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Abstract: Beef adulteration with turkey meat is typically driven by financial motives. Since 

turkey meat is less expensive than beef, producers aiming to cut costs and boost profits blend 

turkey meat into beef products in certain ratios. This study aimed to investigate the use of 

fluorescence spectroscopy as a fast, non-destructive, and comprehensive method, combined with 

multivariate analysis, to predict meat adulteration. Raw turkey ground was combined with raw 

beef ground in concentrations from 0-100% (w/w) in 10% increments and then cooked. 

Fluorescence measurements of the cooked samples were taken (Ex 200-500 nm, Em 525 nm). 

The resulting spectral data were analyzed using chemometric tools, such as principal component 

analysis and partial least squares regression, and error metrics (Table 1 and 2) were calculated. 

For the training, validation, and test datasets, R² values of 0.941, 0.922, and 0.916, and RMSE 

values of 8.124, 10.856, and 8.456 were identified, respectively. This research demonstrated that 

fluorescence spectroscopy and multivariate analyses can serve as rapid, non-destructive, and 

effective methods for detecting a 20% turkey meat adulteration in meat products. 

 

 

Makine Öğrenmesi Destekli Floresans Spektroskopisi ile Pişmiş Kıyma Sığır Etinde Hindi 

Eti Tağşişinin Belirlenmesi 
 

 

Anahtar 

Kelimeler 

Sığır eti, 

Floresans 

spektroskopisi, 

Makine 

öğrenmesi, 

Et tağşişi, 

Hindi eti 

Öz: Sığır etine hindi eti karıştırılması genellikle finansal nedenlerle gerçekleştirilmektedir. Hindi 

eti, sığır etine kıyasla daha ucuz olduğundan, maliyetleri düşürmek ve kâr oranlarını artırmak 

isteyen üreticiler, belirli oranlarda hindi etini sığır eti ürünlerine karıştırmaktadır. Bu çalışma, et 

hilelerinin tespiti için hızlı, tahribatsız ve kapsamlı bir yöntem olarak floresans spektroskopisinin 

çok değişkenli analizlerle birlikte kullanımını araştırmayı amaçlamıştır. Çiğ hindi kıyması, %0–

100 (a/a) aralığında ve %10’luk artışlarla çiğ sığır kıyması ile karıştırılmış, ardından pişirme 

işlemi uygulanmıştır. Pişmiş örneklerin floresans ölçümleri (Ex: 200–500 nm, Em: 525 nm) 

alınmıştır. Elde edilen spektral veriler, temel bileşen analizi (PCA) ve kısmi en küçük kareler 

regresyonu (PLSR) gibi kemometrik araçlar kullanılarak analiz edilmiş, hata metrikleri (Tablo 1 

ve 2) hesaplanmıştır. Eğitim, doğrulama ve test veri kümeleri için sırasıyla 0.941, 0.922 ve 0.916 

R² değerleri ve 8.124, 10.856 ve 8.456 RMSE değerleri elde edilmiştir. Bu araştırma, floresans 

spektroskopisi ve çok değişkenli analizlerin, et ürünlerinde %20 oranındaki hindi eti taklitçiliğini 

tespit etmek için hızlı, tahribatsız ve etkili yöntemler olarak kullanılabileceğini ortaya koymuştur. 

 

1. INTRODUCTION 

 

The adulteration of meat products is not only an economic 

problem but also a serious concern in terms of public 

health, religious sensitivities, and consumer rights. The 

addition of low-cost meat types to beef, which has high 

economic value, is a common example of food 

adulteration [1]. 

 

Grounded and cooked meat products are adulterated more 

easily than fresh meat. This is because size reduction, 

cooking, and use of spices may reduce the effects of 
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adulteration. Detecting adulteration in minced beef 

usually becomes more difficult after cooking because 

thermal process causes denaturation of the protein and 

loss of the chemical bonds of the meat [2], which makes 

the detection method more difficult. Therefore, 

prevention of meat adulteration, proper labelling of food, 

and prevention of unfair competition in the meat sector 

have become important issues for the competent 

authorities of the meat sector [3]. The detection of 

adulteration in meat products is of great importance for 

ensuring consumer safety and determining compliance 

with legal regulations [4]. 

 

Different analytical techniques have been used to 

determine adulteration. Polymerase chain reaction (PCR) 

is a well-known molecular method involving the chemical 

amplification of specific DNA sequences [5]. This 

technique is useful for the identification of different 

species in a mixed meat sample or for the determination 

of meat origin based on specific DNA sequences that are 

unique to different meat species [6]. Chromatographic, 

immunological, and electrophoresis methods are 

commonly used for detecting foreign compounds [7,8]. 

Hoffmann et al. [9] investigated the ability of HPLC-

MS/MS scanning to simultaneously detect plant proteins 

(soya, pea, and lutein) in meat products. 

 

Although the methods described above provide high 

accuracy and demonstrate robustness, they still have 

numerous shortcomings; for example, they are more 

expensive, labourious, and time-consuming, experts are 

required to perform the experiment, and a considerable 

amount of time is required to prepare the sample and 

perform the analysis. Therefore, there is a need to develop 

fast and accurate techniques suitable for online 

authentication that are easy to implement by government 

agencies and quality assurance engineers to monitor 

counterfeiting in processed meat products. Increasing 

efforts have been made to introduce fast, innovative, and 

reliable detection techniques to ensure the authenticity, 

quality, and safety of meat and meat products [10,11]. 

 

Fluorescence spectroscopy has attracted attention as a 

noninvasive, rapid, and economical method for food 

analysis. The characteristic fluorescence properties of 

biomolecules found in meat products are considered 

potential tools for distinguishing different species [12]. 

However, the high-dimensional and complex nature of 

fluorescence data makes it difficult to effectively analyse 

this information. Machine learning algorithms are 

powerful tools for pattern extraction, classification, and 

prediction processes from large datasets [13,14]. This 

study aimed to develop a new, fast, practical, and low-cost 

analytical method as an alternative to traditional analysis 

methods for the determination of adulteration of turkey 

meat mixed with beef at different ratios. 

 

2. MATERIAL AND METHOD 

 

2.1. Material 

 

Postmortem beef (Longissimus thoracis et lumborum) and 

turkey breast meat (Musculus superficiolis) were obtained 

from a local meat supplier, transferred to the laboratory 

under aceptic conditions, and stored in a freezer (−20 °C) 

until use. 

 

2.2. Sample Preparation 

 

Water 10% (w/w) and NaCl 2% (w/w) were added to the 

beef/turkey minced meat mixture, in 50 mL centrifuge 

tubes (Isolab, Turkey). The tubes were placed in a water 

bath set at 60°C and the temperature of the water bath was 

increased to 85°C. The centre temperatures of the 

experimental groups were monitored using a thermometer 

(ISOLAB, Turkey). The cooking process was terminated 

when the centre temperature of the samples reached 74°C 

(Fig. 1). The cooked samples were kept at room 

temperature for 30 min after the cooking liquid was 

removed [15]. 

 

 
Figure 1. A representative sample preparation study (The photograph 

was taken by A. Soyuçok for this study). 

 

2.3. Fluorescence Spectral Analysis 

 

A fluorescence spectrophotometer (Varioscan Lux, 

Thermo Fisher. Inc, USA) was used for spectral 

measurement. To determine the wavelength at which the 

highest emission occurred, the fluorescence emission 

spectra of the meat samples were recorded at a constant 

excitation wavelength (460 nm) and emission values in 

the range of 480-840 nm and the highest emission value 

was determined. All spectra were recorded at room 

temperature and each treatment was performed in 

triplicate. The excitation spectra were acquired at a fixed 

emission wavelength of 525 nm over an excitation range 

of 200-500 nm. 

 

 

2.4. Chemometric Analysis 

 

The Unscrambler X 10.5 software was employed to 

preprocess the fluorescence spectra, thereby correcting 

the initial values. Initially, the raw spectral data were 

smoothed using a Savitzky-Golay derivative filter 

(second-order polynomial, 11-point window) to mitigate 

the signal noise and eliminate variations attributable to 

light scattering. Subsequently, the data were normalised 

using a Standard Normal Variate (SNV) transformation. 

The data were then structured in a mean-centred format 

by averaging, rendering them suitable for Partial Least 



     

Tr. J. Nature Sci. Volume 14, Issue 3, Page 67-72, 2025 
 

 

69 

Squares (PLS) modelling. The Partial Least Squares 

Regression (PLSR) method was utilized in the modeling 

process, with a kernel-based approach selected as the 

algorithm. Model accuracy was assessed through the 

cross-validation method, and the performance evaluation 

criteria included R², RMSE, slope, and offset values. 

 

3. RESULTS AND DISCUSSION 

 

The present study leveraged fluorescence spectroscopy as 

a rapid, non-destructive means to detect turkey 

adulteration in cooked ground beef. The highest emission 

of cooked beef mince containing turkey meat adulteration 

was observed at 525 nm (Fig. 2A). The spectrum was 

scanned at 525 nm excitations (Fig. 2B). As the 

percentage of adulteration of turkey meat varied, the 

changes in the spectrum increased, indicating that the 

wavelengths were suitable for the determination of 

adulteration (Fig. 3) and were also due to the tryptophan 

content in the myofibril protein and the free amino acids 

in the meat [16]. The wavelengths at which this change 

occurs serve as fingerprints for the identification of turkey 

meat [17]. 

 

 
Figure 2A. Emission spectrum (Ex. 460nm). 

 

 
Figure 2B. Fluorescence spectrum (Ex 200-500 nm, Em 525 nm). 

 

 
Figure 3. Effect of turkey adulteration at different wavelengths. 

 

Various analytical methods exist for meat fraud detection, 

each with trade-offs. DNA-based methods (PCR) are 

gold-standard for species identification and can detect 

adulterants down to very low levels (often <1%) [18]. 

Real-time PCR or multiplex PCR reliably confirm species 

in raw or lightly processed meats. However, PCR requires 

DNA extraction and thermal cycling instrumentation, and 

the target DNA can be degraded by intensive processing. 

For example, Aprilia et al. [19] found that conventional 

PCR failed to detect pork in heavily heated beef-floss 

products, whereas an ELISA immunoassay succeeded. 

Thus, PCR may miss adulterants in highly processed 

foods, necessitating complementary methods. 

 

Near-Infrared (NIR) spectroscopy is a rapid alternative. 

NIR (and Vis-NIR) spectroscopy measures overtone 

vibrations of O–H, C–H, and N–H bonds; it is non-

destructive and can be implemented in portable probes. In 

adulteration studies, NIR (often with PLSR) technique has 

quantified turkey or other meats in beef with good 

success. For example, Alamprese et al. [20] used FT-NIR 

(1000–2500 nm) and PLSR to predict turkey in minced 

beef, achieving R2>0.884 and RMSE <10.8%. Similarly, 

Weng et al. [21] applied Vis/NIR (300–2500 nm) plus 

chemometrics and reported ~99% accuracy in classifying 

pork or organ adulteration in ground beef. NIR 

spectroscopy’s advantages include fast scanning and 

minimal sample prep, but its broad overlapping bands can 

limit specificity. Preprocessing (e.g. SNV, derivatives) is 

crucial in NIR spectroscopy just as in fluorescence. 

Notably, studies show NIR spectroscopy often 

outperforms UV-Vis spectroscopy for meat fraud: 

Alamprese et al. [20] reported that NIR/MIR spectra gave 

better turkey detection than UV-Vis spectra. 

 

Liquid Chromatography–Mass Spectrometry (LC-MS) 

techniques (including proteomics and metabolomics) are 

highly sensitive and specific. LC-MS can identify species-

specific peptide or lipid markers even in processed meat. 

State-of-the-art targeted proteomics methods achieve 

detection limits on the order of 0.2–1% in cooked 

products [18]. For example, Prandi et al. [22] developed 

an LC-MS/MS assay with LOD ≈0.2–0.8% for eight 

species (including turkey and chicken) in complex meat 

matrices. High-resolution LC-MS has also mapped 

adulteration in multi-component meat meals. These 

approaches yield definitive results and can handle very 

low adulteration levels, but they are costly, require skilled 

operation and heavy sample preparation, and are not 

suited for on-site or rapid screening. LC-MS is best 

viewed as a confirmatory or research tool rather than a 

routine field test. 

 

Immunoassays (ELISA, lateral-flow “dipstick” tests) 

target specific proteins and can offer rapid, user-friendly 

detection of particular species (e.g. antibodies against 

pork myoglobin). ELISAs for meat species are available 

and can detect ~1% adulteration under ideal conditions 

[19]. They require no complex optics or chemometrics. 

However, immunoassays depend on intact antigen 

epitopes, which may be denatured by cooking. As 

observed by Aprilia et al. [19], an ELISA detected pork in 

heat-processed beef where PCR failed, implying ELISA 

can sometimes outperform DNA methods on cooked 

products. On the other hand, if proteins are heavily 

modified, ELISA may give false negatives. 

Immunoassays are also limited to pre-chosen targets; each 
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assay detects one species (or one allergen), so screening 

for multiple adulterants requires multiple tests. 

 

Fluorescence-PLSR occupies a middle ground between 

these techniques. It is quicker and cheaper than LC-MS 

and PCR, yet more general (and often more quantitative) 

than single-target ELISAs. Our approach achieved 

comparable accuracy to published NIR models [20,23], 

confirming its viability. However, unlike targeted assays, 

it does not identify species by unique markers; it instead 

uses statistical patterns. This means it works well for 

known adulterations (beef vs turkey), but its 

generalizability to unknown adulterants must be validated 

separately. Complementary use (e.g. following up a 

positive fluorescence screen with PCR or MS for 

confirmation) would combine the strengths of these 

methods. 

 

Despite the encouraging performance, several limitations 

must be acknowledged. First, the detection limit of ~20% 

turkey content means that very low-level adulteration 

(below 10–20%) was not reliably quantified. This is 

evident from the test-set bias (Table 2): the regression 

slope was well below unity (0.789) and the offset high 

(≈16%), indicating substantial underestimation at low 

adulteration levels. One cause is spectral masking: at 

small percentages, turkey’s fluorescent signature is weak 

relative to the dominant beef background, making it hard 

to distinguish. The fixed-emission setup (Em = 525 nm) 

captures only one slice of the fluorescence landscape, 

possibly missing other differentiating peaks. It’s known 

that overlapping fluorophores (e.g. tryptophan, NADH, 

collagen crosslinks) can yield broad, featureless spectra in 

mixed meats [14]. Our preprocessing (SG smoothing, 

SNV) improves precision but cannot recover information 

lost in broad overlap. 

 
Table 1. Error metrics for calibration and validation data set. 

 Slope Offset RMSE R2 

Calibration 0,941 2,633 8,124 0,941 

Validation 0,901 4,573 10,856 0,922 

 
Table 2. Error metrics for test data set. 

 SEP Bias Slope Offset RMSE R2 

Test 8.96 5.98 0.789 16,544 8,456 0,916 

 

Processing effects also complicate the task. All samples 

were cooked, which generates Maillard products and 

denatures proteins. These chemical changes may reduce 

species-specific contrast. For example, Aprilia et al. [19] 

noted that intensive heat can degrade DNA, affecting 

PCR, but also it could alter protein fluorescence. By 

removing cooking juices, we reduced variability due to 

moisture and soluble compounds, but this also eliminated 

any adulterant signals in the liquid fraction. In some cases, 

juices might carry pigment or vitamin differences (though 

that fraction was deliberately excluded here to mimic a 

typical solid-recipe analysis). 

 

Another limitation stems from the PLSR model itself. 

Partial Least Squares assumes a linear relationship (albeit 

in latent-space) between spectra and concentration. We 

used a kernel-PLSR to allow nonlinearity, but extreme 

concentrations still exhibited bias. The high 

calibration/validation R2 and low RMSE suggest the 

model fits the training data well, but some overfitting or 

calibration transfer issues are possible. In particular, the 

steep drop in test slope hints at calibration–prediction 

differences, perhaps due to sample-to-sample variation 

not captured in the calibration set (Table 1). For example, 

heterogeneity in fat content or the microdistribution of 

turkey meat could lead to spectral inconsistencies. 

Ensuring sample homogeneity and averaging multiple 

scans per sample can help mitigate this issue. 

 

Fluorescence intensity can be affected by instrument 

factors (lamp stability, detector sensitivity) and by matrix 

scattering. We attempted to minimize these by using 

front-face optics and SNV normalization [24], in addition, 

our study focused only on turkey in beef; detecting other 

adulterants (e.g. pork, chicken, lamb) would require 

retraining the model with corresponding mixtures and 

possibly different spectral features. While our method 

shows strong accuracy for moderate to high adulteration 

levels, its sensitivity limit (~20%) and potential biases 

mean it is not a definitive single solution. Instead, it is best 

viewed as a rapid screening tool: samples flagged by 

fluorescence should be further analyzed by confirmatory 

methods (PCR, LC-MS). Understanding these limitations 

guides realistic interpretation of the results and directs 

improvements. 

 

Food adulteration in Türkiye has been a significant public 

health and regulatory concern. Turkish law (the Turkish 

Food Codex) explicitly prohibits mislabeling and mixing 

of meats. For example, Regulation Notification 2012/74 

forbids producing “prepared meat mixtures” by mixing 

beef with poultry or pork without declaration [25]. 

Violating this rule not only deceives consumers 

(especially on religious grounds) but also can endanger 

health if allergens or unsanitary meats are involved. 

Studies have documented non-compliance: one 

nationwide survey of processed beef products found that 

34% of samples were adulterated, predominantly with 

cheaper poultry (32.9%) and occasionally horsemeat 

(1.3%) [25]. No pork was found in that study, reflecting 

consumer sensitivities to pork; indeed, while pork is legal, 

it must be explicitly labeled (due to the majority-Muslim 

population). Earlier work also found adulteration rates on 

the order of 15–50% in various regions of Türkiye, 

underscoring its pervasiveness. 

 

In the past year Turkish authorities have intensified 

enforcement. In late 2024, Türkiye Ministry of 

Agriculture and Forestry, publicly released lists of 

hundreds of food products failing standards. These 

included cases of beef products containing undeclared 

pork, equine meat sold as beef, and processed foods with 

unauthorized additives. For instance, a popular pizzeria 

was found to serve “beef” pizza laced with pork, causing 

a social outcry. In one high-profile campaign, over 500 

companies and nearly 1,000 product batches were flagged 

for mislabeling or adulteration. Notable fraud examples 

included kebabs with hidden pork and cheeses “filled” 

with margarine. These revelations have prompted calls for 

stronger routine screening and transparency. Our findings 
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have direct relevance in this context. A rapid 

spectroscopy-based test like ours could be incorporated 

into official monitoring protocols or quality control by 

food companies. Because it is non-destructive and quick, 

inspectors could screen batches of ground meat or 

finished products en masse, identifying suspicious 

samples in need of further testing. Early detection of 

fraudulent meat substitution not only protects consumers 

(from allergen risk or religious violations) but also helps 

maintain fair markets. In Türkiye, where the economy of 

meat products is closely tied to cultural norms, ensuring 

authenticity is doubly important. Moreover, the 

introduction of portable, fluorescence-based analyzers (as 

future work) could empower even small processors or 

market inspectors to perform on-the-spot checks. For 

example, a hand-held fluorescence sensor could be used 

at slaughterhouses or meat processing plants to audit 

mixtures continuously. Even now, our bench-top results 

support the feasibility of such approaches. Implementing 

fluorescence-ML screening would complement Türkiye’s 

regulatory framework (e.g. Law No. 5996 and related 

communiqués [26]) by providing a technical backbone to 

the “real-time” adulteration alerts announced by the 

Ministry [27]. In essence, improved analytical tools 

would enable the promise of these policies – ensuring that 

all beef-labeled products truly contain only beef, as 

mandated by the Codex. 

 

Building on this work, several avenues could enhance 

detection capability and practical utility. First, expanded 

spectral techniques are promising. Multispectral or 

hyperspectral imaging could capture both spectral and 

spatial information of the meat. For example, Yu et al. 

[28] developed a portable hyperspectral imager (400–

1000 nm) with on-board processing that achieved ≈95% 

accuracy in classifying meat species and even produced 

spatial “adulteration maps” of samples. Extending 

fluorescence to three-dimensional excitation–emission 

matrices (EEMs) rather than a single emission wavelength 

might likewise extract more features. Similarly, 

combining UV–Vis, NIR, and fluorescence 

measurements could provide complementary fingerprints: 

Alamprese found that MIR/NIR technique together 

outperformed UV-Vis technique alone for turkey 

detection [23], suggesting multi-modal fusion could 

improve sensitivity. Second, miniaturization and 

portability are key. Developing handheld fluorescence 

devices (e.g. LED-based fluorimeters) would allow in-

field use. Coupling fiber-optic probes with portable 

spectrometers could enable direct scanning of meat on-

site. The Raspberry Pi-controlled HSI system of Yu et al. 

(2025) demonstrates the feasibility of low-cost portable 

platforms. Future work should assess such devices in real-

world conditions (varying light, temperature, sample 

presentation) and calibrate them accordingly. Integration 

with smartphone technology (e.g. smartphone 

spectrometer add-ons) could also democratize testing. 

Third, real-time monitoring could transform processing 

lines. For example, an assembly-line fluorescence scanner 

could continuously check ground meat moving on a 

conveyor, flagging adulteration instantly. Coupled with 

cloud-based machine-learning, this would yield a live 

dashboard of authenticity. Such “smart factory” 

integration would greatly aid quality assurance. Research 

is needed on non-contact or inline sampling approaches 

(e.g. fluorescence excitation via laser diode, detection 

through camera-based sensors) to enable non-invasive 

scanning at speed. Fourth, larger and more diverse 

datasets will strengthen models. Expanding the sample set 

to include meats from different breeds, ages, or diet 

regimens would improve robustness. Including other 

adulterants (pork, chicken, lamb, offal) either singly or in 

multi-component mixtures is essential to generalize the 

method. Multi-species models or variable-selection 

algorithms could then differentiate among several 

possible adulterants. Additionally, more replicates at low 

adulteration levels (5–15% turkey) are needed to push the 

detection limit lower. Fifth, advanced chemometrics and 

AI could boost performance. We used kernel-PLSR, but 

emerging machine-learning techniques (e.g. Random 

Forests, Support Vector Regression, deep neural 

networks) may capture complex spectral patterns even 

better. Deep learning, in particular, has shown promise in 

spectroscopy: convolutional neural networks can learn 

features from spectra or images without explicit 

preprocessing. Future studies might compare PLSR to 

such methods for quantitation. Data fusion approaches 

(combining fluorescence with orthogonal sensors) could 

also be pursued. 

 

4. CONCLUSION 

 

While our fluorescence‐PLSR method demonstrates 

strong potential, its ultimate impact will grow when 

integrated with these advancements. By extending the 

spectral range, deploying portable instrumentation, 

gathering wider datasets, and harnessing modern AI, it 

should be possible to create real-time, on-site 

authentication systems. Such tools would not only 

improve the detection of turkey in beef but could be 

adapted to a broad array of food fraud challenges, thereby 

supporting food safety and integrity both in Türkiye and 

globally. 
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