

RESEARCH ARTICLE

Examining University Students' Perception and Ad Viewing Behavior in Artificial Intelligence (AI) Influencer Marketing

Can Saygın¹

Abstract

¹ Assist. Prof., Izmir Democracy University, Faculty of Economics and Administrative Sciences, Department of Management Information Systems, Izmir-Türkiye

ORCID: [0000-0002-1680-392X](https://orcid.org/0000-0002-1680-392X)E-Mail: can.sayginer@idu.edu.tr

July 2025
Volume:22
Issue:4

DOI: [10.26466/opusjsr.1706956](https://doi.org/10.26466/opusjsr.1706956)

The effectiveness of social media advertisements increasingly depends on their influence on consumer viewing behavior. This study explores how consumer perceptions—specifically informativeness, entertainment, credibility, economic contribution, and value deterioration—affect advertisement viewing behavior in the context of AI influencer marketing. Data were collected from 134 university students at public and private universities in Izmir through a structured questionnaire and analyzed using SMARTPLS 4.0 with a structural equation modeling approach. Results showed that informativeness and credibility significantly enhanced perceived entertainment, which in turn positively influenced advertisement viewing behavior. Additionally, economic contribution (representing innovation) had a direct and significant effect on viewing behavior. The model explained 37.3% of the variance in advertisement viewing behavior, demonstrating moderate explanatory power. These findings highlight the critical role of perceived entertainment and innovation in shaping engagement with AI influencer ads, offering valuable insights for marketers aiming to optimize their digital advertising strategies in the age of artificial intelligence.

Keywords: Social Media Advertising, AI Influencers, University Students' Perception, Advertisement Viewing Behavior, Structural Equation Modeling

Citation:

Saygın, C. (2025). Examining university students' perception and ad viewing behavior in artificial intelligence (AI) influencer marketing. *OPUS—Journal of Society Research*, 22(4), 810-820.

Öz

Sosyal medya reklamlarının etkinliği, giderek artan bir şekilde tüketici izleme davranışlarını etkileme düzeyine bağlı hâle gelmektedir. Bu çalışma, tüketici algılarının—özellikle bilgilendiricilik, eğlence, güvenilirlik, ekonomik katkı ve değer yozlaşması—yapay zekâ tabanlı influencer pazarlaması bağlamında reklam izleme davranışının üzerindeki etkilerini incelemektedir. Veriler, İzmir'deki devlet ve özel üniversitelerinde öğrenim gören 134 üniversite öğrencisinden yapılandırılmış bir anket aracılığıyla toplanmış ve SMARTPLS 4.0 kullanılarak yapısal eşitlik modelleme yöntemiyle analiz edilmiştir. Bulgular, bilgilendiricilik ve güvenilirliğin algılanan eğlence düzeyini anlamlı şekilde artırdığını ve eğlencenin reklam izleme davranışının üzerinde pozitif bir etkisi olduğunu ortaya koymuştur. Ayrıca, ekonomik katkı (yenilik katkısını temsil) reklam izleme davranışını doğrudan ve anlamlı biçimde etkilemiştir. Model, reklam izleme davranışındaki varyansın %37,3'ünü açıklamış ve orta düzeyde bir açıklayıcılık sunmuştur. Bu bulgular, yapay zekâ influencer reklamlarında algılanan eğlence ve yenilik katkısının, tüketici etkileşiminin şekillendirmedeki kritik rolünü vurgulamakta ve dijital reklam stratejilerini optimize etmek isteyen pazarlamacılar için değerli içgörüler sunmaktadır.

Anahtar Kelimeler: Sosyal Medya Reklamcılığı, Yapay Zekâ Influencer'ları, Üniversite Öğrencilerinin Algısı, Reklam İzleme Davranışı, Yapısal Eşitlik Modellemesi

Introduction

The boundaries between human and AI creators have blurred significantly in today's digital landscape, most clearly and dramatically in influencer marketing. Fueled by AI-driven developments, virtual influencers—AI-driven characters that engage with followers on social media—are the new frontier in advertising methods. These AI-generated influencers are the latest trend in advertising—representing a realistic replica of a human being, that is, and not the trendy 'influencer,' whose value they are ready and positioned to overtake. University students, as heavy users of the digital age, form a subset of the target demographic regularly exposed to influencer-generated content, and hence to the AI-based promotional strategies. Understanding how this group perceives AI influencer ads is essential for establishing effective advertising strategies (Yazdani & Darbani, 2023).

In this context, customer perceptions, including informativeness, credibility, entertainment, and perceived contribution to innovation, are critical to assessing the efficiency of AI influencer ads. Although traditional influencer marketing is well investigated, there is a lack of empirical research on AI influencer marketing (Chen & Ryoo, 2025). Moreover, the psychological and behavioral impacts of AI-created consumer-facing advertising are still being discovered. Increased study of how these new digital marketing methods—especially advertisement viewing behavior (Stright et al., 2025)—are processed by audiences, and higher education students in particular, is needed to better understand attention and engagement and to form behavioral intention.

AI-driven influencers have become increasingly popular in the digital marketing landscape over the last few years. Often, these fake personalities are crafted with ultra-realistic images and programmed to engage with followers in a manner that imitates humanoid conduct so they seem real and relatable. One key figure to mention in this context would be Lil Miquela, a virtual influencer collaborator of financial value across diverse brands and partners from around the world, including Prada, Calvin Klein, and Samsung (Wang et al., 2023) with millions of Instagram followers. At the same time, Shudu Gram, the world's first

digital supermodel, has appeared in campaigns for Balmain and Vogue, daring to challenge conventions of beauty and celebrity. Another high-profile example is the Japanese virtual model called Imma, recognized by her pink bob and science fiction-inspired appearance, who regularly stars in high-fashion and tech partnerships (Kelling et al., 2024). Each of these virtual personas not only serves a functional role within their respective industries but also challenges traditional marketing paradigms by fostering deeper connections with consumers. In addition to global examples, Türkiye has also witnessed the emergence of AI-based influencers in various domains. With examples such as Aypera in music, Alara X in fashion and tech, and Virtual Alin in automotive, AI influencers in Turkey come in a variety of shapes and sizes. These AI celebrities not only challenge the very definition of what it means to be an "influencer" — they also raise key questions for some of the most pressing issues surrounding how consumers trust, perceive and understand promotional content in the age of social media.

As these AI entities continue to blur the distinctions between the real and the simulated, it can hardly be overestimated that the need to comprehend how traditional media consumers interact with these new types of content, and, accordingly, whether traditional advertising models work for this kind of mediated communication. The theoretical model for this study is constructed with several main constructs for the explanation of advertisement viewing behavior in AI influencer marketing: Information Provision, Entertainment, Credibility, Economic Contribution, and Advertisement Viewing Behavior (Chen & Ryoo, 2025).

In the context of AI influencers, such kind of AI influencer including, for example Lil Miquela, Shudu Gram, and Imma, there are a few of them that are described from various perspectives, including marketing and consumer behaviour. The theoretical framework supporting the research highlights various dimensions, including effectiveness, credibility, and perceptions of virtual influencers. A summary of relevant studies that utilized this framework is as follows: A study by Li and Nan (2023) explores the effectiveness of virtual celebrity endorsements in marketing campaigns,

emphasizing the impact of AI influencers. Wang et al. (2023) stated that AI-influencers can contribute to creating positive attitudes and their effectiveness by their attractive, appealing personalities towards digital products and brands for marketing campaigns. Sands et al. (2024) explored the nuances of employing AI-manufactured models in advertising, especially how collaborations between Lil Miquela and real human celebrities, such as Steve Aoki, influence consumer perceptions. Chen and Ryoo (2025) reported that AI influencers can elicit ambivalent responses based on the context and the degree of authenticity in representation that such influencers garner. Kim et al. (2023) demonstrated the impact of a human-like virtual influencer on message credibility as well as consumer attitude. Human resemblance and involvement in narratives are found to increase credibility perception, which is an important factor in developing trust towards consumers at the AI-based influencers in particular Lil Miquela (Chan et al., 2023). Huang et al. (2022) additionally comment on how virtual idol Lil Miquela does more than just promote products for brands, and is out there taking a stand on social issues. This study implies that these influencers are seen as brand assets as they can generate positive brand image and so contribute to society, and in turn, develop trust and attachment with the consumers (Kelling et al., 2024). Choi et al. (2023) highlighted the specific interest that Generation Z has in virtual influencers, noting that the characteristics and behaviors of figures like Lil Miquela drive successful marketing initiatives. Their findings contribute to understanding the distinct interaction patterns of younger consumers with AI influencers (Chan et al., 2023). Miyake (2022) analyzed the intersection of virtual influencers and digital representation, focusing on race and gender. This study provides insights into how the constructed identities of AI figures like Imma may influence brand perception and consumer engagement across different demographics (Chu et al., 2023).

This research aims to explore the impact of consumer perception towards advertising on university students' advertisement viewing behavior under a specific context of AI influencer marketing. While influencer marketing has attracted significant scholarly attention in the past, most studies

have been focused on human influencers and how they influence consumer trust, engagement and purchase intention. In contrast, the phenomenon of AI-influencers, that is, virtual characters manufactured by AI, has opened a new chapter in digital marketing, but has received less attention in existing studies. More importantly, very few empirical studies have investigated how consumers process AI influencer advertisements and how such processing effect ad viewing (Zhang, Y. et al., 2024).

In addition, conventional measures employed in the perception of social media advertisements, including informativeness, credibility, and entertainment, have not been widely employed in the existing studies on AI-based content. A gap in earlier studies is that little is still known about how consumers perceive the role of AI influencers in driving innovation. This matters especially for technology-focused marketing strategies, where AI influencers are often seen as key figures. To fill in these gaps, this study develops and empirically tests a structural model that examines the impact of four dimensions of consumer perception— informativeness, credibility, entertainment, and perceived contribution to innovation—on advertisement viewing behavior.

Focusing on-university students as a digitally native segment, who are highly exposed to influencer-generated content, the research-offers an empirical understanding of how younger consumer groups perceive AI influencer marketing. The study provides a proven framework that contributes to our academic knowledge and imparts strategic guidance to marketers looking to employ AI influencers to best effect. In the process, the insights gained from the study help to fill a large void in the digital marketing literature and provide an empirical platform for future work on non-human digital marketing agents.

Targeting higher education students, a digitally native population with high exposure to influencer content, the study provides empirical insights into how AI influencer marketing is received by younger consumers. The research offers a validated model that both advances academic understanding and supports practical strategies for marketers aiming to leverage AI influencers effectively. In doing so, the study contributes to closing a significant gap in digital marketing literature and

sets a foundation for future research on non-human digital agents.

Theoretical Framework

The notion of Informativeness refers to the capacity of AI influencers to communicate information meaningfully to their audience. Research by Kim et al. (2021) provides that accurate and detailed information significantly enhances trust and acceptance of AI suggestions. This attention to detail helps increase the trust consumers have in the information displayed, a necessity for achieving the promised optimal ad experience with AI-generated influencers.

H1a. *Informativeness significantly and positively impacts perceived entertainment in AI influencer advertisements.*

Credibility is the key to creating trust among consumers, such as in the case of AI-based marketing approaches. Faisal et al. (2024) observed that there remains a crucial link between credibility and advertising factors that affect both consumer perception and the economic aspects in the heterogeneous market (Faisal et al., 2024). Their ethical insights, while being situated in certain contexts (such as the marketization of Halal food), can still be generalized to the wider implications of the credibility of advertising.

H1b. *Credibility significantly and positively impacts perceived entertainment in AI influencer advertisements.*

Entertainment value is known as a key factor in advertising effectiveness, especially in relation to an AI influencer. Yim et al. (2023) argued that the emotional engagement induced by entertainment creates a higher degree of attachment to AI entities in consumers, which in turn changes consumer behaviors. By combining entertainment with informational content, AI influencers can create a more engaging advertisement experience, which ultimately enhances viewer satisfaction and retention of the message.

H1c. *Entertainment significantly and positively impacts advertisement viewing behavior in the context of AI influencer marketing.*

An economic study of AI influencers provides insights into what AI-driven advertising means for

market dynamics. Specific mentions of the direct economic contributions of AI advertising are relatively sparse, but in more general terms, effective advertising tactics are reported to increase economic growth by shaping consumer behavior and stimulating purchasing (Wang & Li, 2021). This in turn serves to inform consumers of products and promotions which, in some cases, increases consumer spending - something that is not only good for the marketers, but also for the economic welfare.

H1d. *Perceived economic contribution to innovation significantly and positively impacts advertisement viewing behavior in the context of AI influencer marketing.*

This proposed model is represented in Figure 1, where the expected relationships among the constructs are shown. It implies that informativeness, credibility, and economic contribution all have an impact on the perception of entertainment in AI influencer marketing. Entertainment is hypothesized to have a positive impact on ad watching behaviour. These relationships are empirically examined by structural equation modelling to assess each construct's effect. The model positions entertainment as a mediating factor that transforms perceived information quality, trust, and perceived benefit into engagement behavior. This reflects the notion that AI influencer advertisements are not merely assessed on their informative or economic content, but primarily through the emotional and experiential connection they create with viewers.

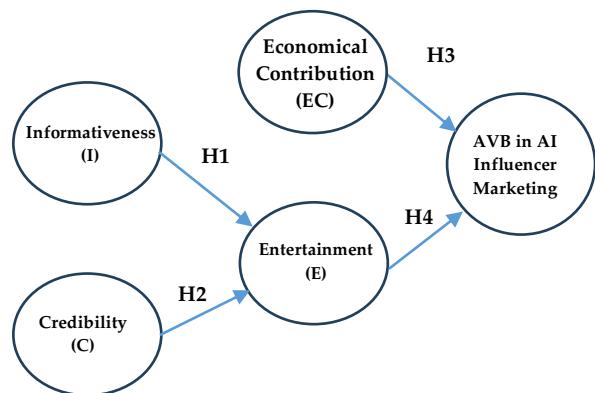


Figure 1. Research Model. Adopted from Wang et al. (2009).

Lastly, Advertisement Viewing Behavior serves as the culmination of the above constructs, reflecting how they interplay to influence consumer reactions to AI influencer marketing. Prior studies emphasize that advertising significantly shapes consumer behaviors, attitudes, and decision-making processes (Soti, 2022). Thus, understanding the intricate relationships among the constructs provides insight into how higher education students interact with and perceive advertisements from AI influencers. In this study, constructs such as value deterioration were not included because they rely on post-consumption experiences, whereas this model focuses on pre-consumption evaluations of AI influencer advertisements. Since the participants had no prior interaction with AI influencer-promoted products, including such a construct would not be conceptually relevant.

Methodology

The aim of this study is to explore the effect of AI influencer advertisements on the advertisement viewing behaviors of university students from public and private universities in Izmir. This research employs a quantitative methodology, and data were collected through a self-administered questionnaire. The sample included 134 students of public and private universities in Izmir. A brief definition of AI influencers was included at the beginning of the questionnaire to ensure conceptual clarity among participants. However, no visual examples were provided in order to minimize bias and preserve the natural interpretation of the concept. A purposive sampling technique — a type of non-probability sampling — was used to facilitate the participation of respondents who are heavy users of social media and consistently exposed to AI influencer content. The sample had varying genders, ages, and majors, making the results applicable to the general university student population. The choice to concentrate on university students has been informed by both contextual factors and theoretical frameworks. This demographic, comprised of young adults, is a key target audience for influencer marketing and tends to be among the first to adopt content driven by artificial intelligence (AI). University students not only possess a deep familiarity with digital environments but also

exhibit active engagement on social media platforms, often critically analyzing new digital trends. Their behavioral tendencies and perspectives yield significant early insights into the reception of non-human digital entities, such as AI influencers. Although this focus may restrict the broader applicability of findings to older or more diverse groups, it serves as a purposeful approach to examine initial consumer responses to influencer marketing powered by AI. According to MacCallum et al. (1996), the appropriate sample size in structural equation modeling (SEM) should range from 3 to 20 times the number of observed variables and generally fall between 100 and 1000 participants, depending on model complexity. With 15 observed variables, the minimum required sample size is 45 (15×3), and the recommended range is satisfied by the current sample size of 134, confirming its adequacy for SEM analysis.

The measurement items were adapted based on the validated scale developed by Wang et al. (2009). The items were designed to measure four major constructs — informativeness, credibility, entertainment, and perceived contribution to innovation — which were expected to drive ad viewing behavior. The questionnaire was designed to fit the study purpose, and the final version consisted of 13 items reflecting the perception of AI influencer ads and viewing behavior (2 items), as indicated in Appendix 1.

Construct validity of the scale was examined through Confirmatory Factor Analysis (CFA) in the analysis. The examination was to determine if the observed items are a credible representation of the latent variables. Factor loadings and other CFA-related indices, AVE, and composite reliability (CR) were assessed to test the validity and internal consistency of instruments. Although SEM was applied using SMARTPLS 4.0 to test hypothesized relationships, the cross-sectional nature of the study limits the ability to draw causal conclusions. Therefore, the results are interpreted as associative rather than causal due to the cross-sectional nature of the data.

Results

A summary of the demographic characteristics of the study population is provided in Table 1. The

sample comprised 134 participants, with almost an equal distribution of gender: 48.5% (n = 65) Female, 50% (n = 67) Male, and 1.5% (n = 2) undisclosed gender. Based on their student context, most identified themselves as Bachelor's students (82.1%, n = 110), a few were studying for an Associate's degree (16.4%, n = 22), and only a few were postgraduate students (1.5%, n = 2).

Table 1. Demographic Characteristics of the Participants

Gender	N	%
Female	65	48.5
Male	67	50.0
Prefer not to say	2	1.5
Education	N	%
Associate Degree	22	16.4
Bachelor's Degree	110	82.1
Postgraduate (Master's/PhD)	2	1.5
Age	N	%
18-24	99	73.9
25-34	34	25.4
35-44	1	0.7
45-54	0	0
University	N	%
Izmir Democracy University	57	43.2
Ege University	28	21.2
Dokuz Eylul University	17	12.9
Izmir University of Economics	25	18.9
Yasar University	7	3.8
Study Discipline	N	%
Social Sciences (e.g., Sociology, Psychology)	38	28.8
Engineering (e.g., Computer, Environmental)	32	24.2
Communication and Media Studies	26	19.7
Economics and Administrative Sciences	24	18.2
Other (e.g., Arts, Humanities, Health)	12	9.1
Time Spent on Social Media Daily (as an hour)	N	%
1-3	39	29.1
4-6	76	56.8
7-9	16	11.9
10+	3	2.2

The most frequent age was 18–24 (73.9%, n = 99), and the less frequent was 25–34 years (25.4%, n = 34), and we only had one participant that was 35–44 years old (0.7%, n = 1). None of them belongs to the 45–54 age group. The sample consisted of undergraduate and postgraduate students from five universities located in İzmir, Türkiye. The majority of participants were enrolled at İzmir Democracy University (43.2%), followed by Ege University (21.2%), İzmir University of Economics (18.9%), Dokuz Eylül University (12.9%), and Yaşar University (3.8%). Participants came from a range of academic disciplines. The largest group was from the Social Sciences (28.8%), followed by Engineering (24.2%), Communication and Media

Studies (19.7%), and Economics and Administrative Sciences (18.2%). A smaller portion (9.1%) represented other disciplines such as Arts, Humanities, and Health. This disciplinary diversity contributes to the generalizability and richness of the findings.

In terms of social media use per day, most (56.8%, n = 76) reported that they used social media 4–6 hours and followed by 29.1% (n = 39) as using 1–3 hours, 11.9% (n = 16) as using 7–9 hours, and 2.2% (n = 3) as using 10 or more hours.

Table 2 presents the results of the measurement model evaluation, including item factor loadings, composite reliability (CR), and average variance extracted (AVE) for each construct. All item loadings exceeded the recommended threshold of 0.70 declared by Hair et al. (2017), indicating strong indicator reliability.

Table 2. Items, Factor Loadings, Composite Reliability (CR), Average Variance Extracted (AVE) of the Research Constructs, and Standardized Root Mean Square Residual Value (SRMR) of the structural model

Research Constructs	Items	Factor Loadings	CR	AVE		
Informativeness (I)	I1	0.869	0.919	0.923		
	I2	0.892				
Credibility (C)	I3	0.870	0.966	0.906		
	C1	0.893				
Entertainment (E)	C2	0.906	0.945	0.850		
	C3	0.898				
Economical Contribution (EC)	E1	0.854	0.929	0.933		
	E2	0.880				
	E3	0.863				
Advertisement Viewing Behaviour (AVB)	E4	0.880	0.898	0.816		
	AVB1					
	AVB2					
Structural model fit						
SRMR (0.074)						

Specifically, items for Informativeness ranged from 0.869 to 0.892, and those for Credibility ranged from 0.893 to 0.906. The Entertainment construct also showed strong loadings between 0.854 and 0.880, while Economic Contribution had slightly lower but acceptable values between 0.778 and 0.884. The Advertisement Viewing Behavior

construct demonstrated strong reliability, with item loadings of 0.898 and 0.908.

Composite reliability (CR) values for all constructs were above 0.898, indicating excellent internal consistency (e.g., CR = 0.966 for Credibility, CR = 0.945 for Entertainment). Additionally, AVE values for all constructs exceeded 0.85, confirming convergent validity. The model fit index (SRMR = 0.074) was below the threshold of 0.08, suggesting an acceptable overall fit for the structural model (MacCallum et al., 1996).

Table 3 presents the Pearson correlation coefficients between the study variables. According to Hair et al. (2017), the correlation coefficients were described as strong ($r > 0.70$), moderate ($0.30 \leq r \leq 0.70$), and weak ($r < 0.30$). All the correlations observed in the current study were statistically significant, positive and of moderate to strong effect size, ranging from moderate to high.

The Pearson correlation coefficients between the study variables are presented in Table 3. Economic Contribution (EC) had a strong correlation with Credibility ($r = 0.701$), which means that there was a strong connection between the financial worth of AI influencer ads and the extent to which trustworthiness would result. The moderate correlations were found between Credibility (C) and Entertainment (E) ($r = 0.696$), Economic Contribution (EC) and Entertainment (E) ($r = 0.688$), Informativeness (I) and Entertainment (E) ($r = 0.611$), Informativeness (I) and Economic Contribution (EC) ($r = 0.611$), Advertisement Viewing Behavior (AVB) and Entertainment (E) ($r = 0.590$), Credibility (C) and Informativeness (I) ($r = 0.568$), Credibility (C) and Advertisement Viewing Behavior (AVB) ($r = 0.542$), Economic Contribution (EC) and Advertisement Viewing Behavior (AVB) ($r = 0.521$), Informativeness (I) and Advertisement Viewing Behavior (AVB) ($r = 0.515$).

Table 3. Correlation Table

Constructs	I	C	E	EC	AVB
I	1				
C	0.568	1			
E	0.611	0.696	1		
EC	0.611	0.701	0.688	1	
AVB	0.515	0.542	0.590	0.521	1

Table 4 presents the structural model results, including path coefficients, t-values, and significance levels for the tested hypotheses.

All proposed hypotheses were supported at the 0.05 significance level. The first part of the model shows the predictors of Entertainment (E). Both Informativeness (I) ($\beta = 0.319$, $t = 4.573$, $p < 0.001$) and Credibility (C) ($\beta = 0.515$, $t = 6.581$, $p < 0.001$) had significant and positive effects on Entertainment. These two variables together explained 55.3% of the variance in perceived entertainment, indicating a substantial explanatory power.

In the second part of the model, Economic Contribution (EC) had a direct and significant effect on Advertisement Viewing Behavior (AVB) ($\beta = 0.219$, $t = 2.223$, $p < 0.05$). Additionally, Entertainment (E) also had a strong and significant effect on AVB ($\beta = 0.439$, $t = 4.586$, $p < 0.001$). Together, these constructs explained 37.3% of the variance in advertisement viewing behavior, indicating moderate explanatory power. These results support the mediating role of perceived entertainment and highlight the direct influence of perceived innovation on engagement with AI influencer ads.

Table 4. Structural Model Results

Structural Model	Path Coefficients	t Values	Results	p-value
I-> E (H1)	0.319	4.573	SUP- PORTED	0.000 (***)
C->E (H2)	0.515	6.581	SUP- PORTED	0.000 (***)
E Explained as %: (55.3)				
EC-> AVB (H3)	0.219	2.223	SUP- PORTED	0.026 (***)
E-> AVB (H4)	0.439	4.586	SUP- PORTED	0.000 (***)
A Explained as %: (37.3)				

Figure 2 illustrates the structural model tested in the study, displaying the hypothesized relationships among the latent constructs. The model includes three exogenous variables—Informativeness (I), Credibility (C), and Economic Contribution (EC)—and two endogenous variables: Entertainment (E) and Advertisement Viewing Behavior (AVB). Direct paths are shown from Informativeness and Credibility to Entertainment, and from both Entertainment and Economic Contribution to Advertisement Viewing Behavior. All constructs are represented with their associated measurement

items and standardized factor loadings. The R^2 values are also shown within the endogenous constructs, indicating the amount of variance explained by the predictors. This visual representation reflects the direction, strength, and statistical significance of the relationships established through structural equation modeling. It also provided evidence for the mediating function of entertainment and showed that although all three exogenous variables predict the extent of entertainment, only entertainment and economic contribution can directly determine the advertisement viewing behavior. These findings further underscore the importance of emotional involvement and perceived novelty to the consumer response to AI influencer advertising. These outcomes further emphasize the role of emotional engagement and perceived innovation in shaping consumer responses to AI influencer advertising.

both highly exposed to and comfortable with technology-mediated content. This context is crucial for interpreting why certain perception variables significantly impacted advertisement viewing behavior for students in Izmir universities. In addition to age and social media usage, the diversity of participants in terms of university affiliation and academic discipline also provides important contextual grounding for interpreting the results. Students from five universities in Izmir, each with different institutional cultures and levels of digital integration, may exhibit varying degrees of familiarity and engagement with AI-generated content. Moreover, the presence of participants from a wide range of academic disciplines—including social sciences, engineering, communication, and administrative sciences—enriches the data by capturing multiple cognitive frames through which AI influencer ads are evaluated.

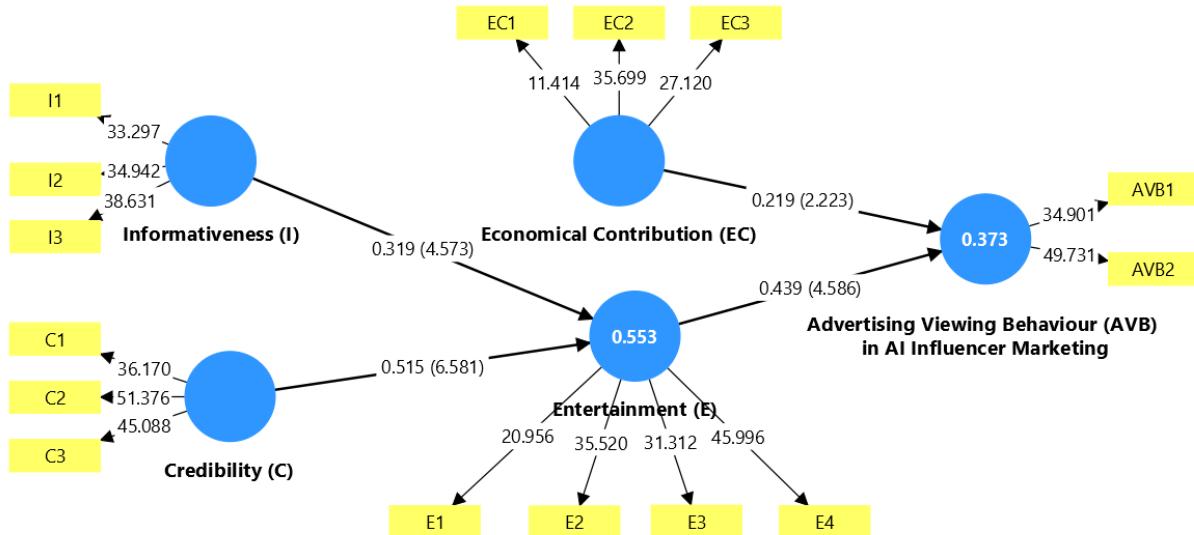


Figure 2. Structural Model

Discussion and Conclusion

The findings of this study offer important insights into the mechanisms behind consumer engagement with AI influencer advertisements, particularly among university students. The demographic profile of participants—predominantly aged 18–24 and spending an average of 4–6 hours daily on social media—reflects a digitally native group that is

For instance, students in technology-related fields may be more attuned to innovation and informativeness, while those in social sciences or communication may be more sensitive to issues of credibility and emotional engagement. This disciplinary heterogeneity helps explain why perception constructs such as informativeness, credibility, and entertainment significantly influenced viewing behavior across the sample.

The confirmation of H1, which found that informativeness positively affects entertainment, suggests that university students value content

that not only entertains but also informs. Young consumers today often face information overload and are more selective in their media consumption (Zhang, Z. et al., 2024; Giang et al., 2025). When AI influencer ads provide clear, relevant, and useful product information, they are more likely to hold attention and be perceived as meaningful—not just visual noise (Pitardi & Marriott, 2021).

H2 showed that credibility also increases perceived entertainment, which may seem surprising at first. However, in an era where digital manipulation and misinformation are prevalent, credibility becomes a form of relief—it enhances trust and comfort (Xu et al., 2024; Knödler & Rudeloff, 2024). For AI influencers, whose artificial nature might otherwise evoke skepticism, the perception of credibility adds novelty and reassurance, thereby making the content more enjoyable (Wortel et al., 2024).

H3, the strong relationship between entertainment and advertisement viewing behavior, reinforces the idea that affective engagement is a key driver of consumer attention. Especially for Generation Z, advertising that is humorous, visually creative, or emotionally resonant is more likely to be viewed voluntarily and shared (Wu & Monfort, 2022; Jawaid & Qureshi, 2024). Since AI influencers often rely on unique visuals and stylized presentations, this type of content naturally aligns with entertainment-driven engagement (Tauheed et al., 2024).

H4 confirmed that economic contribution (innovation) has a direct effect on viewing behavior. This indicates that when AI influencer ads are seen as innovative, efficient, or forward-thinking, consumers are more likely to pay attention (George & Wooden, 2023; Sands et al., 2022). Students, who are often early adopters of technology, may find value in ads that represent digital progress or convenience. In this context, AI influencers are not just ad tools—they symbolize future marketing possibilities, which enhances their appeal.

However, despite the work that has produced some results, this study is not without limitations. First, data were only collected from undergraduate students in Izmir universities, which could restrict the generalization of the results to other populations with varying ages, cultural perspectives, or digital usage habits. Second, the research design of

the study was a cross-sectional survey design and thus, the causal inference to be drawn among the variables would be limited. Both longitudinal and experimental designs would offer more insight into how consumer attitudes and behaviors change over time. Third, although we included landmark perception variables such as informativeness, credibility, entertainment and innovation, other alternative constructs which may influence an individual's perception of AI (e.g., perceived authenticity, emotional engagement, or prior experiences with AI influencers) were neglected from the study model. These need to be considered in future studies to develop a holistic view of the dynamics of AI influencer marketing.

In addition, findings reinforce that AI influencer advertising has to find the right mixture between credibility, informativeness, and novelty to be considered entertaining—and hence effective. The findings indicate that marketers can implement practical tactics to enhance their strategies. For example, AI influencers typically achieve greater success when promoting products that align with their established digital identities, which may encompass technology gadgets, clothing, or entertainment services. To enhance consumer trust, marketers should focus on content strategies that encourage transparency, showcase human-like communication, and highlight the practical attributes of the products. This research offers a robust theoretical and practical basis for the development of AI-driven marketing strategies that will appeal to a tech-savvy, younger customer.

References

Chan, K. W., Septianto, F., Kwon, J., & Kamal, R. S. (2023). Color effects on AI influencers' product recommendations. *European Journal of Marketing*, 57(9), 2290-2315. <https://doi.org/10.1108/ejm-03-2022-0185>

Chen, X., & Ryoo, J. (2025). Advancing AI in healthcare through professional training: Insights from Chinese practitioners. *Scientia. Technology, Science and Society*, 2(1), 95-110. [https://doi.org/10.59324/stss.2025.2\(1\).08](https://doi.org/10.59324/stss.2025.2(1).08)

Choi, M., Choi, Y., & Lee, H. (2023). Gen Z travelers in the Instagram marketplace: Trust, influencer type, post type, and purchase intention.

Journal of Hospitality & Tourism Research, 48(6), 1020-1034. <https://doi.org/10.1177/10963480231180938>

Chu, C., Chiang, I., Tsai, K., & Tung, Y. (2023). Exploring the effects of personalized advertising on social network sites. *Journal of Social Media Marketing*, 1(2), 38-54. <https://doi.org/10.33422/jsmm.v1i2.1051>

Faisal, A., Adzharuddin, N. A., & Yusof, R. N. R. (2024). The nexus between advertising and trust: Conceptual review in the context of halal food, Malaysia. *International Journal of Academic Research in Business and Social Sciences*, 14(1), 600-620. <https://doi.org/10.6007/ijarbss/v14-i1/19718>

George, B. & Wooden, O. (2023). Managing the strategic transformation of higher education through artificial intelligence. *Administrative Sciences*, 13(9), 196. <https://doi.org/10.3390/admsci13090196>

Giang, N. T. P., Duy, N B. P., Anh, N. H. T., Giang, D. N. T., Triet, D. M., & Tan, T. D. (2025). Factors influencing the intention to use artificial intelligence for online advertising on social networks. *Multidisciplinary Science Journal*, 7(8), 2025416. <https://doi.org/10.31893/multiscience.2025416>

Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). *Advanced issues in partial least squares structural equation modelling*. Sage Publications Inc.

Huang, Q., Qu, H., & Li, P. (2022). The influence of virtual idol characteristics on consumers' clothing purchase intention. *Sustainability*, 14(14), 8964. <https://doi.org/10.3390/su-14148964>

Jawaid, S. A., & Qureshi, J. (2024). How artificial intelligence and machine learning can impact market design. *Advances in Urban Regional Development and Planning*, 1(1), 1-8. <https://doi.org/10.20944/preprints202402-0011.v1>

Kelling, A. S., Wilson, M. L., Martin, A. L., Barker, S., & Mallavarapu, S. (2024). Exploring best practices in constructing dog adoption advertisements. *Society & Animals* (published online ahead of print 2024). <https://doi.org/10.1163/15685306-bja10192>

Kim, E., Kim, D., Zihang, E., & Shoenberger, H. (2023). The next hype in social media advertising: Examining virtual influencers' brand endorsement effectiveness. *Frontiers in Psychology*, 14, 1089051. <https://doi.org/10.3389/fpsyg.2023.1089051>

Kim, J., Giroux, M., & Lee, J. C. (2021). When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. *Psychology & Marketing*, 38(7), 1140-1155. <https://doi.org/10.1002/mar.21498>

Knödler, L. & Rudeloff, C. (2024). Look who's talking now: The effects of pre-recorded and AI-generated synthetic brand voices on brand anthropomorphism and brand equity. *Journal of Creative Communications*, 19(3), 295-311. <https://doi.org/10.1177/09732586241253651>

Li, B. and Nan, Y. (2023). Real versus virtual celebrity endorsement: Presentation of online product information and consumer attitudes toward digital products. *Marketing Intelligence & Planning*, 42(2), 304-328. <https://doi.org/10.1108/mip-06-2023-0288>

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. *Psychological Methods*, 1(2), 130-149. <https://doi.org/10.1037/1082-989X.1.2.130>

Miyake, E. (2022). I am a virtual girl from Tokyo: Virtual influencers, digital-orientalism and the (im)materiality of race and gender. *Journal of Consumer Culture*, 23(1), 209-228. <https://doi.org/10.1177/14695405221117195>

Pitardi, V. & Marriott, H. R (2021). Alexa, she's not human but... Unveiling the drivers of consumers' trust in voice-based artificial intelligence. *Psychology & Marketing*, 38(4), 626-642. <https://doi.org/10.1002/mar.21457>

Sands, S., Campbell, C. L., Plangger, K., & Ferraro, C. (2022). Unreal influence: Leveraging AI in influencer marketing. *European Journal of Marketing*, 56(6), 1721-1747. <https://doi.org/10.1108/ejm-12-2019-0949>

Sands, S., Demsar, V., Ferraro, C., Campbell, C., & Cohen, E. (2024). Inauthentic inclusion: Exploring how intention to use AI-generated diverse models can backfire. *Psychology & Marketing*, 41(6), 1396-1413. <https://doi.org/10.1002/mar.21987>

Soti, R. (2022). The impact of advertising on consumer behavior. *World Journal of Advanced Research and Reviews*, 14(3), 706-711. <https://doi.org/10.30574/wjarr.2022.14.3.0577>

Stright, A., Sloan, G., Code, M. N., Gorman, M., Moss, R., & McSweeney, M. B. (2025). A preliminary investigation into the use of AI-generated food images in a survey asking about consumer perception of appeal, naturalness, healthiness, and willingness to consume. *Journal of Sensory Studies*, 40(1), 1-9. <https://doi.org/10.1111/joss.70015>

Tauheed, J., Shabbir, A., & Pervez, M. (2024). Exploring the role of artificial intelligence in digital marketing strategies. *Journal of Business Communication & Technology*, 54-65. <https://doi.org/10.56632/bct.2024.3105>

Wang, W., & Li, G. (2021). A theoretical analysis of the pricing and advertising strategies with Lévy-Walking consumers. *Journal of Theoretical and Applied Electronic Commerce Research*, 16(6), 2129-2150. <https://doi.org/10.3390/jtaer16060119>

Wang, X., Zhu, H., Jiang, D., Xia, S., & Xiao, C. (2023). "Facilitators" vs "Substitutes": The influence of artificial intelligence products' image on consumer evaluation. *Nankai Business Review International*, 14(1), 177-193. <https://doi.org/10.1108/nbri-05-2022-0051>

Wang, Y., Sun, S., Lei, W., & Toncar, M. (2009). Examining beliefs and attitudes toward online advertising among Chinese consumers. *Direct Marketing: An International Journal*, 3(1), 52-66. <https://doi.org/10.1108/17505930910945732>

Wortel, C., Vanwesenbeeck, I., & Tomas, F. (2024). Made with artificial intelligence: The effect of artificial intelligence disclosures in instagram advertisements on consumer attitudes. *Emerging Media*, 2(3), 547-570. <https://doi.org/10.1177/27523543241292096>

Wu, C-W. & Monfort, A. (2022). Role of artificial intelligence in marketing strategies and performance. *Psychology & Marketing*, 40(3), 484-496. <https://doi.org/10.1002/mar.21737>

Xu, Y., Tat, H. H., & Sade, A. B. (2024). A literature analysis on the relationship between AI influencers' perceived credibility and purchase intention: Product-endorser fit with the brand as a moderator. *International Journal of Academic Research in Business and Social Sciences*, 14(3), 370-382. <https://doi.org/10.6007/ijarbs/v14-i3/21092>

Yazdani, A., & Darbani, S. (2023). The impact of AI on trends, design, and consumer behavior. *AI and Tech in Behavioral and Social Sciences*, 1(4), 4-10. <https://doi.org/10.61838/kman.aitech-1.4.2>

Yim, A., Cui, A. P., & Walsh, M. (2023). The role of cuteness on consumer attachment to artificial intelligence agents. *Journal of Research in Interactive Marketing*, 18(1), 127-141. <https://doi.org/10.1108/jrim-02-2023-0046>

Zhang, Y., Zhu, J., Chen, H., & Jiang, Y. (2024). Enhancing trust and empathy in marketing: Strategic AI and human influencer selection for optimized content persuasion. *Journal of Consumer Behaviour*, 24(2), 866-885. <https://doi.org/10.1002/cb.2423>

Zhang, Z., Fort J. M., & Mateu, L. G. (2024). Decoding emotional responses to AI-generated architectural imagery. *Frontiers in Psychology*, 15: 1348083. <https://doi.org/10.3389/fpsyg.2024.1348083>