

International Journal of Multidisciplinary Studies and Innovative

Technologies

e-ISSN: 2602-4888

dergipark.org.tr/en/pub/ijmsit

Research Article

2025, 9 (1), 59-63

DOI: 10.36287/ijmsit.9.1.9

Received: May 28, 2025; Accepted: June 16, 2025

59

Numerical Solutions of Hyperbolic Telegraph Equations using

Difference Schemes and Neural Network

Aleyna Akaydın 1, Ahmed Amara 2 and Mehmet Emir Köksal 3

1 Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey, aaleynaakaydin@gmail.com, ORCID: 0009-0001-0937-0775
2 Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey, ahmedamara111990@gmail.com, ORCID: 0009-0006-9748-

0902
3 Department of Mathematics, Ondokuz Mayıs University, Samsun, Turkey, mekoksal@omu.edu.tr, ORCID: 0000-0001-7049-3398

Abstract – In this study, the hyperbolic telegraph differential equation describing the behavior of certain wave-like phenomena,

such as the transmission of signals along a telegraph line, is considered. Numerical solutions of a telegraph equation are computed

by using various operator-difference schemes and physics-informed neural networks. The error analysis is performed, and the

results are compared.

Keywords – Hyperbolic Equations, Numerical Solution, Error Analysis, Difference Scheme, Neural Network

I. INTRODUCTION

 PDEs are equations that involve partial derivatives of

a multivariable function. They play a crucial role in various

fields such as physics, engineering, finance, and biology, as

they can describe a wide range of phenomena, including heat

conduction, fluid flow, and wave propagation [1].

Hyperbolic equations are a type of partial differential

equation characterized by the propagation of waves and

signals. They describe systems where information travels at

finite speeds, making them essential in various fields like

physics, engineering, and finance. The most common example

is the wave equation, which describes the propagation of

waves, such as sound waves, light waves, water waves and

how waveforms evolve over time.

The hyperbolic telegraph equation is a specific type of

partial differential equation that describes the propagation of

signals [2] in a medium with both wave-like and dissipative

characteristics. It combines elements of both wave propagation

and damping, making it particularly relevant for modeling

phenomena in electrical engineering and acoustics.

The telegraph equations (also known as transmission

line equations) describe the voltage and current on an electrical

transmission line with distributed parameters. These equations

also apply to RLC circuits when they are modeled as

distributed parameter systems, such as in long transmission

lines [3].

Numerical methods are used to approximate the

solution of the telegraph equation when an analytical solution

is not feasible. There are many different numerical solution

methods for telegraph equations. Finite difference methods,

finite element methods, finite volume methods are some them.

Stability is a critical concept in the numerical solution of

partial differential equations using finite difference methods.

It refers to whether small errors (e.g., from round-off or

truncation) grow uncontrollably as the computation

progresses.

Various initial boundary value problems can be

reduced to initial value problems [4-5]. In this paper, the

following initial value problem is considered:

{

𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝛼

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑓(𝑡), 0 ≤ 𝑡 ≤ 𝑇,

𝑢(0) = 𝜑, 𝑢′(0) = 𝜓.

 (1)

Here 𝐴 is self-adjoint unbounded operator in Hilbert space. In

this paper, for the approximate solutions of the above

problems, first, second, third order of accuracy difference

schemes are presented in the next section. A test problem is

considered and numerical solutions of the test problem are

found by using difference schemes. The results are compared

with each other. Moreover, approximate solutions of the test

problem are also found by using neural network in the fourth

section.

II. DIFFERENCE SCHEMES

For approximate solutions of the problem (1), the

following first order of accuracy difference scheme

{

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘
𝜏

+ 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓(𝑡𝑘+1), 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

𝑢0 = 𝜑, (1 + 𝜑𝜏)
𝑢1 − 𝑢0
𝜏

+ 𝐴𝜏𝑢1 = 𝜓

and two different types of second order of accuracy difference

schemes

https://dergipark.org.tr/en/pub/ijmsit
mailto:ahmedamara111990@gmail.com
mailto:mekoksal@omu.edu.tr

International Journal of Multidisciplinary Studies and Innovative Technologies, 2025, 9(1): 59 – 63

60

{

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

+
𝐴

2
(𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘

𝑓𝑘 = 𝑓(𝑡𝑘), 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,
𝑢1 − 𝑢0
𝜏

+
𝜏

2
𝐴𝑢1 = 𝜓 +

𝜏

2
(−𝛼𝜓 + 𝑓0),

𝑓0 = 𝑓(0),

and

{

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

+
𝐴

2
𝑢𝑘

+
𝐴

4
(𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘

𝑓𝑘 = 𝑓(𝑡𝑘), 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,
𝑢1 − 𝑢0
𝜏

+
𝜏

2
𝐴𝑢1 = 𝜓 +

𝜏

2
(−𝛼𝜓 + 𝑓0),

𝑓0 = 𝑓(0).

were developed in [6]. Stability estimates for the solutions of

difference schemes were constructed. For the approximate

solutions of problem (1), the following third order of accuracy

difference scheme

{

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

+
2

3
𝐴𝑢𝑘

+
1

6
𝐴(𝑢𝑘+1 + 𝑢𝑘−1)

+
𝜏2

12
[(−𝛼3 + 2𝛼𝐴)

𝑢𝑘+1 − 𝑢𝑘
𝜏

− (𝛼2 − 𝐴)𝐴𝑢𝑘+1] = 𝑓𝑘,

𝑓𝑘 =
2

3
𝑓(𝑡𝑘) +

1

6
[𝑓(𝑡𝑘+1) + 𝑓𝑡𝑘−1]

−
𝜏2

12
[(𝛼2 − 𝐴)𝑓(𝑡𝑘+1) − 𝛼𝑓

′(𝑡𝑘+1) + 𝑓
′′(𝑡𝑘+1)],

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,

(𝐼 +
𝜏2

2
𝐴)

𝑢1 − 𝑢0
𝜏

= (𝐼 +
𝜏2

2
𝐴)𝜓 +

𝜏

2
(−𝛼𝜓 − 𝐴𝜑)

+
𝜏2

6
(𝛼2𝜓 + 𝛼𝐴𝜑 − 𝐴𝜓) + 𝑓0,

𝑓0 =
𝜏

2
𝑓(0) −

𝜏2

6
[𝑓(0) − 𝑓′(0)].

was developed in [7] in 2016. Stability inequalities for the

solution of this third order of accuracy difference scheme were

also done. In the following section, we consider one

dimensional telegraph equation as a test problem to support

theoretical results.

III. NUMERICAL SOLUTIONS

For MATLAB implementations, the following initial-

boundary value problem is considered:

{

𝜕2𝑢(𝑡, 𝑥)

𝜕𝑡2
+ 2

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
+ 𝑢(𝑡, 𝑥)

=
𝜕2𝑢(𝑡, 𝑥)

𝜕𝑥2
+ 2(1 + 𝑡 + 𝑡2) 𝑠𝑖𝑛 𝑥,

0 < 𝑡 < 1, 0 < 𝑥 < 𝜋,

𝑢(0, 𝑥) = 𝑠𝑖𝑛 𝑥 , 𝑢𝑡(𝑜, 𝑥) = −𝑠𝑖𝑛 𝑥 , 0 ≤ 𝑥 ≤ 𝜋,

𝑢(𝑡, 0) = 𝑢(𝑡, 𝜋) = 0, 0 ≤ 𝑡 ≤ 1.

(2)

The exact solution of the problem (2) is 𝑢(𝑡, 𝑥) = (1 − 𝑡 +
𝑡2) 𝑠𝑖𝑛 𝑥. When the step number for time and space variable

are taken as 5, the difference between exact solution and

approximate solution does not appear as shown from figures

3.1 and 3.2-3.5.

Fig. 3.1. Exact Solution

Fig. 3.2. First-order

Fig. 3.3. Second-order I

International Journal of Multidisciplinary Studies and Innovative Technologies, 2025, 9(1): 59 – 63

61

Fig. 3.4. Second-order II

Fig. 3.5. Third-order

To compare the results between exact solution and

approximate solution, we need to give the results by table.

Error formula is define as follows

𝐸0 = max
1≤𝑘≤𝑁−1

(∑|𝑢(𝑡𝑘, 𝑥𝑛) − 𝑢𝑛
𝑘|2 ℎ

𝑀−1

𝑛=1

)

1
2

,

where 𝑢(𝑡𝑘, 𝑥𝑛) is exact solution and 𝑢𝑛
𝑘 is approximate

solution at the point (𝑡𝑘, 𝑥𝑛). ℎ is step size for space variable.

𝑁 and 𝑀 are step numbers for time and space variables

respectively. As shown in Table 3.1, the accuracy of second

order difference schemes are better than the first order

difference scheme. The accuracy of the third order difference

scheme is better than the accuracy of second order difference

schemes. There is no much difference between second order

difference scheme 1 and 2. When the number of step for time

variable is increased 2 times, the error gets smaller 2 time for

first order difference scheme. When the number of step for

time variable is increased 2 times, the errors get smaller 4 and

8 times for the second and third order different schemes

respectively.

Table 3.1. Error for 𝐸0

 N=M2 64, 8 128, 11 256, 16

FO Error 0.01069 0.00523 0.00265

 N=M 32, 32 64, 64 128, 128

SO1 Error 0.0002349 0.0000575 0.0000142

SO2 Error 0.0003417 0.0000848 0.0000211

 N3=M2 10, 32 20, 89 40, 253

TO Error 0.0003249 0.0000381 0.0000046

 N=M 32 64 128

FO Error 0.0271183 0.0137000 0.0068864

SO1 Error 0.0002349 0.0000575 0.0000142

SO2 Error 0.0003417 0.0000848 0.0000211

TO Error 0.0001813 0.0000482 0.0000124

IV. NEURAL NETWORKS

Artificial neural networks are computational models

that mimic the synaptic structure of neurons in the human brain

[8]. These networks consist of processing units (nodes)

interconnected across multiple layers: the input layer, one or

more hidden layers, and the output layer. The input layer

receives raw data, and the hidden layers process this data and

extract representations of increasing levels of abstraction,

leading to the output layer that produces the final result. These

neural networks have demonstrated tremendous potential in

approximating any arbitrary function (Universal

Approximation Theorem) and learning complex patterns in

images, audio, and text, leading to significant scientific

advances in fields such as computer vision and natural

language processing [9].

With the development of deep learning, the need has

emerged to incorporate physical knowledge into the training

process to overcome total reliance on observed data, especially

in problems where sufficient data is difficult to obtain. Hence,

the idea of Physics-Informed Neural Networks (PINNs) ([10])

emerged, adding a term to the loss function that represents the

residuals of the partial differential equations governing the

system. Leveraging automatic differentiation, the network

computes the necessary derivatives of the resulting solution to

ensure the network satisfies initial and boundary conditions as

well as the physical conservation laws during learning. This

enables it to solve forward (finding a solution) and inverse

(discovering unknown coefficients or parameters) problems

efficiently without the need to generate an explicit mesh or

mesh nodes [11].

4.1. Methodology

To build PINNs, we have the following steps.

4.1.1. Problem Formulation

Define the partial differential equation

𝑓[𝑢(𝑥, 𝑡)] = 0

with boundary conditions

𝑢(𝑥𝑏 , 𝑡𝑏) = 𝑔(𝑥𝑏 , 𝑡𝑏)

and with initial conditions

𝑢(𝑥𝑖 , 0) = ℎ(𝑥𝑖)

4.1.2. Neural Network Architecture

A fully connected feed-forward network 𝑢𝜃(𝑥, 𝑡) is

chosen, which receives the spatial variables 𝑥 and temporal

variables 𝑡 as inputs and produces the approximate solution 𝑢.

4.1.3. Loss Function

Weighted loss function is defined as the following

ℒ(𝜃) = 𝑤𝑃𝐷𝐸ℒ𝑃𝐷𝐸 + 𝑤𝐵𝐶ℒ𝐵𝐶 +𝑤𝐼𝐶ℒ𝐼𝐶

ℒ(𝜃) = 𝑤𝑃𝐷𝐸 ∗

1

𝑁𝑟
∑ (𝑓[𝜃](𝑥𝑗 , 𝑡𝑗))

2

+
𝑁𝑟
𝑗=1 𝑤𝐵𝐶

1

𝑁𝑏
∑ (𝑢𝜃(𝑥𝑏,𝑘, 𝑡𝑏,𝑘) −
𝑁𝑏
𝑘=1

𝑔(𝑥𝑏,𝑘, 𝑡𝑏,𝑘))
2 + 𝑤𝐼𝐶

1

𝑁𝑙
∑ (𝑢𝜃(𝑥𝑖,𝑙 , 𝑡𝑖,𝑙) − ℎ(𝑥𝑖,𝑙))

2𝑁𝑙
𝑖=1 ,

International Journal of Multidisciplinary Studies and Innovative Technologies, 2025, 9(1): 59 – 63

62

where ℒ𝑃𝐷𝐸 is mean squared residual of the partial differential

equations over 𝑁𝑟 interior collocation points, ℒ𝐵𝐶 is mean

squared error on 𝑁𝑏 boundary points against boundary data 𝑔,

ℒ𝐼𝐶 is mean squared error on 𝑁𝑙 initial points against initial

data ℎ.

4.1.4. Collocation Point Generation

{(𝑥𝑗 , 𝑡𝑗)} ⊂ 𝛺 is interior points for the partial

differential equations residual. Boundary points

{(𝑥𝑏,𝑘, 𝑡𝑏,𝑘)} ⊂ 𝜕𝛺 for the boundary conditions. Initial points

{(𝑥𝑖,𝑙 , 𝑡𝑖,𝑙 = 𝑡0)} ⊂ 𝛺 at the initial time 𝑡0, then impose

𝑢(𝑥𝑖,𝑙 , 𝑡0) = ℎ(𝑥𝑖,𝑙) and 𝑢𝑡(𝑥𝑖,𝑙 , 𝑡0) = ℎ𝑡(𝑥𝑖,𝑙).

4.1.5. Training Loop

Forward pass is passing input through the network

layers to get the prediction compute loss. Backward pass is

auto-differentiation is used to calculate the gradients of the loss

function with respect to the weights, and the optimizer then

updates the weights.

4.2. Practical Implementation

We seek to solve the problem (2). We approximated

𝑢(𝑥, 𝑡) by a dense feed-forward network 𝑢𝜃(𝑥, 𝑡) taking (𝑥, 𝑡)
input, passing through hidden layers of different widths with

tanh activations, and outputting a single scalar. Its loss is a

weighted sum ℒ(𝜃) = ℒ𝑃𝐷𝐸 + 5. ℒ𝐵𝐶 + ℒ𝐼𝐶 , where 𝑤𝑃𝐷𝐸 =
1,𝑤𝐵𝐶 = 5,𝑤𝐼𝐶 = 1 and ℒ𝑃𝐷𝐸 is the mean squared residual of

the partial differential equation over 100*100 (and over

200*100) interior collocation points, ℒ𝐼𝐶 enforces 𝑢(𝑥, 0) =
𝑠𝑖𝑛𝑥 𝑎𝑛𝑑 𝑢𝑡(𝑥, 0) = −𝑠𝑖𝑛𝑥 over 200 initial points, and ℒ𝐵𝐶

enforce 𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0 over 200 boundary points.
We trained the neural network for 10000 epochs using

the Adam optimizer (learning rate is 0.01), computing all

derivatives via automatic differentiation and checkpointing the

model state that achieves the lowest MSE on the training set.

Finally, we evaluated the saved model on independent grids of

size 100 × 100 (200 ∗ 100), reporting mean square error and

Max 𝛥𝑡‐weighted 𝐿2 over 𝑥 error. Max 𝛥𝑡‐weighted 𝐿2over

𝑥 is

 max
𝑖=1,…,𝑁𝑥

√∆𝑡 ∑ (𝑢𝑝𝑟𝑒𝑑(𝑥𝑖 , 𝑡𝑗) − 𝑢𝑡𝑟𝑢𝑒(𝑥𝑖 , 𝑡𝑗))
2𝑁𝑡

𝑗=1 where

 ∆𝑡 =
1−0

𝑁𝑡−1
 is the uniform time-step on [0,1].

Table 4.2.1. Training and Evaluation Performance Metrics of Different PINN

Architectures after 10,000 Epochs on a 100×100 Grid

10000 epochs & 𝑵𝒙 ∗ 𝑵𝒕 = 𝟏𝟎𝟎 ∗ 𝟏𝟎𝟎

 Performance

 Metrics

Architecture

Best

Train

MSE

Best

iteration

Evaluation Grid

𝟏𝟎𝟎 ∗ 𝟏𝟎𝟎

MSE Max Δt‐

weighted

𝑳𝟐 over 𝒙

[2-50-50-50-1] 3.093e-

07

9775 2.894e-

07

1.073e-03

[2-50-50-50-

50-1]

9.979e-

07

4416 8.734e-

07

2.471e-03

[2-50-50-50-

50-50-1]

2.153e-

06

2695 2.089e-

06

3.028e-03

[2-100-100-

100-1]

2.559e-

07

4488 2.299e-

07

9.902e-04

[2-32-64-128-

64-32-1]

1.014e-

05

1180 9.915e-

06

5.039e-03

Table 4.2.2. Training and Evaluation Performance Metrics of Different PINN

Architectures after 10,000 Epochs on a 200×100 Grid

10000 epochs & 𝑵𝒙 ∗ 𝑵𝒕 = 𝟐𝟎𝟎 ∗ 𝟏𝟎𝟎

 Performance

Metrics

Architecture

Best

Train

MSE

Best

iteration

Evaluation Grid

𝟐𝟎𝟎 ∗ 𝟏𝟎𝟎

MSE Max Δt‐

weighted

𝑳𝟐 over x

[2-50-50-50-1] 3.574e-

07

7647 3.379e-

07

 1.489e-03

[2-50-50-50-

50-1]

6.883e-

07

9006 6.680e-

07

1.598e-03

[2-50-50-50-

50-50-1]

1.036e-

06

3999 1.005e-

06

1.979e-03

[2-100-100-

100-1]

2.767e-

07

3065 2.560e-

07

1.354e-03

[2-32-64-128-

64-32-1]

5.245e-

06

1863 5.103e-

06

4.180e-03

Fig. 4.2.1. Best Train MSE Comparison

Fig. 4,2.2. Max Δt‐weighted 𝐿2 Comparison

4.3. Discussion of PINNs Results

The architecture with five hidden layers [2-50-50-50-

50-50-1] reached the lowest mean square error at iterations

2695 (for a 100×100 grid) and 3999 (for a 200×100 grid),

meaning it finished improving the loss earlier than the other

architectures. However, the solution quality (Best Train mean

square error and Max Δt‐weighted L_2 over 𝑥) was the worst

among all architectures, indicating that it reached an early

local minimum without reaching a truly low error. The widest-

International Journal of Multidisciplinary Studies and Innovative Technologies, 2025, 9(1): 59 – 63

63

deepest hierarchical architecture [2-32-64-128-64-32-1]

converges the fastest. This architecture reached its best point

at iterations 1180 (100×100) and 1863 (200×100),

significantly faster than the other networks. However, it also

achieved the highest errors, demonstrating that convergence

speed alone is not a quality measure.

The medium-depth and wide-width [2-100-100-100-1]

networks show a good balance. They reached their best point

at around 4500 iterations (4488 and 3065), significantly faster

than the simple [2-50-50-50-1] networks (9775 and 7647) but

better performing than the very deep networks. They achieved

the lowest errors, reflecting a balance between convergence

speed and solution quality. Relatively narrow [2-50-50-50-1]

networks converge slowly. They require almost the full

number of iterations (9,775 and 7,647 out of 10,000) to achieve

the optimal loss. However, they achieve a low error, rivaling

[2-100-100-100-1] and outperforming some other

architectures. The results also highlight the inherent challenge

of finding neural network architectures where determining the

optimal architecture requires numerous experimental trials.

V. CONCLUSION

In this study, one dimensional telegraph equation is

considered. Numerical solutions of this equation found by

using first, second and third order difference schemes. It was

shown that the accuracy of third order scheme is better than

second order scheme which is better than first order scheme.

There was no much difference between two second order

difference schemes. Numerical solutions of the equation were

also found by using neural network. The results are

satisfactory.

REFERENCES

[1] A. Ashyralyev, M. E. Koksal, A Numerical Solution of Wave Equation

Arising in Non-Homogeneous Cylindrical Shells, Turkish Journal of
Mathematics, 32 (4) 407-419, 2008

[2] M. E. Koksal, An Operator-Difference Method for Telegraph Equations

Arising in Transmission Lines, Discrete Dynamics in Nature and
Society, 1-17, 2011.

[3] M. E. Koksal, Time and frequency responses of non-integer order RLC

circuits, AIMS Mathematics, 4 (1) 61-75, 2019.
[4] G. S. Krein, Linear Differential Equations in a Banach Space,

Birkhauser, 1966.

[5] O. H. Fattorini, Second Order Linear Differential Equations in Banach
Space, Mathematics Studies, 107, 1985.

[6] A. Ashyralyev, M. Modanli, An operator method for telegraph partial

differential and difference equations, Boundary Value Problems,
Artical ID;41, 1-17, 2015.

[7] A. Ashyralyev, M. E. Koksal, K. T. Turkcan. Numerical solutions of

telegraph equations with the dirichlet boundary condition, International
Conference on Analysis and Applied Mathematics, 1759;1, 1-6, 2016.

[8] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview’’

Neural Networks, 61, 85–117, 2015.
[9] Y. LeCun, Y. Bengio & G. Hinton, Deep learning, nature, 521(7553),

436-444, 2015.

[10] V. J. da Cunha Farias, M. B. Siqueira, Physics-Informed Machine
Learning for Numerical Solution of Hyperbolic Partial Differential

Equations: An Application to the Second Order One Dimensional

Linear and Nonlinear Telegraph Equation,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4778353, 1-15,

2024.

[11] M. Raissi, P. Perdikaris, & G. E. Karniadakis, Physics-informed neural
networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations Journal of

Computational Physics, 378, 686–707, 2019.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4778353

