

Mugla Journal of Science and Technology

46

DATABASE SYSTEM SUGGESTIONS FOR THE INTERNET OF THINGS (IOT)
SYSTEMS

Mustafa Utku KALAY,
Computer Engineering Department, Yıldız Technical University, 34220, Istanbul, Turkey, utku@ce.yildiz.edu.tr

https://orcid.org/0000-0002-8002-0268

Received: 19.01.2018, Accepted: 16.05.2018
*Corresponding author

Review Article
DOI:10.22531/muglajsci.418488

Abstract

Internet of Things (IoT) is an interconnection of different types of information assets in which data is continuously
generated and transmitted over the Internet. Technologies of the sensor, RFID, GPS, mobile devices, and Internet-enabled
actuators play a significant role in IoT systems. IoT brings out new challenges in terms of data and information
management because it is not easy to collect and manage a large amount of heterogeneous data that is aggregated at very
high velocity as well as to retrieve and manage the information that is hidden within this large volume of data.
In this paper, I discuss the main factors affecting the efficiency of data management in IoT systems, specifically query
processing and transaction management. There are many lessons learned from traditional database systems, distributed
systems, and sensor networks, however, traditional solutions are often inadequate to meet the needs of applications in such
a complex ecosystem, namely IoT. In traditional database systems, for instance, query operations are usually local, and
execution costs depend on the current processor power and other resource constraints (i.e. memory). On the other hand,
transaction management mechanisms guarantee the ACID properties in order to provide overall data integrity. It is
apparent that different types of IOT applications that operate on heterogeneous, streaming, real-time, and geographically
distributed large data will significantly change the well-known aspects of querying and transaction management. Context-
aware querying, distributed querying, MapReduce computing model and flexible transaction models such as web-based
transaction handling are some of the current issues discussed in this paper. With the succinct yet comprehensive
information presented in this work, I intend to provide a guide for researchers in the IoT systems, especially in the context
of database systems.
Keywords: Internet of Things, Parallel DBMS, NoSQL, MapReduce, streaming data processing

IOT SİSTEMLERİ İÇİN VERİTABANI SİSTEM ÖNERİLERİ

Öz

Nesnelerin İnterneti (IoT), verilerin sürekli olarak üretilip İnternet üzerinden iletildiği farklı tip bilgi kaynaklarından
oluşan bir ağdır. Sensörler, telsiz frekans tanıma (RFID) cihazları, küresel konumlandırma sistemleri (GPS), mobil cihazlar
ve Internet özellikli aktüatör teknolojileri IoT sistemlerinde önemli bir rol oynamaktadır. IoT, veri ve bilgi yönetimi
açısından yeni zorluklar getiriyor, çünkü çok yüksek hızda üretilen büyük miktarda heterojen veriyi toplamak ve işlemenin
zorluğu yanında, bu büyük veride gizlenen bilgileri almak ve yönetmek de kolay değildir.
Bu makalede, IoT sistemlerinde veri işleme verimliliğini etkileyen temel faktörleri, özellikle sorgulama ve hareket
yönetimini ele alıyorum. Geleneksel veri tabanı sistemlerinden, dağıtık sistemlerden ve sensör ağlarından öğrenilen çok
sayıda dersler vardır, ancak geleneksel çözümler, IoT gibi karmaşık bir ekosistemdeki uygulamaların ihtiyaçlarını
karşılamada çoğunlukla yetersiz kalmaktadır. Geleneksel veri tabanı sistemlerinde, örneğin, sorgulama işlemleri, genellikle
yereldir ve yürütme maliyetleri mevcut işlemci gücü ve bellek gibi kaynak kısıtlamalarına bağlıdır. Diğer taraftan
geleneksel hareket yönetimi mekanizmaları, genel veri bütünlüğünü sağlamak için ACID özelliklerini garanti eder.
Heterojen, sürekli, gerçek-zamanlı ve coğrafi olarak dağınık büyük veri üzerinde çalışan farklı tip IoT uygulamalarının,
sorgulama işleminin ve hareket yönetiminin iyi bilinen yönlerini önemli ölçüde değiştireceği açıktır. İçeriğe duyarlı
sorgulama, dağıtılmış sorgulama, MapReduce hesaplama modeli ve web tabanlı hareket yönetimi gibi esnek işlem
modelleri bu makalede ele alınan güncel konulardan bazılarıdır. Bu çalışmadaki kısa fakat kapsamlı bilgilerle, IoT
sistemlerinde, özellikle veri tabanı sistemleri üzerine, çalışan araştırmacılar için bir kılavuz sağlamayı amaçladım.
Anahtar Kelimeler: Nesnelerin İnterneti, Paralel VTYS, NoSQL, MapReduce, sürekli veri işleme
Cite
Kalay, M.U., (2018). “Database system suggestions for the internet of things (IOT) systems”, Mugla Journal of Science and
Technology, 4(1), 411-423.

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

47

1. Introduction

Dissemination of data and processing has been evolved
for many years so that several variants of distributed
systems with different names have emerged. Among
them, the Internet is a global computer network which
provides various information and communication
facilities. The degree of heterogeneity, scalability,
availability, and autonomy of individual sites are the
main aspects of distributed processing systems. Since
optimizing data processing performance is already
crucial for centralized systems, it is considered to be a
matter of paramount importance for large-scale data
processing within distributed systems.

When we look at the evolution of the Internet, there are
a number of salient milestones such as World Wide Web
(WWW), Web2.0, social media and Internet of Things
(IoT), each one has many different types of applications,
standards, and protocols inside. While WWW is just the
"internet of content", Web2.0 evolves to exchanging
structured information via web services. By means of
SOAP (Simple Object Access Protocol), a web-service
messaging protocol, web-serviced "programs" that run
on different operating systems interact with each other
using HTTP and XML and/or JSON (JavaScript Object
Notation). There is a more recent easy-to-use protocol as
an alternative to SOAP nowadays, named as REST
(Representational State Transfer), with a more flexible
architecture.

With adding smartphones and their applications to
"internet of services" with an affordable broadband
access has exposed “internet of people”, named as social
media. The most distinguished feature of this current era
is the user-generated content websites, like Facebook,
Twitter, and LinkedIn etc. Most social media websites
publish their APIs that enables websites (or applications)
to customize the social data easily and to process with a
better-integrated manner. Nowadays, as an example,
there are many REST-compliant APIs embedded in
various programming languages, and, special query
languages over social data like Facebook Query
Language. This has been a revolution in terms of data
access and processing within web-based applications.

The last revolution in the way of using the Internet is
named as the Internet of Things (IoT) that enables
machines to communicate autonomously with other
machines. "Machine" or "Thing" means here everyday
objects such as a pen, refrigerator or even ourselves.
Connecting all those "things" to Internet transparently is
the main promise of IoT. When everyday objects become
part of information systems and end-user applications, it
is apparent that people's everyday life may change
dramatically.

Managing this unprecedented quantity of digital data
generated both from people's daily lives (social data) and
from the "things" with a smooth integration bring about
many new approaches, applications, protocols,
algorithms under the name of data science. All those
innovations range from marketing industry to even

database internals. Manufacturing, healthcare, and
transportation are just some of the industries to profit
from the IoT sector. By 2020, it is expected that the
number of Internet-enabled devices used in
manufacturing and daily life will be more than 50 billion
[1].

For all stages of evolution of the Internet, from WWW to
IoT, we can ask the question: "What is the motivation for
all those rapid innovations?" My short answer is "to
develop a more integrated environment in which
machines and humans seamlessly interact with each
other in a more context-aware manner”. In such an
extremely heterogeneous environment, every entity
including persons, places, computers, software (all
“things”) should interact with each other so that the
system is able to behave in a manner consistent with the
users’ work at the moment. In fact, this is the context-
awareness and its indications can be seen at the
beginning of WWW, and even at all types of computing
systems in history. The context-aware computing
systems (also known as Pervasive Computing or
Ubiquitous Computing systems) customize its services
based on the user’s preferences. The context may be any
type of information about entities depending on time,
location and weather mostly.

As an example, think of a context-aware framework that
predicts traffic status based on real-time data collected
from sensors in the vehicles/roads (for vehicle or road
current condition) and historical traffic data and the
daily social activities in the city and weather. In such an
environment, the drivers may be routed instantly under
different levels of congestions to get a better traffic
density distribution overall. Having smooth integration
of more sensitive information collected from different
types of sensors, the context-aware system will be able to
tune the traffic distribution better.

There are many standardization problems and technical
challenges before IoT effectively takes part in our daily
life. Among these challenges, data processing,
concurrency, heterogeneity, scalability, security, privacy,
identification, and addressability are some issues of IoT.
In this paper, I focus on database issues related to IoT
systems. In next section, I start describing traditional
DBMS technology. Inadequacies of the relational model
for IoT systems, NoSQL databases, MapReduce
framework, flexible transaction models and streaming
data processing will be presented in section 3. I conclude
the paper in Section 4.

2. Traditional DBMS Technology: Relational
(Parallel) DBMS

In this section, I briefly review of traditional DBMS
technologies. I attempt to make some clarifications about
the need for new approaches on traditional DBMS, which
has already great wealth and value in IT industry. The
most important actuator in this evolution is, of course,
the evolution of the Internet as I discussed in the
introduction.

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

48

In a relational database management system (RDBMS),
data is stored in tables (relations), conforming to a
predefined schema. Design process basically includes
many phases like normalization, materialization to
satisfy the proper constraints for a particular application.
SQL, a declarative data manipulation language,
dramatically increase application development and end-
user productivity. Since DBMS is expected to serve
multiple clients concurrently in a real-time manner,
query processing and optimization need considerable
attention in terms of performance. Having stored the
critical (that is, statistical) information (with regular
refreshments) needed for query evaluation in system
catalog tables, almost the best execution plan is
generated in today’s centralized DBMSs. Query execution
plan, represented as a query tree, includes many low-
level physical operations like filtering, joining, sorting,
merging, grouping, materialization, etc. Each one can be
executed with different algorithms (i.e. merge-join,
nested loop join, hash join etc.) based on different system
conditions. It is not an easy task to execute many query
trees together within a limited amount of resources
without sacrificing the high system throughput.

Another aspect of DBMS technology is about the data
integrity (or reliability). When some users update data
while others concurrently read data, reliability and
efficiency receive the second considerable attention. This
brings out the notion of transactions which is the other
essential part of DBMSs. This notion must satisfy some
properties so-called ACID. Many transactions, called as
indivisible programs access database concurrently with
interleaving of read/write actions from different
transactions. While the concurrency is indispensable for
system utilization and hence performance, it is a major
threat to data integrity (i.e. consistency and isolation).
Concurrent operation of transactions is mostly
accomplished with lock-based protocols in today's
relational database systems. On the other hand, ensuring
the atomicity and durability of database transactions is
implemented with rollback function for an incomplete
transaction and commit function for providing durability
with some protocols such as undo-redo, undo-only and
redo-only. There are many well-studied and efficient
algorithms both in query execution and transaction
processing that satisfy reliable data processing.

Now, I turn to very large databases, namely distributed
or parallel DBMSs, that is, a database is distributed over
many machines. When data storage and computation are
distributed, many database system internals needs to be
changed. While it is possible to take advantage of
parallelism for some execution algorithms with minor
modifications, joining tables on many servers is a difficult
task for distributed relational databases [2]. Since
relational model system solutions, in general, have the
scalability problem, "one size fits all" would become
more problematic for highly dynamic systems like IoT.
On the other hand, transaction processing algorithms
(related to lock management and commitment) is very
complex in relational distributed databases. Assuring

atomicity of distributed transaction that has components
at several sites and its execution in a serializable manner
with other distributed transactions require likewise
complex algorithms such as 2-phase commit, distributed
recovery and distributed locking.

3. Motivations for New Generation Data
Management for IoT Systems

NoSQL, the so-called "Not Only SQL" systems are very
large database systems distributed over large-scale data
storage. NoSQL databases stores and processes irregular
or heterogeneous data in a massively parallel manner
over a set of commodity computers [3]. Typically
generated data in IoT systems are very irregular and
heterogeneous and need to be handled with more flexible
techniques than those in relational systems. Today,
Google, Amazon, Facebook, Twitter etc., most of the
largest web companies are using NoSQL based solutions.
The reason for severe impact of this new generation
databases over traditional relational systems (like
parallel DBMS) is that all important design philosophies
on system internals, ranging from data modeling/storing
and processing and system integrity dramatically change
based on some motivations. In the following subsections,
I present 5 motivations for a novel distributed database
system, especially with regard to characteristics of IoT
systems. In fact, first four have already been motivations
for NoSQL databases. In some motivations, I briefly
introduce the related current technologies, such as
MapReduce, BASE principles and stream processing. In
the last subsection, I present the most accepted
classification of NoSQL data models with a sample IoT
application that fits each model.

3.1. Motivation 1: Data Modelling

First changes are in data storage models. After the 2000s,
by means of ever-increasing advancement in web
technologies, a significant part of database research has
motivated to store and process semi-structured data.
The idea here is that the real world can be represented
better in semi-structured data since entities in the real
world are not so regular (or structured) so that at any
time additional attributes can be introduced while the
formers may be absent in some of the newer data items.
In very heterogeneous and dynamic systems like IoT,
rapid inter-relations of things constantly change the
database's physical and logical schema requirements.
Thus, the schema-less approach would be the best-suited
solution.

3.2. Motivation 2: Data Processing

Another motivation is the need for fast processing of big
data distributed over multiple heterogeneous nodes.
Generally, although it is not impossible, it is not easy to
express complex events in such environments with SQL.
Parallel processing tasks may be expressed with
database queries and if needed, with user-defined
functions however large-scale and heterogeneous data
manipulation is not efficient with SQL internal
algorithms. Because, as pointed out earlier, executing

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

49

join algorithms within a distributed environment
becomes complex as the number of joining tables
increases [4]. Thus there are 2 important drawbacks of
parallel RDBMS, first is the deficiency of SQL expressive
power, the second is the complexity and parallel
execution performance degradation.

For example, extracting the outgoing links from a set of
HTML documents is difficult to express in SQL systems.
Another example can be given from the famous Google
Maps which provides navigation guide based on real-
time traffic information. The applications should process
all road segments within the requested area, then render
and display with the most appropriate route. These
applications and many others inherently consist of a
variety of data types (i.e. audio, video, images, time
series), and they cannot be easily processed with
classical SQL join and/or aggregation algorithms.
Instead, natural language processing, linear algebra,
machine learning, text search/mining, and graph
algorithms are some of the analytical techniques for
processing the emerging data types [5].

Instead of traditional SQL execution algorithms, NoSQL
databases usually use the Map-Reduce (MR) model [6]
for processing the large amounts of data. There are many
discussion papers [7-9] and research blogs [10] on these
two technologies. Among them, I briefly present two of
them comparing the two classes of systems in detail [7,
8]. First, parallel DBMS and MR both process data over
“shared nothing” architectures. Secondly, relational
DBMSs requires a pre-defined strict schema, whereas MR
directly processes data in any arbitrary format. Many
differences in indexing, compression optimizations,
programming models, data distribution strategies, and
query execution strategies even make these technologies
incomparable in a fair manner.

According to its “simplicity” goal, MR framework consists
of only 2 functions, Map and Reduce, in which key-value
data pairs are processed. Once map function divides the
computation work into smaller sub-problems based on
the "keys" and then distribute them to available nodes,
the aggregate function accumulates distributed
individual results and then forms the end result. The
number of maps and reduce instances and their locations
and organizing the system-level tasks on each node are
decided by global MR scheduler. Parallel relational
database systems also apply this parallel execution
framework, however, the main problem is the fact that
the process to load data into relational tables conforming
to a rigid predefined schema and parallel query
optimization take longer than the MR system [8].
Conversely, MapReduce can process data without loaded
into a database. Additionally, there are many valuable
implementation tricks to diminish the execution costs in
MR system internals [6].

In IoT systems, the operations are typically "append"
nature that is heterogeneous data is progressively
generated in sensors, as distinct from intensive
"updates" in OLTP tables (a kind of relational database).
If the sensor data is going to be analyzed especially only

once or twice, loading them into a relational database
would be unacceptably slow. Another difficulty is the
need for additional software to load heterogeneous data
into the database. Even though all these difficulties are
handled smoothly, rapid inter-relations of "things"
constantly change the database's physical and logical
schema requirements [7].

On the other hand, the salient advantage of the relational
system is the efficient usage of built-in index structures
(like B-tree) even if SQL programmer does not need to be
aware of [8]. This is also possible in MR systems but MR
programmers must “implement” indexes to accelerate
the accesses to the data required for the application. I
strongly recommend reading those comparison papers
for interested readers [7-10].

Now, the question is: “Where, in IoT systems do we
prefer parallel DBMS over MapReduce or vice versa?” As
pointed in [11], once data in IoT framework is generated
by the end-point “things”, they are, if not all of them,
reported to aggregation points and then periodically
pushed up into the network (typically, cloud) and
subsequently to a parallel DBMS. This enables a
globalized view of data and understanding of critical
long-term trends of applications which is important for
data mining. On the other hand, real-time and localized
services usually do not propagate data further up to
parallel DBMS that is far in the framework, instead,
autonomous processing units nearby the sensor nodes
may be used. (Nowadays, this type of processing is
named as edge or fog computing). I think that MapReduce
style is best suited for edge processing so that real-time
data is processed in quasi-real-time without loading into
DBMS. Although the sensor nodes do not have powerful
characteristics (like CPU, battery, memory, bandwidth)
and Map Reduce is, on the contrary, originally designed
for running on a cluster of commodity servers,
specialized Map-reduce frameworks may be best suited
for IoT data processing. The works in [12, 13] strengthen
this idea.

MapReduce framework seems to be the most
appropriate for IOT systems since sensor data is
repetitive in nature and as exemplified at the beginning
of this section, typical calculations usually require linear
analytical algorithms that can be easily transformed to
map and reduce functions. On the other hand, latency-
sensitive applications such as identifying potential fraud,
authentication, and recommending personalized content
need special processing techniques different from Map
Reduce. Because Map Reduce provides a fast batch
processing of big data and does not concern velocity
challenges. Traditional techniques may be better for such
applications.

3.3. Motivation 3: System Recovery

This motivation is about fault-tolerance. As data sets are
disseminated, fault-tolerant computation becomes more
crucial. Horizontal data scaling that is, partitioning data
across multiple machines is good in terms of scalability
whereas it brings out new problems during execution

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

50

[14]. Apart from hardware/software problems, the
systems may abort some low-priority tasks in some
processing units for higher-priority tasks. In such cases,
it would be inefficient to re-execution of all other tasks in
other processing units, especially for long-running
queries. Likely, parallel RDBMS, unfortunately, handles
faults during execution with such a coarse-grained
approach. This is actually due to the fact that 2-phase
commit protocol is robust but very strict (Classical
database textbooks like [4] are good sources for
interested readers). Therefore, flexible, and global fault
tolerance techniques at the system level and/or
application level are needed. In fact, horizontal
partitioning with a high level of fault-tolerance has been
the basic motivation of NoSQL systems. With successful
horizontal scaling in NoSQL databases, system resources
(cluster nodes at the high granularity) are used most
efficiently, providing that a high availability without
sacrificing parallel processing power. This is good for IoT
systems, because, they are run typically over wireless
sensor networks which have usually low-band and non-
reliable connections. In contrast, to accommodate
growth, relational database management systems
vertically scale up by increasing the capacity of system
hardware.

Lastly, MapReduce-based systems are well-known for
their simple yet efficient mechanisms to handle different
kinds of failures [15].

3.4. Motivation 4: System Integrity

Distributed databases that are processing web data with
high performance and availability are not expected to
adhere to ACID properties due to the fact that while ACID
guarantees system integrity at the high level, it causes
execution performance degradation. However, complete
integrity is not a concern for all applications. For
example, while bank transactions require a high level of
consistency, in social networking applications, it is more
important to serve the millions of simultaneous users in
the fastest way. It is clear that in such applications,
availability is more important. As a trade-off, however,
consistency can be delayed a bit. Basically, in No SQL
databases, Consistency and Isolation properties can be
relaxed to gain availability by modifying the behavior of
long duration locks. Because they are known as the main
bottleneck for system global availability. Additionally,
reducing the read latency are usually achieved by
replicating data over multiple nodes [9].

Resulting new principles are named as the BASE
(Basically Available, Soft State, Eventual consistency).
The BASE is already considered as a better model for web
applications. Basically, BASE systems allow queries to
read dirty data. In such systems, clients may experience
some inconsistencies as updates are in progress,
however, the system guarantees that the data will
eventually reach the expected consistent state [9].

To sum up, the main idea is to provide the best
combination of consistency and availability for each

application. This flexible approach is best suited for
heterogeneous application environments like IoT.

3.5. Motivation 5: Streaming Processing

Instead of store and pull model of traditional database
systems, integrated data stream processing is typically
based on the data, that is, the system intelligently
calculates new results as data arrive. Therefore, in such
systems, continuous querying is required. Continuous
querying aims continuously evaluating streaming data
by using incremental algorithms without optimizing
queries from scratch as much as possible [14]. IoT
systems typically generate append-only streams and
continuous query processors are needed over this
activity data. Moreover, due to the enormous and
unlimited nature of the data flow, all history cannot be
stored for future use. Thus, intelligent sampling and
filtering algorithms are needed for a better archiving.

The characteristics mentioned above changes the data
processing style within database systems. Additionally,
significant limitations in expressing streaming data with
SQL emerges many new research topics under the name
of DSMS(data stream management systems). A
fundamental concept in data stream systems is the
sliding “window”, defined as a basic processing unit. [16].

A key research issue for DSMSs is deciding on the best
data model and query language. In database literature,
there have been many proposals to model the behavior
of streaming data, having different query languages
associated with them [17-19]. Additionally, NoSQL
databases relax many of the traditional constraints
associated with streaming data. For example, Apache
Kafka [20], is a distributed streaming platform that
stores and processes stream of records in a fault-tolerant
durable way.

3.6. NoSQL Databases

By its flexible nature, different data models and
processing frameworks (like MapReduce) have emerged
under the name of NoSQL. I now introduce the most
accepted classification of NoSQL data models: key/value,
document, wide-column, and graph data models [16]. I
will not describe each model in detail here, however, I
point out their some distinguishing characteristics that
may be important for IoT systems. Each model is
characterized to get better performance for different
applications. For each model, I give some sample IoT
application that fits this model.

First, key/value model simply store key-value pairs in
distributed hash tables. Since lookup for a key item is
extremely fast and the scalability is the best among
others it may be used in applications like managing user
profiles/sessions. Dynamo, Amazon's Highly Available
Key-value Store is a major contributor to this model.

Second, document model stores each record within a
standard document format. Various query and
analytics tools can query both semi-structured data
elements within document objects and the structure of
the document itself. Document-oriented databases are

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

51

well suited for different types of applications that require
management of different documents (namely content or
blog management) like text, email, multimedia, XML and
user-generated tweets/comments.

Third, wide-column databases store data in columns
rather than rows by means of key/value pairs. This type
of storage is good for data compression and aggregate
queries. The column-store technology is particularly
suitable to process big data in MapReduce framework. In
the IoT traffic analytics example that I gave in the
introduction, statistical machine learning algorithms on
historical data and sensitive real-time information
collected from sensors can be processed in MapReduce
framework in a quasi-real-time manner. BigTable started
in 2004 by Google is a major contributor in this model.

Last, Graph databases stores data within a set of nodes
for objects, edges for objects' relationships, and
properties for object and relationship attributes
expressed as key/value pairs. RDF stores, a semantic web
database is a good example that can be stored and
processed in graph databases [21].

Figure 1 below shows the NoSQL family in terms of data
complexity versus scalability. For example, social
network and semantic data are considered as complex
data and best managed with graph data model, while
very large-scale of simple key/value collections are
considered as simple data and best managed with
key/value or wide-column data model.

Figure 1. Comparison of NoSQL family with relational

model in terms of complexity and scalability [16].

In the last decade, there have been many evaluations and
comparisons over different types of databases including
relational and NoSQL family in order to reveal their
differences in performance, usage, and complexity [9],
[22, 23]. Among them, extensive test results for four
popular databases (MySQL, MongoDB, CouchDB, and
Redis) located in the cloud are presented in a thesis [9].
The tests including basic read/write operations with
different workloads are run to measure the average
latency for each database system. The workloads include
two typical IoT data types: sensor scalar data and
multimedia data. The experiments are conducted with
many other setup parameters such as the number of
concurrent clients, query types and database
configurations. The test results report the latency of bulk
insert, read/write latency and index support in the query

performance. This thesis shows the popularity of NoSQL
databases against conventional relational database
systems, especially for IoT systems. I believe that this
valuable thesis can be a good starting point for those who
are curious the pros and cons of current database
systems.

4. Conclusion

Having a better understanding of how collective data is
used with the evolution of the Internet, intelligent
algorithms, and tools to analyze this information may
add greater efficiency to our lives with making our
society safer and healthier. IoT’s main promise is to
integrate the physical objects seamlessly with the
Internet, specifically with the web services. Eventually,
“things” can become active participants in our daily life
and business processes. Services may interact with these
“smart objects” by querying their state and any related
information. Since IoT systems generate a large amount
of data at very high velocity, appropriate data
management is maybe the most critical part of this
ecosystem. In this paper, I listed 5 motivations to better
understand the need for new approaches over traditional
DBMS design principals. In the first 4 motivations, I
introduced schema-less approach, MapReduce data
processing framework with horizontal scalability and
high fault-tolerance, then discussed the relaxing some of
the ACID properties which are considered as the
distinguished issues of emerging database technologies.
At the last motivation, I introduce streaming data
processing and its importance for IoT systems.

I conclude that while NoSQL databases open new
perspectives providing improved availability and
flexibility that is a need in IoT systems, it is apparent that
there is still much more room for future research for data
management of IoT systems.

5. Acknowledgment

I thank Veli Hakkoymaz for his valuable feedback on this
paper.

6. References
[1] Welbourne E., Battle L., Cole G., Gould K., Rector K.,

Raymer S., Balazinska M., and Borriello G.,
“Building the internet of things using rfid: The rfid
ecosystem experience,” Internet Computing, IEEE,
vol. 13, no. 3, pp. 48–55, 2009.

[2] Leavitt N., “Will nosql databases live up to their
promise?” Journal Computer Vol. 43, Issue 2
(2010), 12-14.

[3] Moniruzzaman A.B.M., Hossain S., (2013). “NoSQL
Database: New Era of Databases for Big data
Analytics - Classification, Characteristics and
Comparison.” Int J Database Theory Appl. 6.

[4] Ramakrishnan R., and Gehrke J., Database
Management Systems (Third Edition). McGraw-
Hill, Boston, 2003.

[5] Laney D., “3-D Data Management: Controlling Data
Volume, Velocity and Variety” Research Note,
META Group, February 2001.

Mustafa Utku Kalay
Database System Suggestions for The Internet of Things (IOT) Systems

52

[6] Dean J. and Ghemawat S., “Mapreduce: simplified
data processing on large clusters.”
Communications of the ACM 51, 1 (2008), 107-
113.

[7] Dean J., Ghemawat S., “MapReduce: A Flexible Data
Processing Tool.” Commun. ACM. 53. 72-77.
(2010)

[8] Pavlo A., Paulson E., Rasin A., Abadi D.J., DeWitt
D.J., Madden S., and Stonebraker M., “A
comparison of approaches to large-scale data
analysis” In Proceedings of the 2009 ACM SIGMOD
International Conference ACM Press, New York,
2009

[9] Phan T. A. M., Nurminen J. K. and Francesco M. Di,
"Cloud Databases for Internet-of-Things
Data," 2014 IEEE International Conference on
Internet of Things (iThings), and IEEE Green
Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social
Computing(CPSCom),Taipei,117-124.

[10] Dewitt D., and Stonebraker M., “MapReduce: A
Major Step Backwards” Available:
http://databasecolumn.vertica.com/database-
innovation/mapreduce-a-majorstep-backwards/

[11] Abu-Elkheir M., Hayajneh M., Ali NA.. “Data
Management for the Internet of Things: Design
Primitives and Solution”. Sensors (Basel,
Switzerland). 2013;13(11):15582-15612.
doi:10.3390/s131115582.

[12] Jonathan A., Ryden M., Oh K., Chandra A. and
Weissman J., "Nebula: Distributed Edge Cloud for
Data Intensive Computing," in IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no.
11, pp. 3229-3242, Nov. 1 2017.

[13] Satoh I., "MapReduce-Based Data Processing on
IoT," International Conference on Internet of
Things (iThings), and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom), Taipei,
2014, pp. 161-168.

[14] Babu S. and Herodotou H.. “Massively Parallel
Databases and MapReduce Systems” Foundations
and Trends in Databases Vol. 5, No. 1 (2012) 1–
104c 2013 DOI: 10.1561/1900000036

[15] Memishi B., Ibrahim S., Pérez M.S., Antoniu G.
“Fault Tolerance in MapReduce: A Survey.”
Resource Management for Big Data Platforms.
Computer Communications and Networks.
Springer, Cham(2016)

[16] Francesco C., Massimo D. S., Vincenzo M., Picariello
A., Schreiber F. A., Tanca L. Data Management in
Pervasive Systems, Data-Centric Systems and
Applications book series (DCSA), (2015) DOI:
https://doi.org/10.1007/978-3-319-20062-0

[17] Arasu A., Babu S., Widom J.,“The cql continuous
query language: semantic foundations and query
execution.” J. Int. J. Very Large Data Bases 15(2),
121–142 (2006)

[18] Chandrasekaran S., Cooper O., Deshpande A.,
Franklin M.J., Hellerstein J.M., Hong W.,
Krishnamurthy S., Madden S.R., Reiss F., Shah
M.A.,: “Telegraphcq: continuous dataflow
processing.” In: Proceedings of the 2003 ACM
SIGMOD International Conference on
Management of Data, pp. 668–668. ACM, New York
(2003)

[19] Chen J., DeWitt D.J., Tian F., Wang Y., “Niagaracq: a
scalable continuous query system for internet
databases.” In: ACM SIGMOD Record, vol. 29, pp.
379–390. ACM, New York (2000)

[20] Apache Kafka. Available:
https://kafka.apache.org/intro

[21] Liebig T., Vialard V., Opitz M., and Metzl S.,
“GraphScale: Adding Expressive Reasoning to
Semantic Data Stores.” Demo Proceedings of the
14th International Semantic Web Conference
(ISWC 2015)

[22] Bartholomew D., “Sql vs. nosql”. Linux Journal
2010, 195 (2010), 4.

[23] Hecht R. and Jablonski S., “Nosql evaluation: A use
case oriented survey” In Cloud and Service
Computing (CSC), 2011 International Conference,
IEEE, pp. 336-341.

https://link.springer.com/bookseries/5258
https://link.springer.com/bookseries/5258
https://doi.org/10.1007/978-3-319-20062-0
https://kafka.apache.org/intro

