020; Pietrzak ve Wolkiewicz, 2022). Zaman-
frekans analizinde kullanılan STFT pencereleri, sinyali 
küçük parçalara ayırarak, her bir parçanın frekans 
bileşenlerini incelememizi sağlayan spektrogramlara 
dönüştürür. Çalışmada kullanılan HT ve STFT 
işlemlerine ait blok diyagramlar Şekil 6’te verilmiştir. 
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Şekil 6. GUI-2 Veri Ön İşleme Blok Diyagramı 
 

2.3.2.2 Veri Füzyonu 

Bu bölümde, CNN modelinin eğitim veri setini 
oluşturmak amacıyla; titreşim, akım ve tork 
verilerinden elde edilen spektrogramların 
birleştirilmesi işlemi detaylandırılmıştır. 

Öncelikle titreşim, akım ve tork verilerine ait 
spektrogram verileri farklı ölçekte olabileceği için 
normalizasyon işlemine tabi tutulur. Normalizasyon 
işlemi veriyi 0-1 aralığına sıkıştırır. Böylece büyük 
ölçekli değerlerin küçük ölçekli değerlere baskın 
çıkması engellenmiş olur. Bu da derin öğrenme 
modelinin özellikleri öğrenmesini kolaylaştırır. 
Normalizasyon işlemine ait formül eşitlik (1)’de 
verilmiştir. 
 

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

 

burada 𝑥 spektrogramda her bir pixele ait veriyi, 𝑥𝑚𝑖𝑛  
spektrogramdaki en küçük veriyi, 𝑥𝑚𝑎𝑥  en büyük veriyi 
gösterir. 𝑥′ ise normalizasyona çevrilmiş veriyi 
göstermektedir.  

GUI-2 arayüzünde (Şekil 8) seçimleri yapılan X axis, Y 
axis, Z axis, Phase1, Phase2, Phase3 ve Torque verileri, 
normalizasyon işleminin ardından Eşitlik (2)'deki 
formül ile birleştirilir (Şekil 7).  
 

𝐹 = ∑ {
𝑥(𝑖) , 𝑒ğ𝑒𝑟 𝑖. 𝑣𝑒𝑟𝑖 𝑠𝑒ç𝑖𝑙𝑑𝑖𝑦𝑠𝑒

0  , 𝑒ğ𝑒𝑟 𝑖. 𝑣𝑒𝑟𝑖 𝑠𝑒ç𝑖𝑙𝑚𝑒𝑑𝑖𝑦𝑠𝑒
}7

𝑖_1  (2) 

 

Burada 𝑖 sensör verisini temsil eden numaradır. 1: X 
eksen titreşim, 2: Y eksen titreşim, 3: Z eksen titreşim, 
4: akım faz1, 5: akım faz2, 6: akım faz3 ve 7: tork için 
kullanılmıştır. Eğer GUI-2 üzerinden ilgili sensör 
seçildiyse normalize edilmiş ilgili spektrogram verisi 
toplanacak aksi halde toplama dahil edilmeyecektir. 

Birleştirme işlemi tamamlanan veri (F) train.csv adında 
yeni bir CSV dosyasına kaydedilir. Bu dosya Python 3.8 
de hazırlanan CNN modelinin eğitim verisidir. Eğitilen 
CNN modeli .h5 formatında dışa aktarılır. 

 

Şekil 7. GUI-2 Veri Füzyonu Blok Diyagramı 
 
 

 

Şekil 8. GUI-2 Ön Panel 
 

2.3.3 GUI-3 Test Modülü 

GUI-3 Test modülü, veri ön işleme ve veri füzyonu 
aşamalarında GUI-2 ile aynı metodolojiyi izlemektedir. 
Bu modülün temel işlevi; .h5 formatında kaydedilen 
eğitilmiş CNN modelinin, LabVIEW ortamına entegre 
edilen Python betikleri (scripts) aracılığıyla arka 
planda yürütülmesidir.  
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Şekil 9. LabVIEW ile Python Entegrasyonu Blok 
Diyagramı 
 

Şekil 9’da, LabVIEW ve Python ortamları arasındaki 
entegrasyonu sağlayan blok diyagram verilmiştir. Bu 
yapıda, arka planda çalışan Python betiklerinden elde 
edilen analiz sonuçları, arayüz üzerindeki 'output' 
etiketli metin kutusuna aktarılarak görüntülenir. 

Modelden elde edilen sınıflandırma sonuçlarına göre 
ilgili arıza görselleri kullanıcı arayüzüne yansıtılır. 
Sistem, yeniden eğitim gerektirmeksizin doğrudan 
çıkarım işlemi gerçekleştirdiği için analiz sonuçları 
yüksek hızda üretilmektedir. GUI-3 Test Modülüne ait 
ön panel Şekil 10’da görülmektedir. 
 

 

Şekil 10. GUI-3 Ön Panel 
 

2.4 CNN Modeli 

CNN modeli Python 3.8 ortamında TensorFlow/Keras 
kütüphaneleri kullanılarak geliştirilmiştir. Model, iki 
boyutlu (2D) evrişim işlemleri ile spektrogram 
verilerini kullanacak şekilde tasarlanmıştır. CNN 
modelinin katman mimarisi Tablo 1’de verilmiştir.  

Çalışmada, görüntü sınıflandırma işlemi için Sıralı 
(Sequential) bir Derin Öğrenme modeli tasarlanmıştır. 
Model, öznitelik çıkarımı yapan evrişim (Convolution) 
blokları ve sınıflandırma yapan tam bağlı (Dense) 
katmanlardan oluşmaktadır. Modelin giriş kısmında üç 
adet Conv2D katmanı bulunmaktadır. Bu katmanlarda 
sırasıyla 8, 64 ve 128 filtre kullanılarak görüntü 
üzerindeki hiyerarşik özellikler öğrenilmektedir. Her 
evrişim katmanının ardından, işlem yükünü hafifletmek 

ve en belirgin özellikleri korumak amacıyla MaxPool2D 
katmanı ile boyut indirgeme işlemi uygulanmıştır. Ara 
katmanlarda, negatif değerleri sıfırlayarak modelin 
doğrusal olmayan ilişkileri öğrenmesini sağlayan ReLU 
(Rectified Linear Unit) aktivasyon fonksiyonu tercih 
edilmiştir. Modelin eğitim verisini ezberlemesini 
engellemek için ağın belirli kısımlarına %25 oranında 
seyreltme (Dropout) uygulanmıştır. Bu işlem, eğitim 
sırasında rastgele nöronları kapatarak ağın daha güçlü 
olmasını sağlamaktadır. Öznitelik çıkarımı 
tamamlandıktan sonra veriler Flatten işlemi ile tek 
boyutlu vektöre dönüştürülmüştür. Sınıflandırma 
bloğunda sırasıyla 32 ve 16 nöronlu iki gizli katman 
bulunur. Son katmanda, modelin 4 farklı sınıfı ayırt 
etmesi beklendiğinden 4 nöron kullanılmıştır. Burada 
aktivasyon fonksiyonu olarak, çıktıların toplamının 1 
olmasını sağlayan ve her sınıf için bir olasılık değeri 
üreten Softmax kullanılmıştır. 

Modelin eğitimi 25 epok (Epoch) boyunca, her adımda 
8 veri örneği (Batch size) işlenerek gerçekleştirilmiştir. 
Optimizasyon algoritması olarak Adam (Learning 
Rate=0.0001) seçilmiş ve hata hesaplamasında çoklu 
sınıflandırma problemlerine uygun olan Categorical 
Crossentropy kayıp fonksiyonu kullanılmıştır. 
 

Tablo 1. CNN Modelinin Katman Mimarisi 

Katman Tipi 

Filtre 
/ 
Nöron 
Sayısı 

Kernel 

A
k

ti
v

as
y

o
n

 
F

o
n

k
si

y
o

n
u

 

İşlevi 

Conv2D (Giriş) 8 4x4 ReLU Özellik Çıkarımı 
MaxPooling2D - 2x2 - Boyut İndirgeme 
Conv2D 64 3x3 ReLU Özellik Çıkarımı 
MaxPooling2D - 2x2 - Boyut İndirgeme 
Conv2D 128 2x2 ReLU Özellik Çıkarımı 
MaxPooling2D - 2x2 - Boyut İndirgeme 
Dropout Oran: 

0.25 
- - Aşırı Öğrenmeyi 

Önleme 
Flatten - - - Veriyi 

Düzleştirme  
Dense  
(Tam Bağlı) 

32 - ReLU Sınıflandırma 
Özellikleri 

Dropout Oran: 
0.25 

- - Aşırı Öğrenmeyi 
Önleme 

Dense  
(Tam Bağlı) 

16 - ReLU Ara Sınıflandır-
ma Katmanı 

Dense  
(Çıkış) 

4 - Soft-
max 

Sonuç / Olasılık 
Dağılımı 

 

Bu çalışma kapsamında yapılan testler ve sonuçların 
sunulmasında araştırma ve yayın etiğine uyulmuştur. 

3. Bulgular ve Tartışma 

Bu bölümde, asenkron motor rulman arızalarının 
tespiti amacıyla geliştirilen veri füzyonu tabanlı CNN 
modelinin deneysel sonuçları sunulmaktadır. Modelin 
başarımı; tekil sensör verileri ve birleştirilmiş veri 
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setleri üzerinden elde edilen doğruluk oranları, 
karışıklık matrisi analizleri ve arayüz çıktıları dikkate 
alınarak kapsamlı bir şekilde değerlendirilmiştir. 

Farklı sensör verilerinin (titreşim, akım ve tork) tek 
başlarına ve birleştirilerek kullanılması durumunda 
elde edilen model performansları karşılaştırmalı olarak 
analiz edilmiştir. Tekil veri ile veri füzyonu yönteminin 
eğitim ve doğrulama aşamalarındaki doğruluk oranları 
Tablo 2’de sunulmuştur. 
 

Tablo 2. Farklı Veri Setleri İçin Elde Edilen Eğitim ve 
Doğrulama Doğruluk Oranları (%) 

Veri Setleri 
Eğitim 
Doğruluğu 

Doğrulama 
Doğruluğu 

Titreşim 98.70 98.10 
Akım 84.28 83.91 
Tork 97.61 97.51 
Titreşim+Akım+Tork (Füzyon) 99.75 99.48 

 

Tablo 2 incelendiğinde, tekil veri kaynakları arasında 
en düşük başarının akım verisiyle (%83.91), en yüksek 
başarının ise titreşim verisiyle (%98.10) elde edildiği 
görülmektedir. Bununla birlikte, önerilen yöntem ile 
tüm verilerin (titreşim, akım ve tork) birleştirilmesi 
sonucunda model performansı belirgin şekilde 
iyileşmiş ve doğrulama aşamasında %99.48 gibi yüksek 
bir doğruluk oranına ulaşılmıştır. Bu durum, veri 
füzyonu yaklaşımının arıza tespitindeki etkinliğini ve 
güvenilirliğini kanıtlar niteliktedir. 

Tablo 2'de en yüksek performansı sergilediği görülen 
veri füzyonu modelinin sınıflandırma başarımı, Şekil 
11’deki karışıklık matrisi ile detaylandırılmıştır. GUI-2 
arayüzünde ön işleme ve birleştirme adımları 
tamamlanan spektrogram veri setlerinin kullanıldığı bu 
analizde; modelin eğitim ve doğrulama süreçlerinde 
her bir arıza sınıfını (Sağlam, Dış Bilezik, İç Bilezik, 
Bilye) ne kadar yüksek hassasiyetle ayırabildiği 
görülmektedir. 

Çalışmada kullanılan veri seti her sınıf için 6400 adet 
olmak üzere toplam 25600 adet görüntüden 
oluşmaktadır. Veri seti, modelin yanlılık (Bias) 
oluşturmasını engellemek için 4 farklı sınıf arasında 
dengeli bir şekilde dağıtılmıştır. Veri setinin %70’i 
eğitim ve %30’u doğrulama olarak ayrılmıştır.  
 

 

Şekil 11. Eğitim ve Doğrulama Karışıklık Matrisi 

Modelin sağlam rulmanı (0) kolaylıkla ayırt edebildiği, 
ancak dış bilezik (1), iç bilezik (2) ve bilye (3) arızaları 
arasında sınırlı da olsa karışıklık yaşadığı görülmüştür. 
Bu durum sinyallerin bazı frekans bileşenlerinin 
birbirine yakın olmasından kaynaklanabilir. Bu 
karışıklık, modelin hassasiyeti arttırılarak veya daha 
fazla veriyle eğitim yapılmasıyla azaltılabilir.  
 

Tablo 3. Doğrulama Performans Raporu 
Sınıf  
 

Kesinlik 
(Precision) 

Duyarlılık 
(Recall) 

F1 
Örnek 
Sayısı 

Sınıf Bazlı 
Doğruluk 

0 1.000 1.000 1.000 1936 %99.99 
1 0.998 0.982 0.990 1884 %99.50 
2 0.996 0.997 0.997 1933 %99.84 
3 0.986 1.000 0.993 1927 %99.62 

Ort. 0.995 0.995 0.995  
Genel: 
%99.48 

 

Tablo 3’de her bir sınıf (0, 1, 2, 3) için hesaplanmış 
metrikler (Precision, Recall, F1) görülmektedir. En 
düşük performans Sınıf 1'de görülmektedir. Şekil 11’e 
bakıldığında, Sınıf 1 olması gereken 27 örneğin 
yanlışlıkla Sınıf 3 olarak tahmin edildiği 
anlaşılmaktadır. Ayrıca 7 örnek de Sınıf 2 ile 
karıştırılmıştır. Bu durum Sınıf 1'in Duyarlılık (Recall) 
değerini %98.2'ye çekmiştir. Sınıf 3'ün Duyarlılık 
değeri çok yüksek (%100'e yakın) olsa da, Kesinlik 
(Precision) değeri diğerlerine göre biraz düşüktür 
(0.986). Bunun sebebi, aslında Sınıf 1 olan örneklerin 
Sınıf 3 olarak tahmin edilmesidir. Modelin genel 
doğrulama başarısı %99.48'dir. Bu, modelin sınıfları 
ayırt etmede son derece başarılı olduğunu 
göstermektedir. 

Modelin gerçek zamanlı test performansı ise geliştirilen 
GUI-3 arayüzü üzerinden doğrulanmıştır. Elde edilen 
test sonuçlarına ait ekran görüntüleri Şekil 12’de 
verilmiştir. 

Şekil 12’de, asenkron motordan elde edilen üç eksenli 
titreşim, akım ve tork verilerinin test_model.py betiği 
ile işlenmesi sonucu elde edilen sınıflandırma çıktıları 
verilmiştir. Gerçekleştirilen testlerde; sağlam rulman 
durumu %99.65 doğruluk oranıyla '0- Healthy' sınıfına 
atanarak arayüzde yeşil gösterge ile görselleştirilmiştir 
(Şekil 12-a). Arızalı durumlar incelendiğinde ise; dış 
bilezik arızası kırmızı gösterge ile '1- Outer' %93.56 
doğrulukla (Şekil 12-b), iç bilezik arızası sarı gösterge 
ile '2- Inner' %93.73 doğrulukla (Şekil 12-c) ve bilye 
arızası mavi gösterge ile '3- Ball' %95.78 doğrulukla 
(Şekil 12-d) başarıyla tespit edilip GUI-3 üzerinde 
operatöre sunulmuştur. 

Önerilen model hem eğitim hem de test veri 
kümelerinde yüksek doğruluk oranları sergilemiştir. 
Ayrıca model çıktılarının LabVIEW arayüzü üzerinde 
görselleştirilmesi sayesinde, kullanıcıların karar verme 
süreci hızlandırılmış ve sistemin endüstriyel 
uygulanabilirliği artırılmıştır. 
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Şekil 12. GUI-3 Test Sonuçları a) Sağlam Rulman b) Dış 
Bilezik Arızası c) İç Bilezik Arızası d) Bilye Arızası  
 
Geliştirilen arayüz kullanıcı deneyimi açısından test 
edilmiş ve aşağıdaki işlevsellikleri başarıyla yerine 
getirmiştir: 
 Veri analizi: Kullanıcılar motor titreşim verilerini 

anlık olarak yükleyebilmiş ve CNN modelini 
çalıştırarak arıza türünü görebilmiştir.  

 Otomatik karar desteği: CNN tarafından yapılan 
tahmin, arıza durumunu açık bir şekilde 
göstermektedir. 

 Otomasyon: İnsan müdahalesine ihtiyaç duymadan 
teşhis süreci yürütülebilmektedir. 

 Entegrasyon kolaylığı: LabVIEW-Python 
entegrasyonu sayesinde sistem kolayca donanım 
tabanlı uygulamalara uyarlanabilir. 

Ancak sistemin bazı sınırlılıkları da göz önünde 
bulundurulmalıdır: 

 Model sadece deneyde kullanılan veri seti üzerinde 
test edilmiştir; gerçek sistemlerde benzer 
performans için farklı motorlardan alınan verilerin 
adaptasyonu gerekebilir. 

 LabVIEW arayüzü, büyük veriler ile uzun süreli 
analize uygun hale getirildiğinde daha yüksek 
performanslı donanım gerekebilir. 

 Saha koşullarındaki gürültülü verilerde model 
kararlılığı ayrıca değerlendirilmelidir. 

4. Sonuç ve Öneriler 

Bu çalışmada, asenkron motor rulman arızalarını 
yüksek doğrulukla tespit etmek amacıyla CNN tabanlı 
bir model geliştirilmiş ve elde edilen sonuçlar, kullanıcı 
dostu bir arayüz ile LabVIEW ortamına entegre 
edilmiştir. Geliştirilen sistem, %99.75 eğitim ve %99.48 
doğrulama doğruluğu ile geleneksel yöntemlere kıyasla 
üstün bir performans sergilemiştir. Veri ön işleme, 
özellik çıkarımı ve sınıflandırma aşamalarının CNN 
mimarisi ile otomatikleştirilmesi, manuel mühendislik 
süreçlerini ortadan kaldırarak sistemin verimliliğini 
artırmıştır. Ayrıca, LabVIEW entegrasyonu sayesinde 
bu gelişmiş model, üretim hatları gibi kontrol odaklı 
endüstriyel ortamlarda operatörler tarafından 
kolaylıkla kullanılabilir hale getirilmiştir. 

Çalışmada elde edilen %99.75'lik sınıflandırma ve 
%99.48 doğrulama başarısı, yalnızca sağlıklı ve arızalı 
durumların ayrımında değil, aynı zamanda dış bilezik, 
iç bilezik ve bilye arızalarının teşhisinde de yüksek 
kararlılık göstermiştir. Bu yüksek ayırıcılık yeteneği, 
endüstriyel uygulamalar için şu kritik avantajları 
sağlayabilir: 

 Erken Uyarı ve Müdahale: Hata türünün (örneğin 
bilye arızası) hassasiyetle belirlenmesi, bakım 
ekiplerinin doğru yedek parça ve ekipmanla en 
hızlı şekilde müdahale etmesine olanak tanır. 

 Güvenilirlik ve Yanlış Alarmların Önlenmesi: 
Yüksek sınıflandırma doğruluğu, endüstriyel 
sahalarda operatörlerin sisteme olan güvenini 
sarsan “yanlış pozitif” alarmları minimize eder. 

 Maliyet Optimizasyonu: Beklenmedik duruşların 
önüne geçilerek üretim kayıpları engellenir. 
Böylece reaktif bakımdan kestirimci bakıma geçiş 
sağlanarak işletme maliyetleri optimize edilir. 

Son olarak, geliştirilen bu sistem yalnızca endüstriyel 
uygulamalar için değil, aynı zamanda görselleştirme 
yetenekleri sayesinde üniversiteler ve teknik eğitim 
kurumlarında, sinyal işleme ve yapay zeka tabanlı arıza 
tespiti konularının öğretilmesinde de etkili bir eğitim 
aracı olarak kullanılabilir. 

Bu çalışmanın bir temel oluşturduğu göz önüne 
alındığında, gelecekte yapılabilecek geliştirme ve 
araştırma başlıkları aşağıdaki gibi özetlenebilir: 

 Gerçek zamanlı donanım entegrasyonu: Sistem, 
endüstriyel motorlardan gelen canlı sinyallerle 
entegre edilerek çevrim içi arıza teşhisi yapılabilir. 

 Modelin genellenebilirliğinin artırılması: Farklı 
motorlara ait verilerle model yeniden eğitilerek 
genelleme kapasitesi test edilebilir. 
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 Derin öğrenme model mimarilerinin 
karşılaştırılması: Farklı derin öğrenme yapılarıyla 
CNN performansı karşılaştırılabilir. 

 Mobil ya da gömülü sistem entegrasyonu: 
Raspberry Pi, Jetson Nano, Arduino gibi sistemler 
kullanılarak taşınabilir bir bakım destek cihazı 
geliştirilebilir. 

Sonuç olarak, bu çalışma, yapay zeka destekli arıza 
tespitinin endüstriyel otomasyon sistemlerine 
entegrasyonu konusunda uygulanabilir ve 
ölçeklenebilir bir yaklaşım sunmaktadır. Böylece, 
LabVIEW kullanılarak bir arıza tespit sistemi 
uygulanması, asenkron motorlarının güvenli ve 
güvenilir bir şekilde izlenmesini sağlayabilir ve işletme 
maliyetlerini azaltabilir.  

Derin öğrenme algoritmalarının bu gibi uygulamalarda 
sunduğu yüksek doğruluk, gelecekte bakım 
stratejilerinin merkezinde yer alacağının güçlü bir 
göstergesidir. 
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