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Abstract – In this study, the hyperbolic telegraph differential equation describing the behavior of certain wave-like phenomena, 

such as the transmission of signals along a telegraph line, is considered. Numerical solutions of a telegraph equation are computed 

by using various operator-difference schemes and physics-informed neural networks. The error analysis is performed, and the 

results are compared.  
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I. INTRODUCTION 

 PDEs are equations that involve partial derivatives of 

a multivariable function. They play a crucial role in various 

fields such as physics, engineering, finance, and biology, as 

they can describe a wide range of phenomena, including heat 

conduction, fluid flow, and wave propagation [1]. 

Hyperbolic equations are a type of partial differential 

equation characterized by the propagation of waves and 

signals. They describe systems where information travels at 

finite speeds, making them essential in various fields like 

physics, engineering, and finance. The most common example 

is the wave equation, which describes the propagation of 

waves, such as sound waves, light waves, water waves and 

how waveforms evolve over time. 

The hyperbolic telegraph equation is a specific type of 

partial differential equation that describes the propagation of 

signals [2] in a medium with both wave-like and dissipative 

characteristics. It combines elements of both wave propagation 

and damping, making it particularly relevant for modeling 

phenomena in electrical engineering and acoustics. 

The telegraph equations (also known as transmission 

line equations) describe the voltage and current on an electrical 

transmission line with distributed parameters. These equations 

also apply to RLC circuits when they are modeled as 

distributed parameter systems, such as in long transmission 

lines [3]. 

Numerical methods are used to approximate the 

solution of the telegraph equation when an analytical solution 

is not feasible. There are many different numerical solution 

methods for telegraph equations. Finite difference methods, 

finite element methods, finite volume methods are some them. 

Stability is a critical concept in the numerical solution of 

partial differential equations using finite difference methods. 

It refers to whether small errors (e.g., from round-off or 

truncation) grow uncontrollably as the computation 

progresses. 

Various initial boundary value problems can be 

reduced to initial value problems [4-5]. In this paper, the 

following initial value problem is considered: 

 

{

𝑑2𝑢(𝑡)

𝑑𝑡2
+ 𝛼

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝐴𝑢(𝑡) = 𝑓(𝑡),   0 ≤ 𝑡 ≤ 𝑇,

𝑢(0) = 𝜑,   𝑢′(0) = 𝜓.                                             

 (1) 

Here 𝐴 is self-adjoint unbounded operator in Hilbert space. In 

this paper, for the approximate solutions of the above 

problems, first, second, third order of accuracy difference 

schemes are presented in the next section. A test problem is 

considered and numerical solutions of the test problem are 

found by using difference schemes. The results are compared 

with each other. Moreover, approximate solutions of the test 

problem are also found by using neural network in the fourth 

section. 

II. DIFFERENCE SCHEMES 

For approximate solutions of the problem (1), the 

following first order of accuracy difference scheme 

{
 
 

 
 
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘
𝜏

+ 𝐴𝑢𝑘+1 = 𝑓𝑘,   

𝑓𝑘 = 𝑓(𝑡𝑘+1),   1 ≤ 𝑘 ≤ 𝑁 − 1,   𝑁𝜏 = 𝑇,                    

𝑢0 = 𝜑,   (1 + 𝜑𝜏)
𝑢1 − 𝑢0
𝜏

+ 𝐴𝜏𝑢1 = 𝜓                     

 

and two different types of second order of accuracy difference 

schemes 
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{
 
 
 

 
 
 
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

                                                

+
𝐴

2
(𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘                                                                        

𝑓𝑘 = 𝑓(𝑡𝑘),   1 ≤ 𝑘 ≤ 𝑁 − 1,                                                               

𝑢0 = 𝜑,   
𝑢1 − 𝑢0
𝜏

+
𝜏

2
𝐴𝑢1 = 𝜓 +

𝜏

2
(−𝛼𝜓 + 𝑓0),                          

𝑓0 = 𝑓(0),                                                                                                

 

 

and 

 

{
 
 
 

 
 
 
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

+
𝐴

2
𝑢𝑘         

+
𝐴

4
(𝑢𝑘+1 + 𝑢𝑘−1)  = 𝑓𝑘                                              

𝑓𝑘 = 𝑓(𝑡𝑘),   1 ≤ 𝑘 ≤ 𝑁 − 1,                                       

𝑢0 = 𝜑,   
𝑢1 − 𝑢0
𝜏

+
𝜏

2
𝐴𝑢1 = 𝜓 +

𝜏

2
(−𝛼𝜓 + 𝑓0),

𝑓0 = 𝑓(0).                                                                       

 

 

were developed in [6]. Stability estimates for the solutions of 

difference schemes were constructed. For the approximate 

solutions of problem (1), the following third order of accuracy 

difference scheme 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝛼

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

+
2

3
𝐴𝑢𝑘                    

+
1

6
𝐴(𝑢𝑘+1 + 𝑢𝑘−1)                                                                   

+
𝜏2

12
[(−𝛼3 + 2𝛼𝐴)

𝑢𝑘+1 − 𝑢𝑘
𝜏

− (𝛼2 − 𝐴)𝐴𝑢𝑘+1] = 𝑓𝑘,

𝑓𝑘 =
2

3
𝑓(𝑡𝑘) +

1

6
[𝑓(𝑡𝑘+1) + 𝑓𝑡𝑘−1]                                      

−
𝜏2

12
[(𝛼2 − 𝐴)𝑓(𝑡𝑘+1) − 𝛼𝑓

′(𝑡𝑘+1) + 𝑓
′′(𝑡𝑘+1)],            

1 ≤ 𝑘 ≤ 𝑁 − 1,                                                                           

𝑢0 = 𝜑,                                                                                          

(𝐼 +
𝜏2

2
𝐴)

𝑢1 − 𝑢0
𝜏

= (𝐼 +
𝜏2

2
𝐴)𝜓 +

𝜏

2
(−𝛼𝜓 − 𝐴𝜑)     

+
𝜏2

6
(𝛼2𝜓 + 𝛼𝐴𝜑 − 𝐴𝜓) + 𝑓0,                                               

𝑓0 =
𝜏

2
𝑓(0) −

𝜏2

6
[𝑓(0) − 𝑓′(0)].                                           

 

was developed in [7] in 2016. Stability inequalities for the 

solution of this third order of accuracy difference scheme were 

also done. In the following section, we consider one 

dimensional telegraph equation as a test problem to support 

theoretical results. 

III.  NUMERICAL SOLUTIONS 

For MATLAB implementations, the following initial-

boundary value problem is considered: 

{
 
 
 
 

 
 
 
 
𝜕2𝑢(𝑡, 𝑥)

𝜕𝑡2
+ 2

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
+ 𝑢(𝑡, 𝑥)                               

=
𝜕2𝑢(𝑡, 𝑥)

𝜕𝑥2
+ 2(1 + 𝑡 + 𝑡2) 𝑠𝑖𝑛 𝑥,                          

0 < 𝑡 < 1,   0 < 𝑥 < 𝜋,                                               

𝑢(0, 𝑥) = 𝑠𝑖𝑛 𝑥 , 𝑢𝑡(𝑜, 𝑥) = −𝑠𝑖𝑛 𝑥 ,   0 ≤ 𝑥 ≤ 𝜋,

𝑢(𝑡, 0) =  𝑢(𝑡, 𝜋) = 0,   0 ≤ 𝑡 ≤ 1.                          

 

 

(2) 

The exact solution of the problem (2) is 𝑢(𝑡, 𝑥) = (1 − 𝑡 +
𝑡2) 𝑠𝑖𝑛 𝑥. When the step number for time and space variable 

are taken as 5, the difference between exact solution and 

approximate solution does not appear as shown from figures 

3.1 and 3.2-3.5.  

 
Fig. 3.1. Exact Solution 

 
Fig. 3.2. First-order 

 
Fig. 3.3. Second-order I 
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Fig. 3.4. Second-order II 

 

 
Fig. 3.5. Third-order 

 

To compare the results between exact solution and 

approximate solution, we need to give the results by table. 

Error formula is define as follows 

𝐸0 = max
1≤𝑘≤𝑁−1

(∑|𝑢(𝑡𝑘, 𝑥𝑛) − 𝑢𝑛
𝑘|2  ℎ

𝑀−1

𝑛=1

)

1
2

, 

where 𝑢(𝑡𝑘, 𝑥𝑛) is exact solution and 𝑢𝑛
𝑘 is approximate 

solution at the point (𝑡𝑘, 𝑥𝑛). ℎ is step size for space variable. 

𝑁 and 𝑀 are step numbers for time and space variables 

respectively. As shown in Table 3.1, the accuracy of second 

order difference schemes are better than the first order 

difference scheme. The accuracy of the third order difference 

scheme is better than the accuracy of second order difference 

schemes. There is no much difference between second order 

difference scheme 1 and 2. When the number of step for time 

variable is increased 2 times, the error gets smaller 2 time for 

first order difference scheme. When the number of step for 

time variable is increased 2 times, the errors get smaller 4 and 

8 times for the second and third order different schemes 

respectively.  
 

Table 3.1. Error for 𝐸0  

 N=M2 64, 8 128, 11 256, 16 

FO Error 0.01069 0.00523 0.00265 

 N=M 32, 32 64, 64 128, 128 

SO1 Error 0.0002349 0.0000575 0.0000142 

SO2 Error 0.0003417 0.0000848 0.0000211 

 N3=M2 10, 32 20, 89 40, 253 

TO Error 0.0003249 0.0000381 0.0000046 

 N=M 32 64 128 

FO Error 0.0271183 0.0137000 0.0068864 

SO1 Error 0.0002349 0.0000575 0.0000142 

SO2 Error 0.0003417 0.0000848 0.0000211 

TO Error 0.0001813 0.0000482 0.0000124 

 

IV. NEURAL NETWORKS 

Artificial neural networks are computational models 

that mimic the synaptic structure of neurons in the human brain 

[8]. These networks consist of processing units (nodes) 

interconnected across multiple layers: the input layer, one or 

more hidden layers, and the output layer. The input layer 

receives raw data, and the hidden layers process this data and 

extract representations of increasing levels of abstraction, 

leading to the output layer that produces the final result. These 

neural networks have demonstrated tremendous potential in 

approximating any arbitrary function (Universal 

Approximation Theorem) and learning complex patterns in 

images, audio, and text, leading to significant scientific 

advances in fields such as computer vision and natural 

language processing [9]. 

With the development of deep learning, the need has 

emerged to incorporate physical knowledge into the training 

process to overcome total reliance on observed data, especially 

in problems where sufficient data is difficult to obtain. Hence, 

the idea of Physics-Informed Neural Networks (PINNs) ([10]) 

emerged, adding a term to the loss function that represents the 

residuals of the partial differential equations governing the 

system. Leveraging automatic differentiation, the network 

computes the necessary derivatives of the resulting solution to 

ensure the network satisfies initial and boundary conditions as 

well as the physical conservation laws during learning. This 

enables it to solve forward (finding a solution) and inverse 

(discovering unknown coefficients or parameters) problems 

efficiently without the need to generate an explicit mesh or 

mesh nodes [11]. 

4.1. Methodology 

To build PINNs, we have the following steps. 

4.1.1. Problem Formulation 

Define the partial differential equation 

𝑓[𝑢(𝑥, 𝑡)] = 0 

with boundary conditions 

𝑢(𝑥𝑏 , 𝑡𝑏) = 𝑔(𝑥𝑏 , 𝑡𝑏) 

and with initial conditions 

𝑢(𝑥𝑖 , 0) = ℎ(𝑥𝑖) 

4.1.2. Neural Network Architecture 

A fully connected feed-forward network  𝑢𝜃(𝑥, 𝑡) is 

chosen, which receives the spatial variables 𝑥 and temporal 

variables 𝑡 as inputs and produces the approximate solution 𝑢. 

4.1.3. Loss Function 

Weighted loss function is defined as the following 

ℒ(𝜃) = 𝑤𝑃𝐷𝐸ℒ𝑃𝐷𝐸 + 𝑤𝐵𝐶ℒ𝐵𝐶 +𝑤𝐼𝐶ℒ𝐼𝐶  

ℒ(𝜃) = 𝑤𝑃𝐷𝐸 ∗

1

𝑁𝑟
∑ (𝑓[𝜃](𝑥𝑗 , 𝑡𝑗))

2

+
𝑁𝑟
𝑗=1 𝑤𝐵𝐶

1

𝑁𝑏
∑ (𝑢𝜃(𝑥𝑏,𝑘, 𝑡𝑏,𝑘) −
𝑁𝑏
𝑘=1

𝑔(𝑥𝑏,𝑘, 𝑡𝑏,𝑘))
2 + 𝑤𝐼𝐶

1

𝑁𝑙
∑ (𝑢𝜃(𝑥𝑖,𝑙 , 𝑡𝑖,𝑙) − ℎ(𝑥𝑖,𝑙))

2𝑁𝑙
𝑖=1  , 
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where ℒ𝑃𝐷𝐸  is mean squared residual of the partial differential 

equations over 𝑁𝑟 interior collocation points, ℒ𝐵𝐶  is mean 

squared error on 𝑁𝑏 boundary points against boundary data 𝑔, 

ℒ𝐼𝐶 is mean squared error on 𝑁𝑙 initial points against initial 

data ℎ. 

4.1.4. Collocation Point Generation 

{(𝑥𝑗 , 𝑡𝑗)} ⊂ 𝛺  is interior points for the partial 

differential equations residual. Boundary points  

{(𝑥𝑏,𝑘, 𝑡𝑏,𝑘)} ⊂ 𝜕𝛺 for the boundary conditions. Initial points  

{(𝑥𝑖,𝑙 , 𝑡𝑖,𝑙 = 𝑡0)} ⊂ 𝛺  at the initial time 𝑡0, then impose  

𝑢(𝑥𝑖,𝑙 , 𝑡0) = ℎ(𝑥𝑖,𝑙)   and  𝑢𝑡(𝑥𝑖,𝑙 , 𝑡0) = ℎ𝑡(𝑥𝑖,𝑙).    

4.1.5. Training Loop 

Forward pass is passing input through the network 

layers to get the prediction compute loss. Backward pass is 

auto-differentiation is used to calculate the gradients of the loss 

function with respect to the weights, and the optimizer then 

updates the weights. 

4.2. Practical Implementation 

We seek to solve the problem (2). We approximated 

𝑢(𝑥, 𝑡) by a dense feed-forward  network 𝑢𝜃(𝑥, 𝑡) taking (𝑥, 𝑡) 
input, passing through hidden layers of different widths with 

tanh activations, and outputting a single scalar. Its loss is a 

weighted sum ℒ(𝜃) = ℒ𝑃𝐷𝐸 + 5. ℒ𝐵𝐶 + ℒ𝐼𝐶 , where 𝑤𝑃𝐷𝐸 =
1,𝑤𝐵𝐶 = 5,𝑤𝐼𝐶 = 1 and ℒ𝑃𝐷𝐸  is the mean squared residual of 

the partial differential equation over 100*100 (and over 

200*100) interior collocation points, ℒ𝐼𝐶 enforces 𝑢(𝑥, 0) =
𝑠𝑖𝑛𝑥 𝑎𝑛𝑑 𝑢𝑡(𝑥, 0) = −𝑠𝑖𝑛𝑥  over 200 initial points, and  ℒ𝐵𝐶  

enforce 𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0 over 200 boundary points. 
We trained the neural network for 10000 epochs using 

the Adam optimizer (learning rate is 0.01), computing all 

derivatives via automatic differentiation and checkpointing the 

model state that achieves the lowest MSE on the training set. 

Finally, we evaluated the saved model on independent grids of 

size 100 × 100 (200 ∗ 100), reporting mean square error and 

Max 𝛥𝑡‐weighted 𝐿2 over 𝑥 error. Max 𝛥𝑡‐weighted 𝐿2over 

𝑥 is 

 max
𝑖=1,…,𝑁𝑥

√∆𝑡 ∑ (𝑢𝑝𝑟𝑒𝑑(𝑥𝑖 , 𝑡𝑗) − 𝑢𝑡𝑟𝑢𝑒(𝑥𝑖 , 𝑡𝑗))
2𝑁𝑡

𝑗=1   where 

 ∆𝑡 =
1−0

𝑁𝑡−1
    is the uniform time-step on [0,1]. 

 
Table 4.2.1. Training and Evaluation Performance Metrics of Different PINN 

Architectures after 10,000 Epochs on a 100×100 Grid 

10000    epochs  &  𝑵𝒙 ∗ 𝑵𝒕 = 𝟏𝟎𝟎 ∗ 𝟏𝟎𝟎 

   Performance 

   Metrics 

 

 

 

Architecture 

Best 

Train 

MSE 

 

Best 

iteration 

Evaluation Grid 

𝟏𝟎𝟎 ∗ 𝟏𝟎𝟎 

MSE Max Δt‐

weighted 

𝑳𝟐 over 𝒙 

[2-50-50-50-1] 3.093e-

07 

9775 2.894e-

07 

1.073e-03 

[2-50-50-50-

50-1] 

9.979e-

07 

4416 8.734e-

07 

2.471e-03 

[2-50-50-50-

50-50-1] 

2.153e-

06 

2695 2.089e-

06 

3.028e-03 

[2-100-100-

100-1] 

2.559e-

07 

4488 2.299e-

07 

9.902e-04 

[2-32-64-128-

64-32-1] 

1.014e-

05 

1180 9.915e-

06 

5.039e-03 

 
 

Table 4.2.2. Training and Evaluation Performance Metrics of Different PINN 

Architectures after 10,000 Epochs on a 200×100 Grid 

10000    epochs  &  𝑵𝒙 ∗ 𝑵𝒕 = 𝟐𝟎𝟎 ∗ 𝟏𝟎𝟎 

  Performance 

Metrics 

 

 

Architecture 

Best 

Train 

MSE 

Best 

iteration 

Evaluation Grid 

𝟐𝟎𝟎 ∗ 𝟏𝟎𝟎 

MSE Max Δt‐

weighted 

𝑳𝟐 over x 

[2-50-50-50-1] 3.574e-

07 

7647 3.379e-

07 

 1.489e-03 

[2-50-50-50-

50-1] 

6.883e-

07    

9006 6.680e-

07 

1.598e-03 

[2-50-50-50-

50-50-1] 

1.036e-

06   

3999 1.005e-

06 

1.979e-03 

[2-100-100-

100-1] 

2.767e-

07   

3065 2.560e-

07 

1.354e-03 

[2-32-64-128-

64-32-1] 

5.245e-

06   

1863 5.103e-

06 

4.180e-03 

 

 

  
Fig. 4.2.1. Best Train MSE Comparison 

 

Fig. 4,2.2. Max Δt‐weighted 𝐿2 Comparison 

4.3. Discussion of PINNs Results  

The architecture with five hidden layers [2-50-50-50-

50-50-1] reached the lowest mean square error at iterations 

2695 (for a 100×100 grid) and 3999 (for a 200×100 grid), 

meaning it finished improving the loss earlier than the other 

architectures. However, the solution quality (Best Train mean 

square error and Max Δt‐weighted L_2 over 𝑥) was the worst 

among all architectures, indicating that it reached an early 

local minimum without reaching a truly low error. The widest-
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deepest hierarchical architecture [2-32-64-128-64-32-1] 

converges the fastest. This architecture reached its best point 

at iterations 1180 (100×100) and 1863 (200×100), 

significantly faster than the other networks. However, it also 

achieved the highest errors, demonstrating that convergence 

speed alone is not a quality measure.  

The medium-depth and wide-width [2-100-100-100-1] 

networks show a good balance. They reached their best point 

at around 4500 iterations (4488 and 3065), significantly faster 

than the simple [2-50-50-50-1] networks (9775 and 7647) but 

better performing than the very deep networks. They achieved 

the lowest errors, reflecting a balance between convergence 

speed and solution quality. Relatively narrow [2-50-50-50-1] 

networks converge slowly. They require almost the full 

number of iterations (9,775 and 7,647 out of 10,000) to achieve 

the optimal loss. However, they achieve a low error, rivaling 

[2-100-100-100-1] and outperforming some other 

architectures. The results also highlight the inherent challenge 

of finding neural network architectures where determining the 

optimal architecture requires numerous experimental trials. 

 

V. CONCLUSION 

In this study, one dimensional telegraph equation is 

considered. Numerical solutions of this equation found by 

using first, second and third order difference schemes. It was 

shown that the accuracy of third order scheme is better than 

second order scheme which is better than first order scheme. 

There was no much difference between two second order 

difference schemes. Numerical solutions of the equation were 

also found by using neural network. The results are 

satisfactory. 

REFERENCES 

[1] A. Ashyralyev, M. E. Koksal, A Numerical Solution of Wave Equation 

Arising in Non-Homogeneous Cylindrical Shells, Turkish Journal of 
Mathematics,  32 (4) 407-419, 2008 

[2] M. E. Koksal, An Operator-Difference Method for Telegraph Equations 

Arising in Transmission Lines, Discrete Dynamics in Nature and 
Society, 1-17, 2011.  

[3] M. E. Koksal, Time and frequency responses of non-integer order RLC 

circuits, AIMS Mathematics, 4 (1) 61-75, 2019. 
[4] G. S. Krein, Linear Differential Equations in a Banach Space, 

Birkhauser, 1966. 

[5] O. H. Fattorini, Second Order Linear Differential Equations in Banach 
Space, Mathematics Studies, 107, 1985. 

[6] A. Ashyralyev, M. Modanli, An operator method for telegraph partial 

differential and difference equations, Boundary Value Problems, 
Artical ID;41, 1-17, 2015. 

[7] A. Ashyralyev, M. E. Koksal, K. T. Turkcan. Numerical solutions  of 

telegraph equations with the dirichlet boundary condition, International 
Conference on Analysis and Applied Mathematics, 1759;1, 1-6, 2016. 

[8] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview’’ 

Neural Networks, 61, 85–117, 2015. 
[9] Y. LeCun, Y. Bengio & G. Hinton,  Deep learning, nature, 521(7553), 

436-444, 2015. 

[10] V. J. da Cunha Farias, M. B. Siqueira, Physics-Informed Machine 
Learning for Numerical Solution of Hyperbolic Partial Differential 

Equations: An Application to the Second Order One Dimensional 

Linear and Nonlinear Telegraph Equation, 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4778353, 1-15, 

2024. 

[11] M. Raissi, P. Perdikaris, & G. E. Karniadakis, Physics-informed neural 
networks: A deep learning framework for solving forward and inverse 

problems involving nonlinear partial differential equations Journal of 

Computational Physics, 378, 686–707, 2019. 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4778353

