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Comparative assessment of AHP and FRM approaches for
susceptibility mapping of pine processionary moth'

Cam kese bocegdinin duyarlilik haritalamasinda AHP ve FRM yaklasimlarinin
karsilastirmali degerlendirmesi

Ali Berat BULUT? Fatih SIVRIKAYA?" Gonca Ece OZCAN3
Abstract

This study aims to develop susceptibility maps for the Pine Processionary Moth (PPM) via multi-criteria decision-
making methodologies. This study utilized data on forest stands affected by PPM damage within the Nurdagi Forest
Planning Unit in Gaziantep province from 2018 to 2024. Parameters including stand structure, crown closure,
development stage, elevation, slope, aspect, annual mean temperature, solar radiation, and annual mean precipitation
parameters were used to create the PPM susceptibility maps according to the Analytical Hierarchy Process (AHP) and
the Frequency Ratio Method (FRM). Their precision was evaluated by Relative Operating Characteristic (ROC)
analysis. The AHP model indicates that 73% of the forest stands with PPM damage fall into the high and extreme
susceptibility groups, whereas the FRM model shows that 68% of such forest stands are similarly categorized. The
AUC values for the FRM and AHP models were determined to be 0.830 and 0.835, respectively. The results reveal that
the PPM susceptibility maps generated using the AHP and FRM models are reliable.

Keywords: Annual mean precipitation, Geographic Information Systems, ROC, Thaumetopoea wilkinsoni
Oz

Bu calismada, cok kriterli karar verme metodolojileri kullanilarak Cam Kese Bodcegi (CKB) icin duyarlihk
haritalarinin gelistirilmesi amaglanmistir. Calismada, Gaziantep ili Nurdagi Orman isletme Sefliginde 2018-2024
yillarindaki CKB zarari olan mescere verileri kullaniimistir. Mescere yapisi, kapalilik, gelisim ¢agdi, yikselti, egim, baki,
yillik ortalama sicaklik, gines radyasyonu ve yillik ortalama yagis parametreleri CKB duyarhlik haritalarinin
olusturulmasinda kullaniimistir. CKB duyarhlik haritalari Analitik Hiyerarsi Sireci (AHP) ve Frekans Orani Yontemi
(FRM) kullanilarak gelistirilmis ve dogruluklari Géreceli isletme Karakteristigi (ROC) analizi ile degerlendirilmigtir. AHP
modeli, CKB zarar olan ormanlik alanlarin %73'inln yUksek ve asiri duyarlilik gruplarina girdigini gésterirken, FRM
modeli bu ormanlik alanlarin %68'inin benzer sekilde kategorize edildigini gostermektedir. FRM ve AHP modelleri igin
AUC degerleri sirasiyla 0,830 ve 0,835 olarak belirlenmistir. Sonuglar, AHP ve FRM modelleri kullanilarak olusturulan
CKB duyarhlik haritalarinin gtivenilir sonuglar verdigini gdstermistir.

Anahtar sozciikler: Yillik ortalama yagis, Cografi Bilgi Sistemi, ROC, Thaumetopoea wilkinsoni

' The current study was carried out based on an MSc thesis authored by first author and supervised by second author, affiliated with
the Institute of Natural and Applied Science at Kastamonu University, Turkiye

2 Kastamonu University, Institute of Science, Program of Forest Engineering, 37100, Kastamonu, Tirkiye

3 Kastamonu University, Faculty of Forestry, Department of Forestry Engineering, 37100, Kastamonu, Tirkiye

* Corresponding author (Sorumlu yazar) e-mail: fsivrikaya@kastamonu.edu.tr
Received (Alinis): 29.05.2025 Accepted (Kabul edili): 24.08.2025 Published Online (Cevrimici Yayin Tarihi): 28.09.2025

291


https://orcid.org/0009-0006-0772-6092
https://orcid.org/0000-0003-0860-6747
https://orcid.org/0000-0003-0141-1031

Comparative assessment of AHP and FRM approaches for susceptibility mapping of pine processionary moth

Introduction

Forests are renewable natural resources that are vital for meeting the growing demand for wood raw
materials, contributing to climate change mitigation, and conserving biodiversity (Ollikainen, 2014; Griscom
et al., 2017). Forests are significantly affected by many abiotic and biotic factors (Campoa et al., 2021), and
coniferous forests are especially vulnerable to these factors (Seidl et al., 2017). Natural factors such as
storms, fires, drought, diseases, and insect outbreaks change the structure of forests, negatively affecting
the sustainability and functioning of the forest ecosystem (Seidl et al., 2017) and disrupting the flow of
goods and services (Jactel et al., 2021).

The negative impact of insect pests, which are biotic factors, is higher than abiotic factors (Kautz et
al., 2017). Among these, insect pests have a particularly significant impact on forest structure. In healthy
forests, insects and diseases are an essential part of the forest ecosystem (Dajoz, 1998), while intense
insect outbreaks negatively affect the growth and survival of trees (van Lierop et al., 2015). Outbreaks of
these pests negatively affect ecosystem services, forest economy, biodiversity, and sustainable ecosystem
management (Seidl et al., 2017). It is also possible that forests will face more frequent and severe insect
outbreaks in the coming decades due to global climate change (Logan et al., 2003).

Foliage-damaging insects damage trees by eating needles or leaves and eliminating photosynthetic
tissue (Senf et al., 2017). Among these pests, one of the most destructive species in forests is the Pine
Processionary Moth (PPM) [Thaumetopoea pityocampa (Denis & Schiffermliller) 1776 & Thaumetopoea
wilkinsoni Tams, 1925 (Lepidoptera: Thaumetopoeidae)] (Kerdelhué et al., 2009). It is one of the most
important pests of pine forests (ipekdal et al., 2015) in Mediterranean countries, especially in coastal areas
(Bonamonte et al., 2013). Pine and cedar tree species are the main hosts of PPM (FAO, 2009). Pinus nigra
J.F.Arnold, Pinus brutia Ten., Pinus sylvestris Gouan and Pinus halepensis Mill. (Pinales: Pinaceae) are
the tree species it damages in Tiirkiye (Can & Ozgankaya, 2003; Onaran & Kati, 2010).

Since PPM causes damage to needles, it can cause serious economic losses (Kanat et al., 2005).
Numerous studies on this subject reveal that PPM causes significant reductions in diameter and volume
increments in trees (Kanat & Sivrikaya, 2005; Durkaya et al., 2009; Erkan, 2011). It is also alarming that
outbreaks of pests are increasing in the Mediterranean region due to global warming and the expansion of
forest areas (Azcarate et al., 2003).

The dispersal abilities of species, interactions between habitat selection, or individuals influence the
spatial distribution of populations. Spatial analyses facilitate the understanding of the ecological processes
in which an organism is found. Spatial and temporal analysis are important for finding out about the severity
and spread of insect infestations and how outbreaks happen. This helps people take the right measures
and find areas that are more likely to get infected (Aukema et al., 2006; Ozcan et al., 2022). Determining
the spatial distribution of insect damage, determining the factors affecting the spatial distribution, and
understanding outbreaks, as well as tree mortality, will contribute to the sustainability of the forest
ecosystem. Information technologies that enable the collection, storage, analysis, and presentation of
spatial information on insect damage (Campbell & Shin, 2011) are effectively used in susceptibility analysis
of insect outbreaks, assessments of stand, topography, and climate characteristics, and determination of
outbreak susceptibility (Vasquez et al., 2020; Ozcan et al., 2022).

In recent years, interest in new models and tools to support decision-making processes and planning
in forestry has increased significantly. This increased interest encourages the use of new methods/models
and technologies developed to solve complex forestry problems more effectively (Vacik & Lexer, 2014).
These developments allow for more accurate, flexible, and optimized forestry decision-making processes.
Geographic Information System (GIS)-based Multi-Criteria Decision Analysis (MCDA) is used as an
effective tool in complex decision-making processes by integrating multiple variables with spatial and
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temporal data (Greene et al., 2011; Atanasova-Pacemska et al., 2014). GIS-based MCDA is a process that
combines spatial data with the decision maker's preferences to produce results (Drobne & Lisec, 2009).
Forestry widely employs various decision-making techniques. The Analytic Hierarchy Process (AHP),
Logistic Regression (LR), and statistically based quantitative Frequency Ratio Methods (FRM) have been
effectively used, especially in fire, landslide susceptibility, insect susceptibility maps, and forest road studies
(Hong et al., 2017; Naghibi et al., 2020; Sivrikaya & Klguk, 2022). However, no studies are using AHP and
FRM to estimate PPM susceptibility in Calabrian pine forests in Turkiye, and limited studies involving
decision-making techniques to predict insect damage in the world (Ozcan et al., 2022; Sivrikaya et al.,
2022; Tahri et al., 2022).

It is crucial to identify potential threats in forest ecosystems early on and identify relevant strategies
to deal with them (Kunegel-Lion & Lewis, 2020). An important step for sustainable forest management for
ecosystem managers is to find out what causes the PPM to spread and which areas are most likely to get
it using GIS-based MCDA and FRM (Karvemo et al., 2014). In this context, determining the parameters
affecting insect damage and creating susceptibility maps will help reduce the impact of potential infestations
(Kunegel-Lion & Lewis, 2020). For planners, identifying areas that may be prone to insect infestations is a
critical step to ensure the sustainability of forests. This process makes sure that possible risks are correctly
identified and managed, which lets effective plans for protecting forest ecosystems be created (Karvemo
et al., 2014; Alkan Akinci et al., 2022; Fetting et al., 2022).

The initial and important stage in pest management is the creation of susceptibility maps. The aim of
this study is to identify the parameters influencing PPM damage through various parameters and thereafter
create susceptibility maps utilizing two different models based on these parameters.

Materials and Methods
Study area

The study area was determined as the Nurdagi Forest Planning Unit (FPU) of Gaziantep Forest
Enterprise (FE) under the Kahramanmaras Regional Directorate of Forestry (RDF), located at the
intersection of the Mediterranean and Southeastern Anatolia regions. Nurdagdi FPU is located in Gaziantep
province, neighboring Osmaniye and Kahramanmaras provinces. Geographically, it is located at 37°02'00"-
37°00'00" North latitude and 36°39'00"-37°01'30" East longitude (Figure 1).
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Figure 1. Study area.
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The study area covers a total area of 43576.2 hectares, of which 6735.1 hectares are productive
forest and 2341.2 hectares are degraded forest. The elevation of Nurdagi FPU from the sea varies between
the lowest 475 m and the highest 1643 m, and the average elevation is 713 m. The average slope of the
study area is 7.7%, the lowest slope is 0%, and the highest slope is 45.7% (FMP, 2022).

The study area has a Mediterranean climate and is characterized by coniferous and scrub vegetation.
The main tree species commonly found in this region are P. brutia, P. pinea, P. nigra, Cedrus libani A.Rich.
(Pinales: Pinaceae), and Juniperus spp. L. (Pinales: Cupressaceae). The study area is located in the Csa
(warm summer Mediterranean) climate zone in the Képpen climate classification system. This climate type
is characterized by mild winters and hot and dry summers (Beck et al., 2018).

Database development

In the last 10 years, the forests of Nurdagi FPU have suffered a significant amount of PPM damage.
In this context, Kahramanmaras RDF, Gaziantep FE, and Nurdagdi FPU have filled out "Forest Pest Control
Project" forms regarding the damage of PPM. We identified the stands with PPM damage using the Forest
Pest Control Project forms and field studies. We digitally obtained the forest cover type map of the study
area from Kahramanmaras RDF using the ArcGIS software. We looked at 9 parameters in this study to see
how vulnerable the PPM was. These parameters were stand structure, crown closure, development stage,
elevation, slope, aspect, solar radiation, annual mean temperature, and annual mean precipitation (Avci,
2000; Blas, 2000; ipekdal, 2005; Régolini et al., 2014; Ziouche et al., 2017; Bulut, 2024). Stand structure,
crown closure, and development stage were obtained from the digital forest cover type map. Slope, aspect,
elevation, and solar radiation data were derived from a digital elevation model with a resolution of 25 meters
downloaded from the USGS website (https://earthexplorer.usgs.gov/). Annual mean temperature and
annual mean precipitation data were obtained from digital raster data with a resolution of approximately
750 meters obtained from WorldClim (https://www.worldclim.org/) (Table 1). These 750-meter resolution data
were converted to 25-meter resolution using the resampling method with nearest neighbor in the ArcGIS
environment. The method applied in the production of the PPM susceptibility maps is given in Figure 2.

Table 1. Description of the data utilized in the research

Data description Source Data type Resolution (m)
Forest cover type map Kahramanmaras RDF Vector

Digital elevation model USGS Raster 25
Annual mean temperature WorldClim Raster 750
Annual mean precipitation WorldClim Raster 750

Parameter selection

Recognizing potential dangers to the forest ecosystem is crucial for formulating solutions and
developing strategies (Kunegel-Lion & Lewis, 2020). Finding out how insect damage is spread, what factors
affect this, and how outbreaks and tree deaths happen will help the managing sustainability of the forest
ecosystem. Studies on the parameters affecting the susceptibility of the PPM are limited. Recent studies
have focused on the vulnerability of trees and forests to PPM attacks, but there is still no conclusive
evidence (Jactel et al., 2014). Some studies have shown that the PPM prefers to lay its eggs in the southern
aspect (south and west) of trees (ipekdal, 2005; Régolini et al., 2014). Parlak et al. (2019) emphasized that
PPM prefers sunny aspects. Ziouche et al. (2017) reported in their study that the attack of P. halepensis
trees was not affected by region or elevation, with nests typically located in the east and south directions,
and that the polyphenol content of the attacked individuals in healthy trees was high. Temperature is
considered to be the most important factor in the spread of the PPM. Warm and dry seasons favorably
affect the spread of the insect (Blas, 2000). Although there is no significant difference in the insect's
preference for stand location (Keten et al., 2010), it prefers the edges of the stand more (Canakgioglu &
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Mol, 1998). In general, PPM can cause more damage in pine forests with abundant open areas (Azcarate
et al., 2023). In this study, stand structure, crown closure, development stage, elevation, slope, aspect,
solar radiation, annual mean precipitation, and annual mean temperature parameters were used to
determine the spatial distribution and susceptibility of the PPM.
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Figure 2. The conceptual framework of the PPM susceptibility map.

PPM Data

Analytic hierarchy process (AHP)

The AHP developed by Saaty (1980) is a widely used method in multi-criteria decision-making
(MCDM) processes. This method has a flexible and powerful structure for solving complex decision-making
problems (Kumar & Garg, 2017). AHP assesses the optimal solution among various options (Saaty, 1980).
AHP, also known as alternative method analysis, is based on a hierarchical structure that shows the
relationships between possible alternatives and objectives. One of the most important advantages of AHP
is that intangible factors such as subjective preferences, experiences, and intuitions can be handled
logically and structurally (Kara, 2023). AHP is used in many fields, such as insect susceptibility, fire risk,
and landslide risk mapping (Pourghasemi et al., 2013; Bentekhici et al., 2020; Sari, 2021; Aksoy, 2023;
Urker & Giinli, 2024).

AHP uses mathematical calculations to derive priority weights for criteria and alternatives once the
pairwise comparisons are complete. The steps in the process are to normalize the pairwise comparison
matrix, find the principal eigenvector, and use the Consistency Ratio (CR) to make sure the evaluation is
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accurate. This method takes pairwise decisions and turns them into a prioritized list of criteria and options.
This ensures that decisions are based on consistent and logical evaluations. We accept the decision matrix
as passing the consistency evaluation when the CR value is less than 0.1. If the CR is higher than 0.10, the
matrix fails the consistency test. This means that pairwise comparisons need to be re-evaluated and changed
(Chen et al., 2010; Saaty, 1980). We calculated the index and CR using the following formulas Egs. (1 &2).

CR=CI/RI Eq. (1)
Cl = Amax—n /N -1 Eq. (2)

In the formula, CI (consistency index) refers to the comparability level, Amax is the largest eigenvalue,
n is the number of criteria compared in the matrix, and Rl is the random index based on the number of criteria
compared (Eqg. 2). This research employed the conventional RI values established by Saaty (1980). These
values were predetermined according to the number of criteria compared and used for a consistency check.

Frequency ratio method (FRM)

The FRM, which plays an active role in the creation of fire, landslide, and insect susceptibility maps,
stands out as an understandable and easy-to-use probability model. This model is based on the concept
of frequency ratio, which represents the ratio of the probability of an event occurring to the probability of it
not occurring (Erener et al., 2010; Kara, 2023). Each factor affecting insect susceptibility was categorized,
and the frequency ratio value was calculated for each category using GIS functions. FR is the frequency
ratio (Eqg. 3). The ratios of the number of pixels with insect damage (M) to the total number of stands with
insect damage (M) and the ratio of the number of pixels of each parameter (N;) to the total number of pixels
(N) were used to figure this out.

FR = (M/M) / (Ni/N) Eq. (3)

Relative frequency (RF) was computed by dividing the FR of the variable class by the total frequency
ratio of the variable. The RF value was utilized to compute the prediction ratio (PR). The RF was calculated
the for each class. The Prediction Rate (PR) for each parameter was calculated using the training dataset
to consider the interactions among the independent variables (Eq. 4).

PR = (RFmax - RFmin)/ (RFmax - RFmin)min Eq. (4)

Frequency ratio values are an important measure to determine the level of insect susceptibility.
Values above 1 indicate a high level of insect susceptibility, while values less than 1 indicate a low level of
insect susceptibility. Using available insect damage data and the relationships of relevant parameters, we
constructed a contingency table based on this methodology.

The PPM susceptibility index (PPMSI) was determined by summing the products of each factor's PR
and each class's RF, as seen below (Eqg. 5).

PPMSI =) (PR x RF) Eq. (5)

PPM susceptibility maps

The PPM susceptibility map was created with the help of PPMSI. PPMSI expresses the susceptibility
of PPM, and the higher the value of PPM, the higher the sensitivity, and the lower the value of PPM, the
lower the sensitivity. The weights of each parameter were determined according to AHP and FRM methods,
and the weights determined for each parameter were transferred to the database in the ArcGIS environment.

The layers of all parameters were overlaid, and the PPMSI value was calculated by summing the weights
of all parameters (Eq. 6).

PPMSI= PPMSIs + PPMSI; +.......+ PPMSI, Eq. (6)
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Based on the Jenks natural breaks classification method in ArcGIS 10.8 software, PPMSI was
categorized into four classes: low, medium, high, and extreme. We created PPM susceptibility maps using
two different methods (AHP and FRM).

Accuracy assessment of PPM susceptibility maps

One of the main steps of this study is to test the accuracy of the Relative Operating Characteristic
(ROC) susceptibility maps. ROC, which is frequently used to evaluate the validity of the developed models,
is widely used in forest fires, landslides, and insect susceptibility mapping studies (Pradhan et al., 2009;
Pourghasemi et al., 2016; Gheshlaghi et al., 2020; Sevinc et al., 2020; Ozcan et al., 2022; Sivrikaya et al.,
2022; Kara, 2023). This method is crucial for verifying the reliability of the obtained results and assessing
the model's performance.

ROC curve is a graph. The X-axis shows the number of false positives, and the Y-axis shows the
number of true positives (Kumar & Indrayan, 2011). Area Under the Curve (AUC) scores are a widely used
metric to measure the accuracy of the model (Nandi & Shakoor, 2010). This score is a measure of the
model's performance. The highest AUC score indicates the best performance of the model, and an AUC
score approaching 1 indicates that the model provides an excellent prediction (Yesilnacar, 2005).
Generally, we classify AUC scores as follows: 0.9-1.0: Excellent, 0.8-0.9: Very Good, 0.7-0.8: Good, 0.6-
0.7: Fair, and 0.5-0.6: Poor. The literature frequently uses this classification as a common standard for
assessing the predictive ability of the model (Pourghasemi et al., 2012; Ozcan et al., 2022).

Results and Discussion
Parameters influencing PPM damage

Analysis of PPM damage in relation to stand structure revealed that 75.9% (913.6 ha) of the damage
occurred in pure stands, while 24.1% (289.7 ha) occurred in mixed stands. The result indicates that PPM
favors pure stands over mixed stands. 73.2% (881.0 hectares) of PPM damage occurred in full coverage
stands (Table 2). The PPM damage rates for development stages of the young, middle-aged, mature, and
over-mature are 74.8% (900.3 ha), 19.6% (236.2 ha), 1.9% (22.3 ha), and 3.7% (44.5 ha), respectively.
These findings indicate that PPM damage usually occurs in young stands. Despite the claim of no significant
difference in the evaluation of insect choice for stand position (Keten et al., 2010), it exhibits a greater
preference for stand edges (Canakgioglu & Mol, 1998). Generally, they may cause greater harm in forests
with open spaces (Azcarate et al., 2023). Buxton (1983) stated that young trees exhibit greater susceptibility
to PPM. However, Regolini et al. (2014) documented higher infestation rates in mature trees.

The PPM damage in relation to topographic variables revealed that 79% of the damage occurred at
elevations below 650 m. In other words, PPM damage was more prevalent in low-altitude regions. The slope
results indicated that roughly 83% of the damage occurred in areas with a slope exceeding 10%, and the
extent of the damaged area increased with the rise in slope. PPM damage was shown to be greater in
sunny aspects compared to shady aspects. Ziouche et al. (2017) concluded that location and altitude did
not influence the infestation of PPM on P. halepensis trees, that nests were predominantly oriented towards
the east and south, and that the polyphenol content in the afflicted individuals of healthy trees was increased.
Temperature is regarded as the most significant component in the dissemination of PPM. High temperatures
and arid conditions facilitate the increase of the insect (Blas, 2000). Research indicates that PPM exhibits
a preference for oviposition on the southern sides of trees (namely south and west directions) and that a
substantial correlation exists between the stand edge and the insect's spread (Avci, 2000; ipekdal, 2005;
Régolini et al., 2014). Parlak et al. (2019) highlighted that PPM favors sunny aspects and stand edges.
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Table 2. Spatial distribution of parameters based on forest stand and PPM damaged stand

Forest stand PPM damaged stand area
Parameters Class
ha % ha %
Pure 5648.6 85.9 913.6 75.9
Stand structure
Mixed 924.6 141 289.7 241
Low coverage (10-40) 4336.4 66.0 2911 24.2
Crown closure Medium coverage (40-70) 87.4 1.3 31.2 2.6
Full coverage (>70) 2149.4 32.7 881.0 73.2
Young 5979.6 91.0 900.3 74.8
Middle-aged 511.7 7.8 236.2 19.6
Development stage
Mature 23.8 0.3 223 1.9
Over-mature 58.1 0.9 44.5 3.7
<550 1664.2 253 324.2 26.9
Elevation (m) 550-650 3031.1 46.1 627.7 52.2
>650 1877.9 28.6 251.4 20.9
<10 1364.1 20.7 208.3 17.3
Slope (%) 10-20 2253.9 34.3 461.9 38.4
>20 2955.2 45.0 533.1 44.3
Sunny 3087.9 47.0 7211 59.9
Aspect
Shady 3485.3 53.0 482.2 401
<16 1810.6 27.5 279.4 23.2
Annual mean temperature (°C) 16-17 1823.4 27.8 390.4 325
>17 2939.2 447 533.5 44.3
<1150000 370.8 5.6 52.8 4.4
1150000-1250000 640.4 9.8 139.7 11.6
Solar radiation (WH/m?)
1250000-1350000 1913.5 291 402.9 335
>1350000 3648.5 55.5 607.9 50.5
<58 43041 65.5 5411 45.0
Annual mean precipitation (mm) 58-60 1858.4 28.3 4251 35.3
>60 410.7 6.2 2371 19.7

When assessing PPM damage in relation to climatic conditions, a linear correlation was established
between temperature and PPM damage, indicating that harm increased with higher temperatures. Climatic
factors, particularly elevated temperatures, are crucial for larval growth, with the optimal temperature range
being 20-25°C (Bonamonte et al., 2013). PPM is mostly affected by weather conditions. Mild winters (Battisti
et al., 2005; Barbaro et al., 2013) and hot summers (Battisti et al., 2006) make it easier for the PPM population
to grow. PPM damage increases linearly with sun radiation. An inverse correlation exists between the amount
of rainfall and the PPM damage, with observations indicating that damage diminishes as rainfall increases.

PPM susceptibility map using AHP

Determining the coefficients of the parameters influencing PPM damage is essential for the
development of PPM susceptibility maps, and the AHP approach is employed for this purpose. The AHP
pairwise comparison matrix is utilized to ascertain the coefficients of the parameters. This matrix facilitates
the generation of susceptibility maps with improved accuracy and reliability by establishing the priority
among the parameters. The CR for the parameters of crown closure, stand structure, development stage,
elevation, slope, aspect, annual mean temperature, solar radiation, and annual mean precipitation was
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computed (Table 3). The CR value of the parameters was calculated to be 0.036, which is less than 0.1.
The results indicated that all pairwise comparison matrices were consistent. The main factor influencing
PPM susceptibility was identified as annual mean precipitation, assigned a weight of 22%. The subsequent
stages included the development stage at 20%, crown closure at 18%, and stand structure at 12%. The
least significant indicator for PPM susceptibility was identified as annual mean radiation, accounting for 3%.
The PPM susceptibility map produced by AHP method is shown in Figure 3.

Table 3. Weight and consistency ratios of all criteria

Parameters

Weights CR

Stand structure
Crown closure
Development stage
Elevation

Slope

Aspect

Annual mean temperature

Solar radiation

Annual mean precipitation

0.1228
0.1831
0.1974
0.0670
0.0312
0.0997
0.0465
0.0310
0.2214

0.036
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The PPM susceptibility map, developed using the AHP approach, displays areas categorized by
susceptibility and the forest stand area affected by PPM damage in Table 4. The PPM susceptibility map
shows that 56.8% (3735.7 ha) of the area is in the low group, 13.7% (900.4 ha) is in the medium group,
15.9% (1042.4 ha) is in the high group, and 13.6% (894.7 ha) is in the extreme group. Upon examination
of the stands with PPM damage, 7.1% (85.8 ha) fall into the low category, 20.2% (243.4 ha) in the medium,
35.1% (421.9 ha) in the high, and 37.6% (452.2 ha) in the extreme group. The research area is 30% more
likely to be affected by PPM than the extreme and high categories, but 73% of the stands that have PPM
damage are in these categories. According to the results, the PPM susceptibility map made with the AHP
method is accurate and can be used in PPM management.

Table 4. Forest stand and PPM damaged stand area according to PPM sensitivity categories based on AHP

Forest stand PPM damaged stand
PPM susceptibility category

ha % ha %
Low 3735.7 56.8 85.8 71
Medium 900.4 13.7 2434 20.2
High 1042.4 15.9 421.9 351
Extreme 894.7 136 452.2 376
Total 6573.2 100.0 1203.3 100.0

PPM susceptibility map using FRM

The frequency ratio method (FRM) was used to find the spatial relationships between the factors that
affect the PPM susceptibility. The coefficient values (PR) for each parameter are presented in Table 5. The
PR values indicate that annual mean precipitation (4.992), crown closure (4.233), development stage
(3.499), and stand structure (3.287) are identified as significantly influential parameters for PPM
susceptibility. The parameter of least significance for PPM susceptibility was identified as slope (1.000).
Azcarate et al. (2023) demonstrated in their research that the primary factors influencing PPM damage
were tree species, stand density, elevation, slope, and aspect. The PPM susceptibility map produced by
FRM method is shown in Figure 4.

The PPM susceptibility map, developed from the FRM, illustrates the regions categorized by
sensitivity and the stand area affected by PPM damage, as presented in Table 6. The PPM susceptibility
map indicates that 53.3% (3504.3 ha) of the region falls under the low group, 19.1% (1253.3 ha) within the
medium category, 17.8% (1168.4 ha) within the high category, and 9.8% (647.2 ha) within the extreme
category. Upon examination of the stands exhibiting PPM damage, 6.7% (80.9 ha) fall under the low class,
24.9% (300.1 ha) within the medium class, 38.6% (464.9 ha) within the high class, and 29.7% (357.4 ha)
within the extreme class. While roughly 28% of the research area falls into the high and extreme categories
of PPM sensitivity, 68% of the stands exhibiting PPM damage are classified in these categories. The results
obtained validate the precision of the PPM susceptibility map developed in accordance with FRM and its
potential use in PPM management initiatives. Annual mean precipitation is the most important parameter
in both methods. The average annual precipitation was determined to be the primary variable influencing
the PPM's vulnerability based on both the AHP and FRM models. The primary reason is that average
annual precipitation strongly influences both the insect's life cycle and the physiological condition of host
trees, particularly pine species.
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Table 5. Coefficient values of frequency parameters for the PPM susceptibility map
PPM damaged stand

Forest stand area

Parameters Class area FR RF PR
ha % ha %
Pure 5648.6 85.9 913.6 75.9 0.884 0.340
Stand structure 3.287
Mixed 924.6 141 289.7 241 1.712 0.660
Low coverage 4336.4 66.0 291.1 24.2 0.367 0.080
Crown closure Medium coverage 87.4 1.3 31.2 2.6 1.950 0.428 4.233
Full coverage 2149.4 32.7 881 73.2 2.239 0.491
Young 5979.6 91.0 900.3 74.8 0.822 0.065
Middle-aged 511.7 7.8 236.2 19.6 2.522 0.199
Development stage 3.499
Mature 23.8 0.4 22.3 1.9 5.118 0.405
Over-mature 58.1 0.9 445 3.7 4.184 0.331
<550 1664.2 25.3 324.2 26.9 1.064 0.364
Elevation (m) 550-650 3031.1 46.1 627.7 52.2 1.131 0.387 1.408
>650 1877.9 28.6 251.4 20.9 0.731 0.250
<10 1364.1 20.8 208.3 17.3 0.834 0.284
Slope (%) 10-20 2253.9 34.3 461.9 384 1.119 0.381 1.000
>20 2955.2 45.0 533.1 44.3 0.985 0.335
Sunny 3087.9 47.0 7211 59.9 1.276 0.628
Aspect 2.636
Shady 3485.3 53.0 482.2 40.1 0.756 0.372
<16 1810.6 27.5 279.4 23.2 0.843 0.281
Annual mean 16-17 18234 277 390.4 324 1170 0389  1.120
temperature
>17 2939.2 447 533.5 44.3 0.992 0.330
<1150000 370.8 5.6 52.8 4.4 0.778 0.193
1150000-1250000 640.4 9.7 139.7 11.6 1.192 0.296
Solar radiation 1.058
1250000-1350000 1913.5 29.1 402.9 33.5 1.150 0.285
>1350000 3648.5 55.5 607.9 50.5 0.910 0.226
<58 4304.1 65.5 541.1 45.0 0.687 0.135
Annual mean 58-60 1858.4  28.3 425.1 35.3 1250 0245  4.992
precipitation
>60 410.7 6.2 237.1 19.7 3.154 0.620

Table 6. Forest stand and PPM damaged stand area according to PPM sensitivity categories based on FRM

Forest stand PPM damaged stand

PPM susceptibility category

ha % ha %
Low 3504.3 533 80.9 6.7
Medium 1253.3 191 300.1 249
High 1168.4 178 4649 38.6
Extreme 647.2 9.8 3574 297
Total 65732 100.0 1203.3 100.0
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Figure 4. PPM susceptibility map prepared by FRM method.
Accuracy of PPM susceptibility maps

Verifying the precision of the produced models is a critical phase of model analysis. The ROC curve
approach demonstrated the precision of the PPM susceptibility maps created using AHP and FRM. The
AUC values for the constructed AHP and FRM models were established at 0.835 and 0.830, respectively
(Figure 5). The FRM and AHP models were shown to be highly effective in assessing PPM sensitivity
(AUC=0.8-0.9, indicating very strong performance). While both models effectively assessed PPM
sensitivity, the AHP model demonstrated superior success compared to the FRM model.
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Figure 5. ROC curves of PPM susceptibility maps based on AHP and FRM models.
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Conclusion

The assessment of insect infestation severity and distribution, along with the parameters influencing
damage and creation of susceptibility maps, is crucial for sustainable forest management. To our
knowledge, this is one of the first studies to use AHP and FR models along with GIS to figure out how
vulnerable T. wilkinsoni is. This study assessed the regional distributions of characteristics influencing the
damage caused by T. wilkinsoni and developed a PPM susceptibility map utilizing AHP and FRM models
based on nine distinct parameters. The characteristics incorporated in the models included stand structure,
crown closure, development stage, elevation, slope, aspect, annual mean temperature, solar radiation, and
annual mean precipitation. Both AHP and FRM identified the annual mean precipitation as the key
parameter. ROC demonstrated the reliability of the PPM susceptibility maps generated using AHP and
FRM. The ROC analysis results classified both the AHP and FRM models as having very good accuracy.
Furthermore, we concluded that the AHP model outperforms the FRM model.

The PPM susceptibility maps generated using two different modeling methodologies demonstrate
notable accuracy and precision, underscoring the importance of this study in finding suitable stands for
PPM sensitivity in advance and enacting requisite measures. This study has demonstrated that multi-criteria
decision-making methodologies are a suitable and effective tool for the creation of PPM susceptibility maps.
The advancement of information technologies and modeling approaches (machine learning, artificial intelligent,
etc.) necessitates that such investigations be performed on a broader scale and employing diverse
modeling techniques. Strategies should be created to disseminate the models that produce the most
favorable outcomes all over the country, based on the modeling the results achieved. Such investigations
will enhance the health of the forest ecosystem and promote a more resilient ecological framework.
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