
Black Sea Journal of Engineering and Science 
doi: 10.34248/bsengineering.1704013 

BSJ Eng Sci / Noor BAHA ALDIN 1185 
 

This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License 

 

Open Access Journal 

e-ISSN: 2619 – 8991 

 

REAL TIME DETECTION OF MICROBIAL LEAF DISEASES USING 
DEEP LEARNING AND EDGE COMPUTING ON RASPBERRY PI 4 

 

Noor BAHA ALDIN1* 
 

1Hasan Kalyoncu University, Faculty of Engineering, Department of electrical and Electronics, 27010, Gaziantep, Türkiye 
 

Abstract: Bacterial and fungal leaf diseases significantly impact the productivity of agricultural, which causing annually billions of 

dollars in crop losses and threatening global food security. Conventional detection methods even though effective, but they are labor 

intensive, consuming more time, and inappropriate for real time applications or large-scale ones. In order to address the limitations of 

other studies, this study proposes an AI solution that using a fine-tuned ResNet50 model trained on the PlantVillage dataset to classify 

the plant leaves as Healthy, Bacterial, or Fungal (Mold). The model was optimized using TensorFlow Lite and deployed on a Raspberry 

Pi 4, achieving 87% accuracy, a recall of 86%, and inference speeds around 1.2 to1.5 seconds per image. To enhance the overall 
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1. Introduction 
Bacterial and fungal leaf diseases significantly impact the 

productivity of agricultural, which causing annually 

billions of dollars in crop losses and threatening global 

food security. Conventional detection methods even 

though effective, but they are labor intensive, consuming 

more time, and inappropriate for real time applications 

or large-scale ones. In order to address the limitations of 

other studies, this study proposes an AI solution that 

using a fine-tuned ResNet50 model trained on the 

PlantVillage dataset to classify the plant leaves as 

Healthy, Bacterial, or Fungal (Mold). The model was 

optimized using TensorFlow Lite and deployed on a 

Raspberry Pi 4, achieving 87% accuracy, a recall of 86%, 

and inference speeds around 1.2 to1.5 seconds per 

image. To enhance the overall generalization, the data 

augmentation techniques were applied which including 

rotation, flipping, and scaling. For early disease detection 

in agricultural and environmental applications, this 

research provides a scalable and a cost effective. 

Compared to traditional methods and other systems, this 

study provides faster inference speeds and lower costs, 

making it ideal for designs with limited resource. 

Bacterial and fungal leaf diseases result in a significant 

threat to the productivity of agricultures, leading to 

billions of dollars in crop yield losses annually, and that 

make the global security of food in danger (Upadhyay et 

al., 2025; Albahar, 2023). These diseases are not only 

affecting the farmers and consumers, but also reduces 

the yields that degrade the quality of crops. The early 

detection of these diseases will stop the spread of it and 

at the same time it will reduce the economic losses 

(Dhaka et al., 2021; Durgun et al., 2024). However, 

conventional methods of disease detection like 

inspection of expert eye, tests of laboratory, and 

spectroscopic methods are normally labor-intensive, 

sometimes time consuming, and unsuitable for real time 

applications. These restrictions do not allow for 

immediate interventions, especially in resource limited 

environments with limited availability of diagnostic tools 

(Hasan et al., 2023). With the development in artificial 

intelligence (AI), especially deep learning, a revolution 

has been in image classification in recent years. 

Convolutional neural networks (CNNs) have made a 

remarkable advancement in the area of the classification 

and detection of plant diseases being accurate and 

effective (Bansal et al., 2023; Dhaka et al., 2021). 

However, most of the current methods are depend on the 

high-performance processing units such as GPUs and 

cloud systems, which makes them not applicable for the 

agricultural and remote areas fields. This gap shows the 

necessity for low-cost and a lightweight system that can 

analyze in real time without reducing accuracy 

(Premkumar et al., 2022).  To address these challenges, 
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this study presents an enabled AI real time detection 

system for bacterial and fungal leaf diseases, which 

utilizes deep learning and edge computing technologies. 

The model is implemented through a fine-tuned a fine-

tuned ResNet50 model trained using the publicly 

available PlantVillage dataset, that includes images of 

healthy, bacterial, and fungal-infected plant leaves. The 

model was then further optimized using TensorFlow Lite 

and finally deployed on a Raspberry Pi 4 for portable 

real-time classification with low computational 

resources. Data augmentation was applied to the input in 

order to improve the generalization capabilities of the 

model, including rotation, flipping and scaling. The 

system achieved 87% accuracy, a recall of 86%, and the 

ability to process image data in approximately 1.2 to 1.5 

seconds per image, thus making it suitable for detection 

disease at an early stage in agricultural and 

environmental situations. This method offers several 

advantages compared to previous methods. By deploying 

the model on a Raspberry Pi, the model provides 

acceptable inference speeds and is most cost effective, 

thereby making it a fit for resource-limited 

environments. Unlike conventional methods that require 

skilled personnel and time-consuming steps, this method 

provides a fast, automated and reliable disease diagnosis 

at the point of need. In addition, its scalability and low 

cost offer the potential for a practical deployment in 

agriculture and environmental monitoring at large scale. 

In future work, the model will be tested on field taken 

images to confirm its robustness in real conditions. 

Furthermore, it may be integrated with many other 

multi-modal sensors (such as thermal imaging) and more 

advanced edge devices, such as the NVIDIA Jetson Nano, 

could further enhance performance and reliability. By 

combining deep learning with edge computing, this study 

provides a practical reference for addressing one of the 

most pressing challenges in modern agriculture, where 

deep learning and edge computing play important roles 

in the efficient detection of microbial leaf diseases. 

 

2. Related Work 
The intersection of artificial intelligence and plant 

disease detection has recently grown to become an active 

area of interest, with increasing attention due of deep 

learning in image classification (Upadhyay et al., 2025; 

Albahar, 2023). In the field of plant disease detection, 

CNNs are widely demonstrated to be effective for the 

detection of visual symptoms of diseases in plant leaves 

with architectures like ResNet and VGGNet achieving 

high accuracy over several datasets (Bansal et al., 2023). 

For example, (Geetabai et al., 2024) studied deep CNNs 

for plant disease detection with PlantVillage dataset and 

this study highlighted the explanation of the model using 

saliency maps. More recently, studies were focused on 

the classification of bacterial and fungal diseases in crops, 

leading to results highlighting the importance of the early 

detection of the disease for the yield loss reduction. 

Similar research in the context of the general image 

classification has shown that a feature fusion and hybrid 

pipelines, in which handcrafted features integrated with 

deep learning, improve performance. (Soundarya et al., 

2025; Ahmed et al., 2024) also proved that the 

combination of CNN features with classical methods like 

Principal Component Analysis (PCA) and Support Vector 

Machine (SVM) leads to enhanced classification. Although 

these methods can improve model accuracy, they often 

lead to computationally heavy models that cannot be 

used for real-time, in-field applications.  

Edge computing has appeared as one of the promising 

solutions for real-time inference with limited resource 

environments. Recent studies have applied AI on 

embedded devices for microbial and pathogen detection. 

(Qi et al., 2021; Kim et al., 2024) presented a Raspberry 

Pi based powered microfluidic biosensor for Salmonella 

detection as well as described how AI can be applied on 

low-cost hardware (Beznik et al., 2022). In the 

agriculture, real time pest and diseases monitoring using 

edge device, is one of the areas of focus for researchers 

implying the requirement of scalable solutions. 

Nevertheless, such models are generally for laboratory 

microorganisms or foodborne pathogens, which require 

specific sensors and thus were not directly applicable to 

agricultural field monitoring (Qi et al., 2021; Beznik et al., 

2022). 

Although deep learning models have been proved 

successful in laboratory, there are also studies that have 

successfully worked on these systems to deploy it on 

edge devices for plant disease detection (Zhang et al., 

2021; Sun et al., 2023). While several models have 

achieved high accuracy using PlantVillage dataset, it 

depends on GPU-based infrastructure for inference. This 

creates a major gap in terms of implementing robust, 

low-latency solutions in agricultural environments 

requiring real-time feedback. 

To address this, this study established on refining the 

existing CNN to develop a ResNet50 model that performs 

well in the classification of microbial diseases that affect 

leaves of plants namely bacterial spot and mold by using 

the PlantVillage dataset. Unlike prior studies that entirely 

aims at maximizing classification accuracy in controlled 

environments without regard for practical deployment, it 

prioritizes practical issues, and optimize the trained 

model through TensorFlow Lite and running it on a 

Raspberry Pi 4. This allows real-time performance with 

competitive accuracy, which is applicable for agricultural 

field deployment, especially in rural resource limited 

areas. 

 

3. Materials and Methods 
This study introduces a lightweight deep learning (DL) 

system for the real-time microbial plant leaf diseases 

classification on low-cost edge devices suitable for 

agricultural uses. The model combines a well-trained 

CNN model with a Raspberry Pi device, which allows 

automatic diagnose of bacterial and fungal causes of the 
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plant disease from leaf images. 

The dataset used in this study is a subset of the publicly 

available PlantVillage image collection of higher 

resolution images of plant leaves divided into main 3 

classes; Healthy, Bacterial, and Fungal (Mold), but also 

tested on two other classes. The trained dataset was 

processed and augmented, and performed with 

normalization and several augmentations including 

rotation, flipping, and scaling in order to enhance model 

robustness and generalization (Alexandra et al., 2023). 

All images were resized to 224×224 pixels, this is the 

input dimension that the DL model supports. 

The model is based on the architecture of ResNet50, pre-

trained on ImageNet, and also fine-tuned for the task of 

three class classification. The final architecture consists 

of a global average pooling layer, a fully connected layer 

with 256 ReLU activated neurons and a softmax layer. 

The model is trained then using Adam optimizer and 

categorical cross entropy loss across 15 epochs with a 

learning rate that is equal to 0.001. ’The training, test and 

validation are set to 70%, 10% and 20% respectively 

(Bansal et al., 2023). The model was trained and 

converted to TensorFlow Lite which enabled it to run on 

the edge. The optimized model was deployed on portable 

and appropriate powerful Raspberry Pi 4 (Qi et al., 2021; 

Sun et al., 2023). Leaf images were taken in real time 

with a high-resolution camera. The system sends each 

image through TensorFlow Lite model and generates a 

classification result (Premkumar et al., 2022). The 

Adam’s parameter is given by (equation 1): 
 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝑣𝑡̂ + 𝜖
𝑚̂𝑡 (1) 

 

Where 𝜃𝑡  represents the parameter at iteration t, 𝜂 is the 

learning rate, 𝑚̂𝑡 is the mean of gradients, 𝑣̂𝑡 represents 

uncentered variance of gradients, and 𝜖 is the small 

constant added for numerical stability. 

This method focusses on the real time performance, cost 

effectiveness and deploy ability in resource limited 

scenarios. In contrast to previous methods that use GPU 

equipped servers or combine deep and handcrafted 

features by means of hybrid models, this system aims to 

run entirely on device with no external computational 

resources. The concept is simple, effective and scalable 

solution for early diagnosis of leaf diseases caused by 

microorganism on crop leaves. 

3.1. Raspberry Pi Integration for Real-Time Edge 

Computing 

The incorporation of the Raspberry Pi 4 to the microbial 

contamination detection system is an important step 

toward practical, accessible, and low-cost AI framework. 

A Raspberry Pi which is the main processing source of 

the system that perform real time inference with an 

optimized TensorFlow Lite model (Qi et al., 2021). This 

choice reflects the cost effectiveness, portability and 

energy efficiency of the device which are important in 

resource limited environments for widespread 

deployment of advanced AI solutions.  The Raspberry Pi 

4 Model B with 8GB of Random Access Memory (RAM) 

provides the enough processing power to be able to run 

on device inference. This capability eliminates the 

necessity for the costly Graphics Processing Unit (GPU) 

server and thus it is more accessible for small and 

medium enterprises (SMEs) as well as low resourced 

organizations (Sun et al., 2023). In addition, it is small 

and light weighted, so it can imply easily into various 

applications, ranging from small food factory and 

agricultural location to remote agricultural area and  the 

environmental monitoring field. 

However, a high-resolution Raspberry Pi camera module 

is used for image capture to facilitate the operation of the 

system, thereby enabling clear and detailed visual data 

collection for analysis. Also, the OS for TensorFlow Lite 

and the easy model running is the Raspberry Pi OS as 

well. The pre-trained deep learning models are further 

converted to TensorFlow Lite to optimize the model size 

and inference latency. This conversion is really required 

to make the inference real time on the limited 

computational resources of the Raspberry Pi (Beznik et 

al., 2022). The optimized model can then be deployed to 

the device and is capable of processing images and 

classifying the type of contamination in real time with a 

high accuracy. 

The process consists of collecting samples of microbial 

contamination image, preprocessing the input, and finally 

applying it to the model. The results are then presented 

through a connected interface or transmitted to a remote 

server for global monitoring. This integration of 

hardware and software allows the system to produce 

actionable results in a few seconds, providing the near 

real-time detection and classification functionality that 

used to be limited to laboratory environments. 

For real time validation, leaf images of tomato and potato 

plants were captured by the Raspberry Pi high quality 

camera. These plants were cultivated in outdoor, semi 

controlled conditions. 

The infection state of these samples was not manually 

checked. Instead, the deployed model used infection 

categories (Healthy, Bacterial, or Fungal) based on visual 

features that it had learned from the labelled PlantVillage 

dataset (Hughes and Salathé, 2015). This allowed to test 

the real-world performance of the model and 

generalization ability without requiring on-site 

diagnostics or laboratory analysis. 

The Raspberry Pi module offers significant practical 

advantages. As its cost is low, it can be applied in large 

scale applications easily especially in developing regions 

where conventional configurations are costly. Its power 

efficiency fits into sustainability objectives, reducing 

operational costs and environmental impact. 

Furthermore, its scalability can facilitate several devices 

to be deployed at different sites extending to a network 

of real time monitoring systems. This modular structure 

allows the solution to be easily adapt to various scales’ 

adjustment according to the requirements of the food 

safety, agricultural monitoring and environmental 
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protection applications. Through the integrating of 

Raspberry Pi 4, this system also transforms advanced AI-

driven microbial detection from a laboratory-bound 

process into a portable, low-cost, and scalable solution. 

This idea bridges the gap between cutting-edge 

technology and real-world applicability, making sure it is 

effective, while it is practical, and accessible for diverse 

users and environments. Figure 1 presents the general 

diagram of model training, evaluation, and deployment, 

from input of the dataset to device prediction on the 

Raspberry Pi. 
 

 
 

Figure 1. Diagram of the proposed system for microbial 

leaf disease detection. 

For real-time testing and deployment, images were 

captured by the high-quality Raspberry Pi camera, which 

is based on Sony IMX477 sensor with a 12.3 MP and 

supports interchangeable C- and CS-mount lenses. A 6 

mm 3MP CS mount lens was utilized in this study. This 

combination of hardware setup is optimized for 

Raspberry Pi 4 support and has been tested across many 

edge computing applications. 

Images were taken under natural daylight conditions 

either in outdoor shadow or indoor light environments. 

The shooting distance at which the images were taken 

was set at approximately 30 cm. The camera was 

operated in automatic exposure mode, with auto ISO, 

white balance, and aperture in order to automatically 

adjust to the real-world lighting conditions without 

manual adjustments. 

3.2. Data Acquisition and Preprocessing 
 

This study utilizes a filtered subset of publicly available 

PlantVillage dataset which was actually developed for 

visual classification of plant diseases. The dataset 

consists of over 20,000 images of plant leaves 

categorized into three classes related to this study: 

Healthy, Bacterial, and Fungal. These images are helpful 

in training of deep learning models that can be used to 

identify the visual symptoms of microbial leaf diseases. 

3.2.1. Image collection 

All of the images were obtained using digital cameras in 

standardized environments to ensure image clarity and 

reproducibility. The dataset comes from a wide variety of 

plant species and a number of microbial infection 

patterns such as necrotic spots, mold growth, and 

discoloration. This study considered only those plant 

diseased leaf images where the visual effects of microbial 

leaf infections were included. The dataset consisted of 

approximately 20,000 images, and distributed in three 

main categories. Since the task is agricultural in scope, 

there was no an attempt to for cross domain 

generalization to food safety or healthcare, so the model 

was specialized keeping the model focused only on leaf 

microbial disease detection (Zhang et al., 2021; Kumar et 

al., 2020). The dataset was filtered and balanced to have 

approximately equal samples for each class, 6,800 images 

of healthy, 6,500 images of bacterial, and 6,700 images of 

Fungal (Mold). This balanced distribution is beneficial to 

prevent bias toward dominant classes during training 

and evaluation. This is shown in Figure 2 below. 
 

 
 

Figure 2. Dataset distribution by class. 
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From the original PlantVillage dataset (Hughes & Salathe, 

2015), approximately 7,500 images were selected spread 

over the three target categories (Healthy, Bacterial, and 

Fungal). These were the original images on which the 

augmentation was applied to. 

Data augmentation was applied to expand the dataset to 

approximately 20,000 images, using the 

ImageDataGenerator of TensorFlow. The augmentation 

techniques were implemented in the training process are 

the rotation where random angles between −90° and 

+90°, the random horizontal and vertical flips, zooming 

between 0.9× and 1.1×, and random position shift up to 

10% of the image in width and height. 

3.2.2. Preprocessing pipeline 

To prepare the data for machine learning analysis, an 

extensive preprocessing pipeline was applied; a median 

filter was used to suppress sensor and background noise 

as well as to preserve edges, crucial in capturing disease-

specific texture boundaries. This filter was chosen 

because of its high performance in noise reduction for 

edge preserving property and very effective removal of 

salt-and-pepper noise, which often occurs in high-

resolution leaf texture images. Unlike mean filters, which 

may tend to smooth out important features, the median 

filter maintains sharp transitions and fine features, which 

is crucial for the recognition of patterned microbial 

infection. To enhance the contrast of microbial patterns 

on the leaf surfaces, adaptive histogram equalization was 

used. In addition, all pixel values were scaled to 0–1 

range using min-max normalization, and all the images 

were normalized as follows (equation 2): 
 

𝑥̂ =  
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (2) 

 

where 𝑥̂ is the pixel value normalized to the range [0, 1], 

𝑥 represents the pixel intensity value of the image before 

normalization, min(𝑥) is the minimum pixel value in the 

image, and max(𝑥) represents the maximum pixel value 

in the image. 

All images were resized to a fixed dimension of 224×224 

pixels to match the input size of ResNet50, for feature 

extraction. Also, several augmentation methods including 

random rotation, horizontal and vertical flipping, and 

zooming were used for training in order to enable the 

model to be more stable and decrease the overfitting. 

Random shifts were applied for simulate camera 

variations. These augmentations helped in simulating the 

variability in leaf orientation and background, and 

therefore enhancing the generalization on unseen test 

images (Han et al., 2024; Hasan et al., 2022). 

In the training and inference of the model, all images 

were resized to 224 × 224 pixels, enforcing a 1:1 aspect 

ratio as required by the input format of ResNet50. 

The real-time validation images were captured using 

Raspberry Pi camera at 4056 × 3040 pixels with the 

default 4:3 aspect ratio, keeping the quality high for 

robust inference, and resized to 224x224 pixels before 

the model inference. 

Image resizing was achieved by using the OpenCV 4.8.0 

library in Python. The resizing function (cv2.resize) with 

bilinear interpolation utilized to reduce distortion while 

preserving important visual features. 

Processed images were saved in JPEG format with 95% 

compression quality, this level was chosen to balance file 

size and retention of microbial detail. No compression 

was applied prior to resize and normalization. 

3.3. Enhanced Dataset Representation 

The chosen preprocessing pipeline was used to better 

prepared the dataset for machine learning, and that 

enhancing the image clarity, reducing noise, and 

normalizing the input size. Median filtering, adaptive 

histogram equalization, normalization, and resizing to 

224×224 pixels were used. These operations ensured 

that important microbial features including edge of 

colony, texture, and pigmentation across all samples. 

Handcrafted features were also extracted to capture 

domain-relevant characteristics in addition to CNN based 

feature learning. Haralick texture features (derived from 

the Gray Level Co-occurrence Matrix) and normalized 

color histograms were utilized to characterize the overall 

microbial surface variations. This multi-feature strategy 

performed a better classification by considering both 

global and local visual cues that are associated with 

microbial contamination (Xie et al., 2024). 

3.3.1.Edge deployment and optimization 

The trained ResNet50 model was optimized for a 

deployment on a Raspberry Pi 4 via the following steps: 

1) Quantization: The FP32 weights were quantized to 

INT8 with TensorFlow Lite and obtained about 

75% model size reduction with small drop in 

accuracy loss (<2%). This is illustrated in the 

equation (3). 

2) Thread Configuration: Number of threads were 4 to 

maximizing CPU utilization, used for parallel 

inference from Set TFLite interpreter. 

Although the Pi 4’s limited RAM (8GB) constrained batch 

processing to single-image inference, optimizations lead 

to an average latency of 1.2-1.5 seconds per image, which 

is comparable to higher-end edge devices in similar 

studies. The end-to-end model of the proposed system 

for real-time detection of microbial leaf disease is shown 

in Figure 3 (Anyu et al., 2023). The workflow is initiated 

by training and fine-tuning a ResNet50 model on the 

PlantVillage dataset using a development machine. 

Finally, the trained model is converted and quantized 

into TensorFlow Lite format for lightweight deployment, 

and is later transferred through USB cable to a Raspberry 

Pi 4, which serves as the edge inference engine (Deng et 

al., 2023). The Raspberry Pi 4 has a high-resolution 

camera module which is used to capture images of plant 

leaves in real time. After processing of the captured 

images, the system outputs classification the results 

(Healthy, Bacterial, or Fungal). The PlantVillage dataset, 

of various images of healthy and unhealthy plant leaves is 

preprocessed by noise filtering, contrast enhancement, 

and resizing for better performance (equation 2). 
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𝑥𝐼𝑁𝑇8 = 𝑟𝑜𝑢𝑛𝑑(
𝑥𝐹𝑃32

𝑠
) + 𝑧 (3) 

 

 

Where 𝑥𝐹𝑃32 is the value in the original 32-bit floating 

point format, s represents the scaling factor, z is the zero-

point offset, 𝑥𝐼𝑁𝑇8 is the result 8-bit quantized value. 
 

 
 

Figure 3. System architecture for real-time microbial leaf 

disease detection. 

 

3.3.2. Software and Environment 

All analyses of experimental data and model 

development tasks were performed using Python 3.9.12. 

The model was implemented and trained using 

TensorFlow 2.15.0 with Keras. The images are pre-

processed using OpenCV 4.8.0 and NumPy 1.24.3, the 

data is augmented via TensorFlow’s 

ImageDataGenerator. 

Visualization was performed using Matplotlib 3.5.1 and 

Seaborn 0.11.2, while metrics were computed with scikit-

learn 1.2.2. Model quantization and deployment were 

performed using TensorFlow Lite 2.15.0. All 

development was performed on a Raspberry Pi OS 

installed on Raspberry Pi 4. 

 

4.Results and Discussion 

To evaluate the performance of the proposed microbial 

contamination detection model, training was performed 

in two separate stages: initial training (feature extraction 

only) and fine-tuning (full model training). Model 

performance in terms of training, validation accuracy, 

and loss over epochs is presented in Table 1. 

 
 

Table 1. System performance on Raspberry Pi4 

Metric Value 

CPU Utilization 
  

85% (peak) 

  

Memory Usage 512MB (of 8GB) 

Power Draw 

Inference Time 

3.2W 

1.35 ± 0.15 sec 

 

 

4.1. Initial Training Phase 

In the initial phase, only the top classification layers of 

ResNet50 architecture were fine-tuned and the 

convolutional base layers was frozen. As can be seen 

from Figure 4, training accuracy increased gradually 

from 49% to 54%, which means that the model could 

capture some basic discriminative features. However, the 

validation accuracy fluctuated between 10% and 53%, 

with a standard deviation of 12.5%, which indicates poor 

generalization caused by the frozen base layers. This 

instability further indicates that the model has a limited 

capability to generalize from the training data in the 

restricted feature extraction. This bias can also be 

observed further in Figure 5, which visualize the loss 

curves. Although the training loss declined and stabilized 

at about 1.2, the validation loss remained highly unstable, 

reaching values over 9.0. These spikes indicate the model 

is overfitting and that it has weak generalization, which is 

expected since the fixed feature extractor is not optimal 

for the microbial feature dataset. The performance 

difference between training and validation reflects the 

lack of robustness in the first training configuration. 
 

 
 

Figure 4. Training and validation accuracy during the 

initial training phase. 

 

 
 

Figure 5. Training and validation loss during the initial 

training phase. 

 

4.2.Fine-Tuning Phase 

To resolve these issues, fine-tuning was done by 

unfreezing a portion of the ResNet50 base layers and 

training the entire network with a lower learning rate. 

This strategy allowed the model to fine tune high level 

features specifically to the task of microbial 

contamination. 

As shown in Figure 6, the training and validation 

accuracies were significantly improved. Training 

accuracy surpassed 95% and a validation accuracy 

steadily increased, ranging from 70% to a final accuracy 
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of 87%. This reflects a significant improvement in the 

generalization of the model to unseen data. 

Figure 7 shows a slight reduction in loss trends. 

Consistently both training and validation loss decreased 

across epochs with a validation loss dropping below 1.0 

and exhibiting the minimal fluctuation. The enhanced 

loss stability shows that the model sufficiently mitigated 

the overfitting that occurred during early learning and 

learned domain-specific patterns. 
 

 
 

Figure 6. Training and validation accuracy during the 

fine-tuning phase. 

 
 

Figure 7. Training and validation loss during the fine-

tuning phase. 

 

These results demonstrate the effectiveness of transfer 

learning in cooperation with focused fine-tuning. The 

model was able to leverage pretrained features and 

gradually adapted to the microbial field which in turn 

contributed to the enhanced robustness, decreased 

overfitting and overall stronger the performance of 

classification. 

4.3. Model Performance Comparison and Fine-Tuning 

Impact 

The performance of the proposed fine-tuned ResNet50 

model was evaluated against a baseline ResNet50 (with 

frozen layers) and a custom CNN trained from scratch. As 

illustrated in Figure 8, the fine-tuned ResNet50 

performed the best precision (0.90) and F1 score (0.88) 

and was significantly better than the base ResNet50 and 

the custom CNN model in terms of all the metrics that 

applied. 

The better performance of the fine-tuned model is 

demonstrated also by the metric summary shown in 

Table 2, where it achieved an accuracy of 87% of the 

overall test samples with a recall of 86%. In contrast, the 

baseline ResNet50 achieved only 80% accuracy, which 

indicating that freezing the feature extractor can limit 

domain adaptation. The customized CNN was efficient, 

had the worst performance which emphasizes the 

importance for using transfer learning to moderate size 

datasets. The training and validation accuracy curves of 

the fine-tuned model demonstrated rapid learning on 

initial epochs with validation accuracy of around 90% at 

epoch 4. Both curves converged around 95% meaning 

strong generalization of the model with no signs of 

overfitting. This validates the efficacy of combining 

pretrained features with targeted fine-tuning on domain-

specific data. Though the model was deployed on a 

resource-constrained Raspberry Pi4, the average 

inference time was around 1.2-1.5 second per image, 

thus near real time performance was supported. These 

results show that a lightweight model-based solution is 

possible and potentially useful for the in-field microbial 

contamination detection in real world particularly in 

low-resource environments where portability and 

efficiency are important. 

Figure 4 shows the training and validation accuracy of 

the model after the first 10 training epochs. The training 

accuracy steadily increased and reached almost 54%, but 

the validation accuracy had large variations, and did not 

show a single rising tendency. This instability indicates 

that the model has started to overfit early, and not being 

able to generalize to unseen data, probably because of 

limited feature learning or incorrect model initialization. 

The loss curves are shown in Figure 5, which represent 

the the initial training phase. The loss on the training set 

obviously decreased as expected, but the loss on the 

validation set oscillated dramatically, which peaking at 

over 9 and dropping suddenly across epochs. This 

instability behavior further indicates overfitting and 

limited generalization, and pointing to an ineffective 

initial training setup. 
 

 
 

Figure 8. Performance comparison of different models 

based on classification metrics. 

 

 

 

 

 

 

Table 2. Comparison of classification performance for 
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three models on the validation dataset 
 

Model Accuracy Recall Precision F1 

ResNet50 

(Base) 

0.80 0.82 0.85 0.83 

ResNet50 

(Fine-

tuned) 

0.87 0.86 0.90 0.88 

Custom 

CNN 

0.80 0.81 0.82 0.83 

 

The accuracy curves after fine-tuning of the model based 

on a pretrained CNN backbone are depicted in Figure 6. 

There is a steady increase in both training and validation 

accuracy. The training accuracy is over 95%, and the 

validation accuracy is approximately 91%, which indicate 

that fine-tuning enabled the model to extract more 

transferable and discriminative features, thus improving 

generalization. 

The corresponding loss values during the fine-tuning 

stage are shown in Figure 7. It can be found that the 

validation loss rapidly decreases over than 14 to below 1 

within the first 5 epochs, and then a steady tendency is 

observed. The training loss remains low throughout. This 

result confirms that fine-tuning corrected the overfitting 

observed earlier and leading to more stable and effective 

learning. 

Table 3 shows the model global performance metrics of 

the fine-tuned which is evaluated on the test dataset of 

1,824 samples. The model achieved a high general 

accuracy of 87%, and most of the predictions occurring 

across all classes were accurate. The macro-averaged F1 

is 0.88, which means that the average performance on 

the classes is similar when all classes are treated equally 

without considering their size. In contrast, the weighted 

average F1 is 0.88 accounts for class imbalance by 

weighting each class according to its presence in the 

dataset. The close alignment between these two averages 

indicates that the model is reasonably robust between 

dominant and minority classes, and that no single class 

disproportionately influenced the results. Macro F1 and 

Weighted F1 are represented by the flowing equations 4 

and 5, respectively : 
 

𝑀𝑎𝑐𝑟𝑜 𝐹1 =  
1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

 (4) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 =  ∑ 𝜔𝑖𝐹1𝑖
𝑁
𝑖=1 , 

 𝑤ℎ𝑒𝑟𝑒 𝜔𝑖 =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

𝑇𝑜𝑎𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

(5) 

Where  𝑁 represents the number of classes, 𝐹1𝑖 is the 

value of calss 𝑖, 𝜔𝑖  is the propotion of class i samples in 

the dataset. 

 

Table 3. Classification performance metrics for the fine-tuned ResNet50 model across five microbial classes 

Classes Precision Recall F1 Support 

H1 (Healthy) 0.93 0.91 0.92 881 

H2(Bacterial) 0.84 0.80 0.82 467 

H3 (Fungal) 0.88 0.84 0.86 164 

H5(Mold) 0.89 0.85 0.87 164 

H6(Other) 0.93 0.91 0.92 148 

Macro Average 0.89 0.86 0.88 1,824 

Weighted Avg. 0.90 0.87 0.88 1,824 

 

The confusion matrix of fine-tuned model on the test 

dataset is presented in Figure 9 which shows the class-

wise prediction performance. The diagonal of the matrix 

shows strong populated, which indicates that most of the 

samples were classified correctly. The most notable 

confusion occurred between class H1 and H2, with 55 H1 

samples were misclassified as H2 and 60 H2 samples 

misclassified as H1. Despite this, both classes maintained 

high F1 due to strong precision and recall. Near perfect 

accuracy was achieved for classes H5 and H6, 

demonstrating high separability. These results assure the 

strong discriminative ability of the model and also align 

with the high validation accuracy and F1-scores observed 

during fine-tuning. 
 

 
 

Figure 9. Confusion matrix of the fine-tuned model on 

the test set. 

 

4.4. Comparison of Precision Across Different Models 

To validate the effectiveness of the proposed model for 

real-time detection of the microbial contamination, 
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comparative testing with two baseline models was 

carried out. All model’s performances were compared 

based on precision as the primary metric, because of its 

relevance to reduce false positives in the context of 

contamination detection. As listed in Table 4, the fine-

tuned ResNet50 based proposed model achieved the best 

precision of 90% in training on the augmented microbial 

dataset. This is a demonstrate of model's powerful ability 

to distinguish the patterns of contamination, which can 

be attributed to the transfer learning and the 

augmentation of data during training phase. The CNN 

based baseline with the frozen ResNet50 backbone and 

no fine-tuning, achieved a precision of 85%. Although it 

performed reasonably well, it was not as successful in 

adapting microbial domain specific features as the fine-

tuned model. Finally, the SVM classifier trained on the 

handcrafted texture and colour features which are 

extracted from the raw microbial dataset has the lowest 

precision of 83%, which demonstrates the limitations of 

traditional feature-based methods for this task. Such 

results show the benefits of utilizing deep learning with 

fine-tuning and data augmentation techniques for 

complex image classification tasks of subtle microbial 

variations. 

 

Table 4. Precision comparison across models for 

microbial contamination detection 
 

Model Approach 
Dataset 

Used 
Precision 

Proposed 
system 

Fine-tuned 
ResNet50 

Augmented 
microbial 
Dataset 

90% 

CNN 
(Baseline) 

Pretrained 
ResNet50 
(Frozen 
Layers) 

Augmented 
microbial 

dataset 
85% 

SVM SVM 
Raw 

microbial 
dataset 

83% 

 

5.Conclusion 
This paper introduces a powered model for microbial 

contamination detection, which has been deployed on a 

low-cost Raspberry Pi4 platform for real-time, on-device 

inference. Using a fine-tuned ResNet50 based CNN and a 

well-structured preprocessing pipeline which includes 

noise filtering, adaptive histogram equalization, and 

image augmentation, the system resulted in a high 

classification accuracy of 87%, notably outperforming 

both a baseline CNN (85%) and a standard SVM classifier 

(83%). A two-phase training process of feature 

extraction stage and fine-tuning achieved significant 

improvements in generalization and stability of the loss. 

The model achieved a validation accuracy over 91%, with 

stable loss behavior and minimal overfitting. These 

results were further supported by a detailed 

classification report and confusion matrix, which 

indicated that the system's efficiency in distinguishing 

between different microbial contamination states. 

Despite these strengths, the presented study also has 

limitations. First, the model was trained on only a 

standardized dataset (PlantVillage) with controlled 

image capture conditions. Second, the Raspberry Pi 4 that 

is cost-effective and accessible, introduces computational 

restrictions that limit the possibility of using complex 

model and batch processing. These limitations highlight 

the importance of refinement and additional validation 

across diverse settings. The proposed method overcomes 

the limitations of traditional methods on the 

contamination detection by using deep learning and 

lightweight edge computing hardware. That providing a 

scalable, cost-effective, and accurate solution for food 

safety, healthcare and environmental monitoring. Future 

work could focus on deploying the system with domain 

specific datasets to such ones that represent the 

contamination of real-world microbial on surfaces or 

food products. This will further validate the capability of 

the model in practical environments. Furthermore, more 

powerful edge platforms such as the NVIDIA Jetson Nano 

or Google Coral can be explored for better computational 

performance and in order to enable execution of more 

complex model architectures. To enhance reliability 

across a variety of conditions, future iterations could also 

include multi-modal sensor data (thermal, gas, or 

humidity) with visual analysis. Lastly, incorporating it 

into a cloud-based Internet of Things (IoT) framework 

would provide a central monitoring among a network of 

distributed environments, which making it practical for 

large scale applications in industry and agriculture. While 

the Raspberry Pi 4’s low cost and widespread availability 

make it accessible for prototyping, its limited 

computational power restricts the use of batch 

processing and complex model architectures. 
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