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generalization, the data augmentation techniques were applied which including rotation, flipping, and scaling. For early disease
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1. Introduction

Bacterial and fungal leaf diseases significantly impact the
productivity of agricultural, which causing annually
billions of dollars in crop losses and threatening global
food security. Conventional detection methods even
though effective, but they are labor intensive, consuming
more time, and inappropriate for real time applications
or large-scale ones. In order to address the limitations of
other studies, this study proposes an Al solution that
using a fine-tuned ResNet50 model trained on the
PlantVillage dataset to classify the plant leaves as
Healthy, Bacterial, or Fungal (Mold). The model was
optimized using TensorFlow Lite and deployed on a
Raspberry Pi 4, achieving 87% accuracy, a recall of 86%,
and inference speeds around 1.2 tol.5 seconds per
image. To enhance the overall generalization, the data
augmentation techniques were applied which including
rotation, flipping, and scaling. For early disease detection
in agricultural and environmental applications, this
research provides a scalable and a cost effective.
Compared to traditional methods and other systems, this
study provides faster inference speeds and lower costs,
making it ideal for designs with limited resource.
Bacterial and fungal leaf diseases result in a significant
threat to the productivity of agricultures, leading to
billions of dollars in crop yield losses annually, and that
make the global security of food in danger (Upadhyay et

al, 2025; Albahar, 2023). These diseases are not only
affecting the farmers and consumers, but also reduces
the yields that degrade the quality of crops. The early
detection of these diseases will stop the spread of it and
at the same time it will reduce the economic losses
(Dhaka et al, 2021; Durgun et al, 2024). However,
conventional methods of disease detection like
inspection of expert eye, tests of laboratory, and
spectroscopic methods are normally labor-intensive,
sometimes time consuming, and unsuitable for real time
applications. These restrictions do not allow for
immediate interventions, especially in resource limited
environments with limited availability of diagnostic tools
(Hasan et al, 2023). With the development in artificial
intelligence (Al), especially deep learning, a revolution
has been in image classification in recent years.
Convolutional neural networks (CNNs) have made a
remarkable advancement in the area of the classification
and detection of plant diseases being accurate and
effective (Bansal et al, 2023; Dhaka et al, 2021).
However, most of the current methods are depend on the
high-performance processing units such as GPUs and
cloud systems, which makes them not applicable for the
agricultural and remote areas fields. This gap shows the
necessity for low-cost and a lightweight system that can
analyze in real time without reducing accuracy

(Premkumar et al,, 2022). To address these challenges,
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this study presents an enabled Al real time detection
system for bacterial and fungal leaf diseases, which
utilizes deep learning and edge computing technologies.
The model is implemented through a fine-tuned a fine-
tuned ResNet50 model trained using the publicly
available PlantVillage dataset, that includes images of
healthy, bacterial, and fungal-infected plant leaves. The
model was then further optimized using TensorFlow Lite
and finally deployed on a Raspberry Pi 4 for portable
real-time computational
resources. Data augmentation was applied to the input in
order to improve the generalization capabilities of the
model, including rotation, flipping and scaling. The
system achieved 87% accuracy, a recall of 86%, and the
ability to process image data in approximately 1.2 to 1.5
seconds per image, thus making it suitable for detection
disease at an stage in agricultural and
environmental situations. This method offers several

classification with low

early

advantages compared to previous methods. By deploying
the model on a Raspberry Pi, the model provides
acceptable inference speeds and is most cost effective,
thereby making it a fit for
environments. Unlike conventional methods that require
skilled personnel and time-consuming steps, this method
provides a fast, automated and reliable disease diagnosis
at the point of need. In addition, its scalability and low
cost offer the potential for a practical deployment in
agriculture and environmental monitoring at large scale.
In future work, the model will be tested on field taken
images to confirm its robustness in real conditions.
Furthermore, it may be integrated with many other
multi-modal sensors (such as thermal imaging) and more
advanced edge devices, such as the NVIDIA Jetson Nano,
could further enhance performance and reliability. By
combining deep learning with edge computing, this study
provides a practical reference for addressing one of the
most pressing challenges in modern agriculture, where
deep learning and edge computing play important roles
in the efficient detection of microbial leaf diseases.

resource-limited

2. Related Work

The intersection of artificial intelligence and plant
disease detection has recently grown to become an active
area of interest, with increasing attention due of deep
learning in image classification (Upadhyay et al., 2025;
Albahar, 2023). In the field of plant disease detection,
CNNs are widely demonstrated to be effective for the
detection of visual symptoms of diseases in plant leaves
with architectures like ResNet and VGGNet achieving
high accuracy over several datasets (Bansal et al., 2023).
For example, (Geetabai et al., 2024) studied deep CNNs
for plant disease detection with PlantVillage dataset and
this study highlighted the explanation of the model using
saliency maps. More recently, studies were focused on
the classification of bacterial and fungal diseases in crops,
leading to results highlighting the importance of the early
detection of the disease for the yield loss reduction.

Similar research in the context of the general image

classification has shown that a feature fusion and hybrid
pipelines, in which handcrafted features integrated with
deep learning, improve performance. (Soundarya et al.,
2025; Ahmed et al, 2024) also proved that the
combination of CNN features with classical methods like
Principal Component Analysis (PCA) and Support Vector
Machine (SVM) leads to enhanced classification. Although
these methods can improve model accuracy, they often
lead to computationally heavy models that cannot be
used for real-time, in-field applications.

Edge computing has appeared as one of the promising
solutions for real-time inference with limited resource
environments. Recent studies have applied Al on
embedded devices for microbial and pathogen detection.
(Qi et al, 2021; Kim et al.,, 2024) presented a Raspberry
Pi based powered microfluidic biosensor for Salmonella
detection as well as described how Al can be applied on
low-cost hardware (Beznik et al, 2022). In the
agriculture, real time pest and diseases monitoring using
edge device, is one of the areas of focus for researchers
implying the requirement of
Nevertheless, such models are generally for laboratory
microorganisms or foodborne pathogens, which require
specific sensors and thus were not directly applicable to
agricultural field monitoring (Qi et al,, 2021; Beznik et al,,
2022).

Although deep learning models have been proved
successful in laboratory, there are also studies that have
successfully worked on these systems to deploy it on
edge devices for plant disease detection (Zhang et al,
2021; Sun et al, 2023). While several models have
achieved high accuracy using PlantVillage dataset, it
depends on GPU-based infrastructure for inference. This
creates a major gap in terms of implementing robust,
low-latency in agricultural
requiring real-time feedback.

To address this, this study established on refining the
existing CNN to develop a ResNet50 model that performs
well in the classification of microbial diseases that affect

scalable solutions.

solutions environments

leaves of plants namely bacterial spot and mold by using
the PlantVillage dataset. Unlike prior studies that entirely
aims at maximizing classification accuracy in controlled
environments without regard for practical deployment, it
prioritizes practical issues, and optimize the trained
model through TensorFlow Lite and running it on a
Raspberry Pi 4. This allows real-time performance with
competitive accuracy, which is applicable for agricultural
field deployment, especially in rural resource limited
areas.

3. Materials and Methods

This study introduces a lightweight deep learning (DL)
system for the real-time microbial plant leaf diseases
classification on low-cost edge devices suitable for
agricultural uses. The model combines a well-trained
CNN model with a Raspberry Pi device, which allows
automatic diagnose of bacterial and fungal causes of the
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plant disease from leaf images.

The dataset used in this study is a subset of the publicly
PlantVillage image of higher
resolution images of plant leaves divided into main 3
classes; Healthy, Bacterial, and Fungal (Mold), but also
tested on two other classes. The trained dataset was

available collection

processed and augmented, and performed with
normalization and several augmentations including
rotation, flipping, and scaling in order to enhance model
robustness and generalization (Alexandra et al, 2023).
All images were resized to 224x224 pixels, this is the
input dimension that the DL model supports.

The model is based on the architecture of ResNet50, pre-
trained on ImageNet, and also fine-tuned for the task of
three class classification. The final architecture consists
of a global average pooling layer, a fully connected layer
with 256 ReLU activated neurons and a softmax layer.
The model is trained then using Adam optimizer and
categorical cross entropy loss across 15 epochs with a
learning rate that is equal to 0.001. 'The training, test and
validation are set to 70%, 10% and 20% respectively
(Bansal et al, 2023). The model was trained and
converted to TensorFlow Lite which enabled it to run on
the edge. The optimized model was deployed on portable
and appropriate powerful Raspberry Pi 4 (Qi et al,, 2021;
Sun et al, 2023). Leaf images were taken in real time
with a high-resolution camera. The system sends each
image through TensorFlow Lite model and generates a
classification result (Premkumar et al, 2022). The
Adam’s parameter is given by (equation 1):

Ors1 = O — ,\Lmt (1)
Vo + e

Where 6, represents the parameter at iteration t, n is the
learning rate, 7, is the mean of gradients, ¥; represents
uncentered variance of gradients, and € is the small
constant added for numerical stability.

This method focusses on the real time performance, cost
effectiveness and deploy ability in resource limited
scenarios. In contrast to previous methods that use GPU
equipped servers or combine deep and handcrafted
features by means of hybrid models, this system aims to
run entirely on device with no external computational
resources. The concept is simple, effective and scalable
solution for early diagnosis of leaf diseases caused by
microorganism on crop leaves.

3.1. Raspberry Pi Integration for Real-Time Edge
Computing

The incorporation of the Raspberry Pi 4 to the microbial
contamination detection system is an important step
toward practical, accessible, and low-cost Al framework.
A Raspberry Pi which is the main processing source of
the system that perform real time inference with an
optimized TensorFlow Lite model (Qi et al, 2021). This
choice reflects the cost effectiveness, portability and
energy efficiency of the device which are important in
resource widespread
deployment of advanced Al solutions. The Raspberry Pi

limited environments for

4 Model B with 8GB of Random Access Memory (RAM)
provides the enough processing power to be able to run
on device inference. This capability eliminates the
necessity for the costly Graphics Processing Unit (GPU)
server and thus it is more accessible for small and
medium enterprises (SMEs) as well as low resourced
organizations (Sun et al, 2023). In addition, it is small
and light weighted, so it can imply easily into various
applications, ranging from small food factory and
agricultural location to remote agricultural area and the
environmental monitoring field.

However, a high-resolution Raspberry Pi camera module
is used for image capture to facilitate the operation of the
system, thereby enabling clear and detailed visual data
collection for analysis. Also, the OS for TensorFlow Lite
and the easy model running is the Raspberry Pi OS as
well. The pre-trained deep learning models are further
converted to TensorFlow Lite to optimize the model size
and inference latency. This conversion is really required
to make the inference real time on the limited
computational resources of the Raspberry Pi (Beznik et
al,, 2022). The optimized model can then be deployed to
the device and is capable of processing images and
classifying the type of contamination in real time with a
high accuracy.

The process consists of collecting samples of microbial
contamination image, preprocessing the input, and finally
applying it to the model. The results are then presented
through a connected interface or transmitted to a remote
server for global monitoring. This integration of
hardware and software allows the system to produce
actionable results in a few seconds, providing the near
real-time detection and classification functionality that
used to be limited to laboratory environments.

For real time validation, leaf images of tomato and potato
plants were captured by the Raspberry Pi high quality
camera. These plants were cultivated in outdoor, semi
controlled conditions.

The infection state of these samples was not manually
checked. Instead, the deployed model used infection
categories (Healthy, Bacterial, or Fungal) based on visual
features that it had learned from the labelled PlantVillage
dataset (Hughes and Salathé, 2015). This allowed to test
the real-world performance of the model and
generalization ability —without requiring
diagnostics or laboratory analysis.

The Raspberry Pi module offers significant practical
advantages. As its cost is low, it can be applied in large

on-site

scale applications easily especially in developing regions
where conventional configurations are costly. Its power
efficiency fits into sustainability objectives, reducing
operational impact.
Furthermore, its scalability can facilitate several devices
to be deployed at different sites extending to a network
of real time monitoring systems. This modular structure

costs and environmental

allows the solution to be easily adapt to various scales’
adjustment according to the requirements of the food
safety, agricultural monitoring and environmental
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protection applications. Through the integrating of
Raspberry Pi 4, this system also transforms advanced Al-
driven microbial detection from a laboratory-bound
process into a portable, low-cost, and scalable solution.
This idea bridges the gap between cutting-edge
technology and real-world applicability, making sure it is
effective, while it is practical, and accessible for diverse
users and environments. Figure 1 presents the general
diagram of model training, evaluation, and deployment,
from input of the dataset to device prediction on the
Raspberry Pi.

( Start )
T

| Load PlantVillage Dataset ‘

Preprocess and
Augment Images

Resize and /
Normalize Inputs

A
Feed Data to CNN
(ResNet50)

Train Models:
SVM
ResNet50 (Frozen)
ResNet50 (Fine-Tuned)

Evaluate Models
(Accuracy, Precision, Recall,
F1 Score)

!

Select Best Model
(Fine-Tuned ResNet50)

|

Convert to TensorFlow Lite

!

Deploy Model on Rasperry Pi ‘

Input Image for /
Prediction

Run Model to Classify
Disease Type

Output
Prediction

Figure 1. Diagram of the proposed system for microbial

leaf disease detection.

For real-time testing and deployment, images were
captured by the high-quality Raspberry Pi camera, which
is based on Sony IMX477 sensor with a 12.3 MP and
supports interchangeable C- and CS-mount lenses. A 6
mm 3MP CS mount lens was utilized in this study. This

combination of hardware setup is optimized for

Raspberry Pi 4 support and has been tested across many
edge computing applications.

Images were taken under natural daylight conditions
either in outdoor shadow or indoor light environments.
The shooting distance at which the images were taken
was set at approximately 30 cm. The camera was
operated in automatic exposure mode, with auto ISO,
white balance, and aperture in order to automatically
adjust to the real-world lighting conditions without
manual adjustments.

3.2. Data Acquisition and Preprocessing

This study utilizes a filtered subset of publicly available
PlantVillage dataset which was actually developed for
visual classification of plant diseases. The dataset
of over 20,000 of plant leaves
categorized into three classes related to this study:
Healthy, Bacterial, and Fungal. These images are helpful

consists images

in training of deep learning models that can be used to
identify the visual symptoms of microbial leaf diseases.
3.2.1. Image collection

All of the images were obtained using digital cameras in
standardized environments to ensure image clarity and
reproducibility. The dataset comes from a wide variety of
plant species and a number of microbial infection
patterns such as necrotic spots, mold growth, and
discoloration. This study considered only those plant
diseased leaf images where the visual effects of microbial
leaf infections were included. The dataset consisted of
approximately 20,000 images, and distributed in three
main categories. Since the task is agricultural in scope,
there was
generalization to food safety or healthcare, so the model
was specialized keeping the model focused only on leaf
microbial disease detection (Zhang et al, 2021; Kumar et
al,, 2020). The dataset was filtered and balanced to have
approximately equal samples for each class, 6,800 images
of healthy, 6,500 images of bacterial, and 6,700 images of
Fungal (Mold). This balanced distribution is beneficial to
prevent bias toward dominant classes during training
and evaluation. This is shown in Figure 2 below.

no an attempt to for cross domain

Fungal (Mold)

33.5%

34.0%
32.5%

Healthy .
Bacterial

Figure 2. Dataset distribution by class.
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From the original PlantVillage dataset (Hughes & Salathe,
2015), approximately 7,500 images were selected spread
over the three target categories (Healthy, Bacterial, and
Fungal). These were the original images on which the
augmentation was applied to.

Data augmentation was applied to expand the dataset to
approximately 20,000 using the
ImageDataGenerator of TensorFlow. The augmentation
techniques were implemented in the training process are
the rotation where random angles between -90° and
+90°, the random horizontal and vertical flips, zooming
between 0.9x and 1.1x%, and random position shift up to
10% of the image in width and height.

3.2.2. Preprocessing pipeline

To prepare the data for machine learning analysis, an
extensive preprocessing pipeline was applied; a median
filter was used to suppress sensor and background noise
as well as to preserve edges, crucial in capturing disease-
specific texture boundaries. This filter was chosen
because of its high performance in noise reduction for
edge preserving property and very effective removal of
salt-and-pepper noise, which often occurs in high-
resolution leaf texture images. Unlike mean filters, which
may tend to smooth out important features, the median
filter maintains sharp transitions and fine features, which
is crucial for the recognition of patterned microbial
infection. To enhance the contrast of microbial patterns
on the leaf surfaces, adaptive histogram equalization was
used. In addition, all pixel values were scaled to 0-1
range using min-max normalization, and all the images
were normalized as follows (equation 2):

images,

x — min(x)
X= ————— (2)
max(x) — min(x)
where X is the pixel value normalized to the range [0, 1],
x represents the pixel intensity value of the image before
normalization, min(x) is the minimum pixel value in the
image, and max(x) represents the maximum pixel value
in the image.
All images were resized to a fixed dimension of 224x224
pixels to match the input size of ResNet50, for feature
extraction. Also, several augmentation methods including
random rotation, horizontal and vertical flipping, and
zooming were used for training in order to enable the
model to be more stable and decrease the overfitting.
Random shifts were applied for simulate camera
variations. These augmentations helped in simulating the
variability in leaf orientation and background, and
therefore enhancing the generalization on unseen test
images (Han et al,, 2024; Hasan et al., 2022).
In the training and inference of the model, all images
were resized to 224 x 224 pixels, enforcing a 1:1 aspect
ratio as required by the input format of ResNet50.
The real-time validation images were captured using
Raspberry Pi camera at 4056 x 3040 pixels with the
default 4:3 aspect ratio, keeping the quality high for
robust inference, and resized to 224x224 pixels before
the model inference.

Image resizing was achieved by using the OpenCV 4.8.0
library in Python. The resizing function (cv2.resize) with
bilinear interpolation utilized to reduce distortion while
preserving important visual features.

Processed images were saved in JPEG format with 95%

compression quality, this level was chosen to balance file

size and retention of microbial detail. No compression
was applied prior to resize and normalization.

3.3. Enhanced Dataset Representation

The chosen preprocessing pipeline was used to better

prepared the dataset for machine learning, and that

enhancing the image clarity, reducing noise, and
normalizing the input size. Median filtering, adaptive
histogram equalization, normalization, and resizing to
224x224 pixels were used. These operations ensured
that important microbial features including edge of
colony, texture, and pigmentation across all samples.
Handcrafted features were also extracted to capture
domain-relevant characteristics in addition to CNN based
feature learning. Haralick texture features (derived from
the Gray Level Co-occurrence Matrix) and normalized
color histograms were utilized to characterize the overall
microbial surface variations. This multi-feature strategy
performed a better classification by considering both
global and local visual cues that are associated with

microbial contamination (Xie et al., 2024).

3.3.1.Edge deployment and optimization

The trained ResNet50 model was optimized for a

deployment on a Raspberry Pi 4 via the following steps:

1) Quantization: The FP32 weights were quantized to
INT8 with TensorFlow Lite and obtained about
75% model size reduction with small drop in
accuracy loss (<2%). This is illustrated in the
equation (3).

2) Thread Configuration: Number of threads were 4 to
maximizing CPU utilization, used for parallel
inference from Set TFLite interpreter.

Although the Pi 4’s limited RAM (8GB) constrained batch

processing to single-image inference, optimizations lead

to an average latency of 1.2-1.5 seconds per image, which
is comparable to higher-end edge devices in similar
studies. The end-to-end model of the proposed system
for real-time detection of microbial leaf disease is shown
in Figure 3 (Anyu et al.,, 2023). The workflow is initiated
by training and fine-tuning a ResNet50 model on the

PlantVillage dataset using a development machine.

Finally, the trained model is converted and quantized

into TensorFlow Lite format for lightweight deployment,

and is later transferred through USB cable to a Raspberry

Pi 4, which serves as the edge inference engine (Deng et

al, 2023). The Raspberry Pi 4 has a high-resolution

camera module which is used to capture images of plant
leaves in real time. After processing of the captured
images, the system outputs classification the results

(Healthy, Bacterial, or Fungal). The PlantVillage dataset,

of various images of healthy and unhealthy plant leaves is

preprocessed by noise filtering, contrast enhancement,

and resizing for better performance (equation 2).
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XFp32

Xyt = round

)tz 3)

Where xpp3, is the value in the original 32-bit floating
point format, s represents the scaling factor, z is the zero-
point offset, x;yrg is the result 8-bit quantized value.

‘. ———Mode| Transfer (USB}—> _8

Development Machine
(Model Trained using ResNet50 + Tensor Flow Lite)

RaspbemryPi4
(Edge Inference)

Real-Time Prediction Output
(Healthy / Bacterial / Fungal)

PlantVillage Dataset

Figure 3. System architecture for real-time microbial leaf
disease detection.

3.3.2. Software and Environment

All analyses of experimental data and model
development tasks were performed using Python 3.9.12.
The model implemented and trained using
TensorFlow 2.15.0 with Keras. The images are pre-
processed using OpenCV 4.8.0 and NumPy 1.24.3, the
data is augmented via TensorFlow’s
ImageDataGenerator.

Visualization was performed using Matplotlib 3.5.1 and
Seaborn 0.11.2, while metrics were computed with scikit-
learn 1.2.2. Model quantization and deployment were
performed TensorFlow Lite 2.15.0. All
development was performed on a Raspberry Pi OS
installed on Raspberry Pi 4.

was

using

4.Results and Discussion

To evaluate the performance of the proposed microbial
contamination detection model, training was performed
in two separate stages: initial training (feature extraction
only) and fine-tuning (full model training). Model
performance in terms of training, validation accuracy,
and loss over epochs is presented in Table 1.

Table 1. System performance on Raspberry Pi4

Metric Value
0,

CPU Utilization 85% (peak)

Memory Usage 512MB (of 8GB)

3.2W

Power Draw
1.35 + 0.15 sec

Inference Time

4.1. Initial Training Phase

In the initial phase, only the top classification layers of
ResNet50 and the
convolutional base layers was frozen. As can be seen
from Figure 4, training accuracy increased gradually

architecture were fine-tuned

from 49% to 54%, which means that the model could
capture some basic discriminative features. However, the
validation accuracy fluctuated between 10% and 53%,
with a standard deviation of 12.5%, which indicates poor
generalization caused by the frozen base layers. This
instability further indicates that the model has a limited
capability to generalize from the training data in the
restricted feature extraction. This bias can also be
observed further in Figure 5, which visualize the loss
curves. Although the training loss declined and stabilized
at about 1.2, the validation loss remained highly unstable,
reaching values over 9.0. These spikes indicate the model
is overfitting and that it has weak generalization, which is
expected since the fixed feature extractor is not optimal
for the microbial feature dataset. The performance
difference between training and validation reflects the
lack of robustness in the first training configuration.

Initial Training - Accuracy

0.5 OO
0.4
z
©
5 03
o
2 Train Accuracy
Validation Accuracy
0.2
0.1

0 2 4 6 8
Epoch
Figure 4. Training and validation accuracy during the
initial training phase.

Initial Training - Loss

94
84 — Train Loss
7 Validation Loss
64
4
o 54
=
4
3 4
7 1
1 I . i
0 2 4 6 8
Epoch

Figure 5. Training and validation loss during the initial
training phase.

4.2.Fine-Tuning Phase

To resolve these issues, fine-tuning was done by
unfreezing a portion of the ResNet50 base layers and
training the entire network with a lower learning rate.
This strategy allowed the model to fine tune high level

features specifically to the task of microbial
contamination.

As shown in Figure 6, the training and validation
accuracies were significantly improved. Training

accuracy surpassed 95% and a validation accuracy
steadily increased, ranging from 70% to a final accuracy
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of 87%. This reflects a significant improvement in the
generalization of the unseen data.
Figure 7 shows a slight reduction in loss trends.
Consistently both training and validation loss decreased
across epochs with a validation loss dropping below 1.0
and exhibiting the minimal fluctuation. The enhanced
loss stability shows that the model sufficiently mitigated
the overfitting that occurred during early learning and
learned domain-specific patterns.

model to

Fine-Tuning Accuracy on PlantVillage Dataset

1.0
_
0.8 //
I3
06
§ — Train Accuracy
5 Validation Accuracy
3 04
o
<
0.2
0.0
2 4 6 8 10 12 14

Epoch

Figure 6. Training and validation accuracy during the
fine-tuning phase.

Fine-Tuning Phase — Loss Curves

— Train Loss

8 Validation Loss
]
S 6
a4 Val Loss: 0.48
24 Train Loss: 0. 30&
=1 "=
0
2 4 6 8 10 12 14
Epoch

Figure 7. Training and validation loss during the fine-
tuning phase.

These results demonstrate the effectiveness of transfer
learning in cooperation with focused fine-tuning. The
model was able to leverage pretrained features and
gradually adapted to the microbial field which in turn
contributed to the enhanced robustness, decreased
overfitting and overall stronger the performance of
classification.

4.3. Model Performance Comparison and Fine-Tuning
Impact

The performance of the proposed fine-tuned ResNet50
model was evaluated against a baseline ResNet50 (with
frozen layers) and a custom CNN trained from scratch. As
illustrated in Figure 8, the fine-tuned ResNet50
performed the best precision (0.90) and F1 score (0.88)
and was significantly better than the base ResNet50 and
the custom CNN model in terms of all the metrics that
applied.

The better performance of the fine-tuned model is
demonstrated also by the metric summary shown in
Table 2, where it achieved an accuracy of 87% of the
overall test samples with a recall of 86%. In contrast, the
baseline ResNet50 achieved only 80% accuracy, which

indicating that freezing the feature extractor can limit
domain adaptation. The customized CNN was efficient,
had the worst performance which emphasizes the
importance for using transfer learning to moderate size
datasets. The training and validation accuracy curves of
the fine-tuned model demonstrated rapid learning on
initial epochs with validation accuracy of around 90% at
epoch 4. Both curves converged around 95% meaning
strong generalization of the model with no signs of
overfitting. This validates the efficacy of combining
pretrained features with targeted fine-tuning on domain-
specific data. Though the model was deployed on a
resource-constrained Raspberry Pi4, the
inference time was around 1.2-1.5 second per image,
thus near real time performance was supported. These
results show that a lightweight model-based solution is
possible and potentially useful for the in-field microbial
contamination detection in real world particularly in
where portability and

average

low-resource environments
efficiency are important.
Figure 4 shows the training and validation accuracy of
the model after the first 10 training epochs. The training
accuracy steadily increased and reached almost 54%, but
the validation accuracy had large variations, and did not
show a single rising tendency. This instability indicates
that the model has started to overfit early, and not being
able to generalize to unseen data, probably because of
limited feature learning or incorrect model initialization.
The loss curves are shown in Figure 5, which represent
the the initial training phase. The loss on the training set
obviously decreased as expected, but the loss on the
validation set oscillated dramatically, which peaking at
over 9 and dropping suddenly across epochs. This
instability behavior further indicates overfitting and
limited generalization, and pointing to an ineffective
initial training setup.

10 Performance Comparison of Microbial Contamination Detection Models
7| - Accuracy
- Recall
Precision
1 Score

0.8

°
@

Performance Index
=]
=

0.2

0.0 Custom CNN

ResNet50 (Base)

ResNet50 (Fine-tuned)

Figure 8. Performance comparison of different models
based on classification metrics.

Table 2. Comparison of classification performance for
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three models on the validation dataset

Model Accuracy Recall Precision F1

ResNet50 0.80 0.82 0.85 0.83
(Base)

ResNet50 0.87 0.86 0.90 0.88
(Fine-

tuned)

Custom 0.80 0.81 0.82 0.83
CNN

The accuracy curves after fine-tuning of the model based
on a pretrained CNN backbone are depicted in Figure 6.
There is a steady increase in both training and validation
accuracy. The training accuracy is over 95%, and the
validation accuracy is approximately 91%, which indicate
that fine-tuning enabled the model to extract more
transferable and discriminative features, thus improving
generalization.

The corresponding loss values during the fine-tuning
stage are shown in Figure 7. It can be found that the
validation loss rapidly decreases over than 14 to below 1
within the first 5 epochs, and then a steady tendency is
observed. The training loss remains low throughout. This
result confirms that fine-tuning corrected the overfitting
observed earlier and leading to more stable and effective
learning.

Table 3 shows the model global performance metrics of

the fine-tuned which is evaluated on the test dataset of
1,824 samples. The model achieved a high general
accuracy of 87%, and most of the predictions occurring
across all classes were accurate. The macro-averaged F1
is 0.88, which means that the average performance on
the classes is similar when all classes are treated equally
without considering their size. In contrast, the weighted
average F1 is 0.88 accounts for class imbalance by
weighting each class according to its presence in the
dataset. The close alignment between these two averages
indicates that the model is reasonably robust between
dominant and minority classes, and that no single class
disproportionately influenced the results. Macro F1 and
Weighted F1 are represented by the flowing equations 4
and 5, respectively :

N
1
Macro F1 = ﬁZFli (4)
i=1
Weighted F1 = YN, w;F1;,
Support; (5)

where w; =
t Toatal Samples

Where N represents the number of classes, F1; is the
value of calss i, w; is the propotion of class i samples in
the dataset.

Table 3. Classification performance metrics for the fine-tuned ResNet50 model across five microbial classes

Classes Precision Recall F1 Support

H1 (Healthy) 0.93 091 0.92 881
H2(Bacterial) 0.84 0.80 0.82 467

H3 (Fungal) 0.88 0.84 0.86 164

H5(Mold) 0.89 0.85 0.87 164

H6(Other) 0.93 091 0.92 148

Macro Average 0.89 0.86 0.88 1,824

Weighted Avg. 0.90 0.87 0.88 1,824

The confusion matrix of fine-tuned model on the test _ liusion Metric 800
dataset is presented in Figure 9 which shows the class- fﬁ 55 12 8 4 o
wise prediction performance. The diagonal of the matrix i

shows strong populated, which indicates that most of the f o« o4 18 o o “
samples were classified correctly. The most notable = 00
confusion occurred between class H1 and H2, with 55 H1 %? & 6 s 10 s L
samples were misclassified as H2 and 60 H2 samples ]

misclassified as H1. Despite this, both classes maintained ] . & - 135 o N
high F1 due to strong precision and recall. Near perfect # =
accuracy was achieved for classes H5 and H6, 5 . s . 150 100

demonstrating high separability. These results assure the
strong discriminative ability of the model and also align
with the high validation accuracy and F1-scores observed
during fine-tuning.

H6 (Other)

H1 (Healthy)  H2 (Bacterial)  H3 (Fungal)

Predicted Labels

HS5 (Mold) H6 (Other)

Figure 9. Confusion matrix of the fine-tuned model on
the test set.

4.4. Comparison of Precision Across Different Models
To validate the effectiveness of the proposed model for
real-time detection of the microbial contamination,
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comparative testing with two baseline models was
carried out. All model’s performances were compared
based on precision as the primary metric, because of its
relevance to reduce false positives in the context of
contamination detection. As listed in Table 4, the fine-
tuned ResNet50 based proposed model achieved the best
precision of 90% in training on the augmented microbial
dataset. This is a demonstrate of model's powerful ability
to distinguish the patterns of contamination, which can
be attributed to the transfer
augmentation of data during training phase. The CNN
based baseline with the frozen ResNet50 backbone and
no fine-tuning, achieved a precision of 85%. Although it
performed reasonably well, it was not as successful in

learning and the

adapting microbial domain specific features as the fine-
tuned model. Finally, the SVM classifier trained on the
handcrafted texture and colour features which are
extracted from the raw microbial dataset has the lowest
precision of 83%, which demonstrates the limitations of
traditional feature-based methods for this task. Such
results show the benefits of utilizing deep learning with
fine-tuning and data augmentation techniques for
complex image classification tasks of subtle microbial
variations.

Table 4. Precision comparison across models for
microbial contamination detection

Dataset .
Model Approach Used Precision
Proposed Fine-tuned AungHFed
system ResNet50 microbial 90%
g Dataset
Pretrained
CNN ResNetso ~ Augmented
i microbial 85%
(Baseline) (Frozen
dataset
Layers)
Raw
SVM SVM microbial 83%
dataset

5.Conclusion

This paper introduces a powered model for microbial
contamination detection, which has been deployed on a
low-cost Raspberry Pi4 platform for real-time, on-device
inference. Using a fine-tuned ResNet50 based CNN and a
well-structured preprocessing pipeline which includes
noise filtering, adaptive histogram equalization, and
image augmentation, the system resulted in a high
classification accuracy of 87%, notably outperforming
both a baseline CNN (85%) and a standard SVM classifier
(83%). A two-phase training process of feature
extraction stage and fine-tuning achieved significant
improvements in generalization and stability of the loss.
The model achieved a validation accuracy over 91%, with
stable loss behavior and minimal overfitting. These
detailed
classification which
indicated that the system's efficiency in distinguishing

results were further supported by a

report and confusion matrix,

between different microbial contamination states.
Despite these strengths, the presented study also has
limitations. First, the model was trained on only a
standardized dataset (PlantVillage) with controlled
image capture conditions. Second, the Raspberry Pi 4 that
is cost-effective and accessible, introduces computational
restrictions that limit the possibility of using complex
model and batch processing. These limitations highlight
the importance of refinement and additional validation
across diverse settings. The proposed method overcomes
the limitations of traditional methods on the
contamination detection by using deep learning and
lightweight edge computing hardware. That providing a
scalable, cost-effective, and accurate solution for food
safety, healthcare and environmental monitoring. Future
work could focus on deploying the system with domain
specific datasets to such ones that represent the
contamination of real-world microbial on surfaces or
food products. This will further validate the capability of
the model in practical environments. Furthermore, more
powerful edge platforms such as the NVIDIA Jetson Nano
or Google Coral can be explored for better computational
performance and in order to enable execution of more
complex model architectures. To enhance reliability
across a variety of conditions, future iterations could also
include multi-modal sensor data (thermal, gas, or
humidity) with visual analysis. Lastly, incorporating it
into a cloud-based Internet of Things (IoT) framework
would provide a central monitoring among a network of
distributed environments, which making it practical for
large scale applications in industry and agriculture. While
the Raspberry Pi 4’s low cost and widespread availability
make it prototyping, its
restricts the use

limited
of batch

accessible for
computational power
processing and complex model architectures.
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