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1. INTRODUCTION  
 

Ultraviolet (UV) rays are the type of electromagnetic 

radiation outside of visible sunlight that has significant effects 

on human health. UV rays are classified into three different 

wavelength ranges: UVA, UVB and UVC. UVA can cause 

deep damage to the skin, leading to premature aging and DNA 

damage, while UVB rays directly cause mutations in DNA and 

contribute to the development of skin cancer [1]. UVC rays do 

not reach the Earth's surface because they are largely absorbed 

by the ozone layer in the atmosphere. Excessive exposure to 

UV rays is the most important environmental factor that 

increases the risk of skin cancer. Skin cancer mainly occurs in 

three main types: basal cell carcinoma (BCC), melanoma and 

squamous cell carcinoma (SCC) [2]. While BCC and SCC 

generally have lower mortality rates, melanoma is more 

aggressive and can be fatal if not diagnosed early. The fact that 

UVB radiation, in particular, causes direct DNA damage in 

skin cells and that this damage accumulates and leads to 

carcinogenesis plays a key role in understanding the 

pathogenesis of skin cancer [3]. Genetic predisposition, skin 

type, excessive exposure to sunlight, use of solarium and some 

environmental factors are among the prominent risk factors for 

skin cancer. Skin cancers diagnosed early can usually be 

successfully treated with surgical intervention and other 

treatment modalities, but cases diagnosed late can adversely 

affect the treatment process and prognosis [4]. 

Early detection of skin cancer is a vital factor that directly 

determines the chances of a cure and the impact on the patient's 

future health. In recent years, deep learning and machine 

learning methods have emerged as technologies with the 

capacity to transform this process. Machine learning can be 

used as a powerful tool in the early detection of diseases such 

as skin cancer, especially by analyzing large data sets. 
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 In recent years, deep learning has achieved remarkable advancements in medical image 
analysis, particularly through Convolutional Neural Networks (CNNs) and Transformer-
based architectures. This study aims to evaluate and compare the performance of five 
transfer learning models (DenseNet169, InceptionV3, MobileNetV2, VGG16 and 
Xception) and a Vision Transformer (ViT) model for the classification of skin cancer 
using the “Skin Cancer: Malignant vs. Benign” dataset .In the first phase, the ViT model 
achieved the highest overall performance with 93.79% recall, 92.22% precision, 93.00% 
F1-score and 92.42% accuracy. Although InceptionV3 and MobileNetV2 demonstrated 
strong recall values, they did not match the overall accuracy of ViT. In the second phase, 
image enhancement techniques—grayscale conversion, thresholding, Canny edge 
detection, dilation, and erosion were applied to emphasize lesion boundaries and improve 
contrast. Using these enhanced images, the ViT model again achieved the best 
performance, with 95.49% recall, 94.17% precision, 94.83% F1-score, and 94.39% 
accuracy. These results indicate that the ViT architecture provides superior accuracy and 
reliability in complex and enhanced medical images. Furthermore, the study 
demonstrates that incorporating image preprocessing techniques can significantly 
enhance the performance of deep learning models in medical imaging applications. 
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Machine learning is used as a powerful tool for early detection 

of diseases such as skin cancer, especially by analyzing large 

data sets [5]. Deep learning, on the other hand, offers very 

successful results, especially in the analysis of dermatological 

images. By automatically classifying skin lesions, deep 

learning networks can detect subtle changes that expert 

dermatologists may miss. In this way, patients can be 

accurately diagnosed at earlier stages [6]. 

In this study, existing deep learning-based approaches in 

the literature are considered to be effective in terms of 

classification accuracy and speed, but some challenges still 

remain in terms of accurate diagnosis and early stage 

detection. If skin cancer, especially aggressive types such as 

melanoma, is treated with early diagnosis, treatment success 

increases and patient survival rate improves. Deep learning-

based algorithms enable fast and accurate evaluation of 

dermatologic images. This means lower error rates and shorter 

response times in the diagnostic process [7]. Furthermore, 

these technologies allow doctors to work as decision support 

systems, thus contributing to fast, accurate and reliable results 

in the diagnosis of skin cancer [8]. 

Although techniques such as transfer learning and 

convolutional neural networks (CNNs) used in existing studies 

provide accurate classification, some classification errors can 

lead to confusion, especially between benign and malignant 

lesions with similar shapes. To address this problem, deep 

learning techniques and transfer learning models need to be 

further optimized. Deep learning techniques are of great 

importance in skin cancer classification and diagnosis. 

Accurate classification of skin cancer lesions enables faster 

and more accurate results by utilizing the power of deep 

learning algorithms. In this context, deep learning-based 

approaches for skin cancer classification have been reviewed 

in detail in the literature. 

In [9], a system for automatic classification of skin cancer 

and benign tumor lesions was developed. The study aims to 

reduce the time loss in the diagnosis process due to the similar 

shapes between skin cancer and benign lesions. The proposed 

model consists of three hidden layers, each with 16, 32 and 64 

output channels respectively. Various optimization algorithms 

such as SGD, RMSprop, Adam and Nadam were used in the 

model and the best performance with a learning rate of 0.001 

was obtained with Adam optimization. Adam optimization 

achieved 99% accuracy by classifying skin lesions into four 

classes from the ISIC dataset. In [10], a model was developed 

to classify skin cancer types. The model used image 

processing, deep learning and data augmentation techniques to 

classify 9 different types of skin cancers. The accuracy rate of 

the CNN model was obtained as 79.45%. In [11], a DCNN-

based method was developed to detect skin lesions. The 

method uses various techniques for contrast enhancement, 

lesion boundary extraction and deep feature extraction. An 

accuracy of 98.4% and 94.8% was achieved in PH2 and ISIC 

2017 datasets, respectively. In [12], the use of image 

classification algorithms to identify skin cancer types was 

investigated. There are different stages of skin cancer and 

survival rates vary at each stage (first stage 99%, fifth stage 

20%). In this study, CNN is used to identify the different 

shapes and textures of skin cancer lesions. The proposed 

algorithm is applied on a dataset of 10,000 images of seven 

different types of lesions. In [13], a system for skin cancer 

detection and classification is proposed. In this study, skin 

cancer lesions are classified using the MNIST HAM-10,000 

dataset. The proposed system detects and classifies skin cancer 

into different classes using CNN. Image processing and deep 

learning techniques are used to remove noise and improve the 

resolution of skin cancer dermoscopy images. The number of 

images is increased by various image augmentation 

techniques. In addition, the classification accuracy was further 

improved by transfer learning (using the ResNet model). The 

weighted average accuracy of the CNN model was 88%, recall 

was 74% and F1-score was 77%. The transfer learning 

approach provided 90.51% accuracy. In [14], a deep learning-

based model was developed for the diagnosis of skin cancer 

types. Data on four skin cancer types were collected and the 

dataset was increased with image augmentation techniques. 

The CNN-based model achieved 95.98% accuracy on test data 

and outperformed models such as GoogleNet and MobileNet 

by 1.76% and 1.12%, respectively. In [15], a new CNN model 

called TurkerNet is proposed for skin cancer detection. The 

model aims to improve the classification performance by 

minimizing the training parameters. TurkerNet was tested with 

benign and malignant skin cancer images and achieved 

92.12% accuracy. In [16], two hybrid CNN models are 

proposed to classify dermoscopy images into benign or 

melanoma lesions. These models combine features extracted 

from the first and second CNN and feed them to an SVM 

classifier. In the tests on the ISBI 2016 dataset, the proposed 

models outperformed the existing CNN models by achieving 

88.02% and 87.43% accuracy, respectively. In [17], SVM, 

ResNet50 and MobileNet models were compared for skin 

cancer diagnosis using HAM10000 dataset. SVM was 

implemented with Histogram of Oriented Gradient (HOG) 

features and PCA, and SMOTE was used to stabilize the 

dataset. The results showed that SVM performed the best with 

99.15% accuracy.  In [18], the combination of human and 

CNN architectures in skin cancer classification was 

investigated. Using 11,444 dermoscopic images, the 

independent classifications of 112 dermatologists and CNNs 

were combined using gradient boosting. The results showed 

that the combination of human and machine achieved 82.95% 

accuracy. This is 1.36% higher than the CNN's 81.59% 

accuracy. In [19], a CNN-based model was proposed to 

improve accuracy in skin cancer diagnosis. The model 

developed using the HAM10000 dataset classifies skin lesions 

with convolutional, pooling and dense layers. To overcome 

data imbalance, a data augmentation strategy is applied and the 

model is trained with Adam optimization. The model achieved 

97.78% accuracy, 97.9% precision, 97.9% recall and 97.8% F2 

score. In [20], a model was developed for the classification of 

skin cancer types. The model trained for seven classes on the 

HAM10000 dataset was compared with five pre-trained CNNs 

and four ansamble models. The results showed an accuracy of 

93.20% for independent models and 92.83% for ansamble 

models. In [21], a CNN model was developed for skin cancer 

detection. This model was built in Python using Keras and 

TensorFlow libraries. Trained with different network 

architectures and layer structures, the model achieved early 

convergence by utilizing Transfer Learning techniques. The 

model was tested on the ISIC dataset and achieved high 

accuracy rates in classifying skin cancer types. In [22], two 

methods are proposed for skin cancer detection: one is using a 

three-layer CNN and the other is a Support Vector Machine 

(SVM) model with the default RBF kernel. The features 

extracted by image processing techniques were used to classify 

the image as Benign or Malignant. The SVM classifier 

achieved 79.39% accuracy and 0.81 AUC, while the CNN 

model achieved 84.39% accuracy after 100 epochs. The CNN 
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model was presented as a web application using Streamlit. In 

[23], a CNN for skin cancer detection is proposed. As training 

data, 97 samples (50 benign and 47 malignant) from ISIC were 

used. To overcome the lack of data, synthetic skin cancer 

images were generated with Generative Adversarial Network 

(GAN). While the CNN model trained without synthetic 

images provided 53% accuracy, the accuracy of the model 

increased to 71% when augmented with these images. In [24], 

a DCNN model was developed to accurately classify skin 

cancer lesions. The model improved accuracy by using 

preprocessing and data augmentation techniques. Compared to 

transfer learning models such as VGG-16, AlexNet, DenseNet, 

MobileNet and ResNet on HAM10000 dataset, the proposed 

model achieved more reliable results with 93.16% training 

accuracy and 91.93% testing accuracy. In [25], a CNN model 

trained on the HAM10000 dataset is proposed. The model 

classifies skin lesions as cancerous or non-cancerous, allowing 

doctors and laboratory technicians to quickly learn three high-

probability diagnoses. 

The literature review demonstrates that deep learning and 

image processing techniques have substantially advanced the 

diagnosis, detection, and classification of skin cancer. These 

methods enable early and accurate identification of malignant 

lesions, thereby improving prognosis and treatment planning. 

The superior accuracy of deep learning algorithms, combined 

with the enhanced feature extraction and segmentation 

capabilities of image processing, has significantly 

strengthened automated diagnostic systems. However, despite 

their promising performance, current studies emphasize the 

need for further research on model optimization, robustness, 

and image enhancement strategies to address the inherent 

variability in dermoscopic images. 

In this study, a two-phase experimental framework was 

designed to evaluate and enhance the performance of deep 

learning-based skin cancer classification. In the first phase, 

five transfer learning architectures (DenseNet169, 

InceptionV3, MobileNetV2, VGG16, and Xception) and a 

Vision Transformer (ViT) model were trained and compared 

on the original skin cancer dataset. In the second phase, the 

dataset was preprocessed using various edge detection filters 

to enhance lesion boundaries, and the same models were re-

evaluated on these improved images. The results revealed that 

both the enhanced images and the ViT architecture achieved 

the highest classification accuracy, outperforming 

conventional CNN-based models. Unlike previous studies, this 

work not only highlights the efficiency of ViT in medical 

image analysis but also demonstrates the significant 

contribution of image preprocessing to overall model 

performance. Nevertheless, the findings suggest that 

additional efforts are required to optimize the computational 

efficiency and memory utilization of ViT-based systems for 

real-time clinical deployment. The main contributions of this 

study can be summarized as follows:  

(1) a comprehensive comparative evaluation of multiple 

transfer learning architectures and the Vision Transformer 

model on both raw and edge-enhanced dermoscopic images 

(2) the introduction of an image preprocessing pipeline 

combining edge detection and enhancement techniques, which 

significantly improved classification performance 

(3) empirical verification of ViT’s superiority over CNN-

based models in skin lesion classification 

The study is structured as follows: in Section 2, the dataset, 

the development of the hybrid classification framework, the 

proposed image processing approach, the transfer learning 

architectures, and the Vision Transformer implementation are 

described in detail; in Section 3, the results and discussion 

present model performances on original and enhanced images 

and compare them with existing studies; and finally, in Section 

4, the conclusion summarizes the main findings and outlines 

future directions for efficient, real-time clinical applications. 

 

2.MATERIALS AND METHODS 

Skin cancer is a treatable disease with early detection and 

accurate diagnosis can greatly improve the treatment process. 

While traditional diagnostic methods are based on visual 

examinations by dermatologists and assessments with tools 

such as dermoscopy, these methods can be time-consuming 

and subjective [5]. Therefore, artificial intelligence and deep 

learning techniques play an important role in the early 

detection of skin cancer. CNNs, in particular, are widely used 

in the automatic analysis of medical images, but large data sets 

are needed for high accuracy [26]. At this point, transfer 

learning techniques provide better results with limited labeled 

data and benefit from the previous experience of the model 

[27]. 

With these developments, artificial intelligence techniques 

used in skin cancer diagnosis have become more diversified. 

In particular, the recent successes of the Vision Transformer 

(ViT) model in the field of visual classification have attracted 

attention. ViT divides images into fixed-size chunks and 

processes these chunks using a transformer architecture, thus 

learning global dependencies more efficiently [28]. This 

feature is especially useful for accurately classifying small and 

complex lesions in the diagnosis of diseases that require visual 

inspection, such as skin cancer [29]. Another important 

advantage of ViT is that it considers global relationships over 

the whole image rather than local features. This approach 

enables the model to perform a more precise classification, 

resulting in high accuracy in early detection of skin cancer. 

In this study, an innovative classification method is developed 

by combining image processing approaches, transfer learning 

techniques and ViT methods to classify skin cancers. The 

study explains in detail how these methods are applied 

respectively. 

 

2.1.Dataset 
The dataset used in this study is a balanced image dataset 

compiled to distinguish between malignant and benign skin 

lesions [30]. The balanced nature of the dataset allows the 

model to learn both classes accurately. The number of images 

used for classification in the transfer learning models and ViT 

methods used in the study are presented in detail in Table 1.  

 
TABLE I 

 NUMBER OF IMAGES BELONGING TO THE CLASSES IN THE DATASET 

Classes in 

the data set 

Test(%20) Train (%80) Total 

Benign  360 1440 1800 

Malign  300 1197 1497 

Total 660 2637 3297 

 

Furthermore, Figure 1 shows sample images of the benign 

and malignant classes in the dataset. Images in the benign class 

generally have smooth edges and homogeneous color 

distribution, while images in the malignant class have more 
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irregular edges and color variations. These images allow the 

model to learn the distinguishing features of both classes. 

 

 
Figure 1. Examples of benign, malignant classes in the “Skin Cancer: 
Malignant vs. Benign” dataset. 

 
A total of 3297 original images in the dataset are split into 

80% training data and 20% test data in order to optimize the 

training process of the model. These ratios aim both to train 

the model efficiently during the learning phase and to provide 

enough test data to evaluate its accuracy.  

2.2.Model Development 
In the field of image classification, CNN is a fundamental 

technique for extracting visual features and improving the 

success of classification tasks based on these features. CNNs 

are particularly powerful in detecting edges, textures and 

patterns in images because they learn local features by 

performing convolution on each image segment [31]. This 

allows CNNs to generally operate with high accuracy. 

However, in areas where data sets are limited, such as 

healthcare, training with large datasets can be time-consuming 

and the accuracy of models trained with limited data can be 

degraded. In this context, Transfer Learning comes into play. 

Transfer learning accelerates the learning process and 

improves accuracy rates by reusing the knowledge of a model 

that has been previously trained on large data sets for a new 

task. This method has the potential to achieve high 

performance with limited data, especially in medical imaging 

applications such as skin cancer. 

Transfer learning can improve the accuracy of the model in 

specialized and complex tasks such as skin cancer 

classification, as it enables the adaptation of features from 

larger datasets to current tasks. However, in recent years, new 

model architectures such as ViT have attracted attention by 

exhibiting superior performance in image classification tasks. 

Unlike the ability of conventional CNNs to extract local 

features, ViT processes images into small parts and processes 

each part with an attention mechanism, thus learning global 

contexts more effectively [28]. This feature allows the model 

to more efficiently acquire general information and make more 

accurate classifications, especially in large datasets. These 

advantages of ViT contribute to rapid accurate diagnoses in 

sensitive tasks such as medical imaging. In this context, both 

Transfer Learning and ViT models stand out as important tools 

to improve classification accuracy and achieve more efficient 

results. Figure 2 presents an overview of the metadology used 

in the study. 

 

 
Figure 2. Overview of the metodology used in the study. 

 

2.2.1.Image Processing 
Image processing is a field that involves the digital 

analysis, processing and interpretation of digital images. 

Images can be defined as data, usually two-dimensional, 

obtained as a result of the reflection or transmission of light 

on a surface. While the visual perception of the human eye 

processes these light reflections through a biological 

mechanism, computers treat these images as digital data and 

analyze them with various algorithms. Image processing 

offers a wide range of applications not only in aesthetics but 

also in many disciplines such as engineering, medicine, 

biometrics, space exploration, industrial automation and 

security [32]. The basic processes in this field involve 

applying mathematical and algorithmic operations to the 

numerical representations of pixels in an image, analyzing 

the features in the image (e.g., edges, textures, colors), and 

transforming these features when necessary [33]. Image 

processing techniques are used to remove image distortions, 

optimize contrast and brightness levels, perform edge 

detection, object recognition and more complex operations. 

In addition, significant advances have been made in the field 

of image processing in recent years with the integration of 

artificial intelligence and deep learning methods. By learning 

from large data sets, these approaches improve the accuracy 

and efficiency of image analysis and recognition [31]. In this 

context, image processing has become not only a theoretical 

field, but also an increasingly preferred technology in 

practical applications. 
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2.2.1.1.Proposed Hybrid Image Processing Approach 
Medical image processing has become one of the 

fundamental components of modern healthcare systems, 

contributing significantly to early diagnosis, treatment 

planning, and continuous disease monitoring. The accuracy 

and interpretability of diagnostic models largely depend on 

the quality and clarity of the input images. Therefore, 

preprocessing and enhancement techniques play a vital role 

in preparing medical data for deep learning-based analysis. 

In this study, a comprehensive image preprocessing pipeline 

was implemented to improve image clarity, enhance lesion 

boundaries, and ensure that critical features were effectively 

represented for subsequent model training. 

The preprocessing workflow consisted of six main 

stages: color-to-grayscale conversion, inverse thresholding, 

Canny edge detection, morphological dilation, 

morphological erosion, and visualization of the intermediate 

results. Initially, each color image in the dataset was 

converted to grayscale to remove chromatic variations and 

emphasize intensity-based information. This transformation 

simplifies image representation by retaining only luminance 

components, enabling algorithms to focus on structural 

rather than color features. Grayscale conversion also reduces 

computational complexity and noise, thereby facilitating 

more efficient feature extraction in later stages. 

Following grayscale conversion, an inverse thresholding 

operation was applied to segment the image into binary 

regions based on pixel intensity levels. Pixels below a 

defined threshold value were set to white (255), while those 

above were assigned as black (0). This binary separation 

effectively highlights regions of interest, such as skin 

lesions, and removes irrelevant background details. 

Thresholding is particularly valuable in medical imaging, 

where contrast enhancement can make pathological 

structures more discernible and measurable. 

After segmentation, edge information was extracted 

using the Canny edge detection algorithm. This multi-stage 

process includes Gaussian filtering to suppress noise, 

computation of image gradients to identify areas with rapid 

intensity change, and application of dual thresholds to 

determine true edges. The Canny algorithm’s precision in 

localizing boundaries makes it an ideal choice for identifying 

lesion margins in dermoscopic and histopathological images. 

Detecting these boundaries with high fidelity is crucial for 

downstream tasks such as segmentation, morphological 

analysis, and classification. 

To further refine the detected edges, morphological 

dilation was performed using a 5×5 kernel. Dilation enlarges 

bright regions (white pixels) in the image, which helps to 

close small gaps and make the boundaries more continuous. 

This step improves the connectivity of edge structures and 

enhances the overall visibility of lesions. Subsequently, 

morphological erosion was applied as a complementary 

operation to dilation. Erosion reduces the size of bright 

regions, removing small artifacts and irregularities 

introduced during dilation. Together, these two 

morphological transformations help maintain sharp and 

well-defined contours while eliminating unnecessary noise 

and smoothing over-segmented areas. 

After all preprocessing operations were completed, the 

results of each transformation stage were visualized to 

illustrate the cumulative effect of the pipeline. The 

comparative visualization demonstrated a clear progression 

in image enhancement — from raw color images to refined 

representations with distinct lesion boundaries. This 

structured enhancement process provides valuable insights 

into how successive operations contribute to improved visual 

and analytical interpretability. 

Overall, the proposed preprocessing framework 

establishes a robust foundation for advanced image analysis 

techniques such as segmentation, feature extraction, and 

deep learning-based classification. By systematically 

emphasizing contrast and structural details, the approach 

enhances the discriminative capacity of learning models. 

Figure 3 presents the complete flowchart of the proposed 

hybrid preprocessing and analysis approach, summarizing 

the logical sequence and interdependencies among the 

applied operations. 
 

 
 
Figure 3. Flowchart of the proposed hybrid image processing approach 

 

Different image processing techniques are used in turn in 

the hybrid image processing approach shown in Figure 2. 

Following clarification of the picture features, the images 

were registered in order to compare the performance of 

various ViT models and transfer learning models 

(DenseNet169, InceptionV3, MobileNetV2, VGG16, 

Xception). 

 

2.3.Transfer Learning Architectures Used in the Study 
 

In the field of deep learning, various architectures have 

been developed to meet the requirements of large datasets 

and high processing power. These architectures have 

achieved significant success, especially in tasks such as 

processing and classifying visual data. At this point, transfer 

learning techniques allow previously trained models to be 

reused for another task, reducing training times and 

improving performance. Various deep learning architectures 

have been used for transfer learning and each offers different 

advantages. In this paper, we will discuss in detail the 

features, applications and impact on transfer learning of 

widely used models such as DenseNet169, InceptionV3, 

MobileNetV2, VGG16 and Xception. These models have an 

important place in deep learning with their different building 

blocks and optimization strategies. 

DenseNet169 is a remarkable and high-performing 

architecture in deep learning. This model is a part of the 

DenseNet family and makes the learning process more 

efficient by establishing dense connections between each 

layer. In particular, DenseNet169 aims to achieve high 

accuracy with fewer parameters by using depth-separable 
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convolutions and short connections. The main advantage of 

the model is that each layer directly receives all feature maps 

from previous layers, thus creating richer and deeper 

representations. This structure both prevents the gradient 

loss problem and makes the model work more efficiently 

[34]. DenseNet169 has achieved successful results especially 

in areas such as image classification, object recognition and 

medical image processing and is frequently preferred for 

transfer learning applications. 

InceptionV3 is a model developed by Google and has an 

important place in the field of deep learning. This model, 

which is the evolution of the Inception architecture, offers a 

structure that allows the efficient extraction of multi-scale 

features. By combining structures with different layer depths 

and filter sizes, InceptionV3 optimizes computational cost 

while increasing the overall efficiency of the model. An 

important feature of the model is the combination of 1x1, 3x3 

and 5x5 filters in the inception block, allowing for a wider 

range of information. In addition, the “auxiliary classifier” 

structure of the model enables faster learning in deep layers 

[35]. InceptionV3 is frequently used in transfer learning 

applications, exhibiting strong performances in tasks such as 

image recognition and classification. 

MobileNetV2 is a deep learning model developed 

especially for mobile and low processing power devices. The 

most prominent feature of this model is that it computes more 

efficiently by using a structure called “inverted residuals”. 

By adopting depth-separable convolutions, MobileNetV2 

first applies each filter on a single channel and then combines 

these channels to achieve high accuracy with lower 

parameter counts [36]. Furthermore, the linear bottleneck 

structure used in the output layers of the model offers 

advantages in terms of speed and efficiency, especially on 

mobile devices. MobileNetV2 has become a popular choice 

for transfer learning applications due to its low 

computational power requirement and high efficiency, 

especially in tasks such as image recognition on mobile 

devices. 

VGG16 is a model developed by the Visual Geometry 

Group (VGG) of the University of Oxford, which has an 

important place in the field of deep learning. The basic 

structure of this model consists of convolutional layers of 

increasing depth and consists of 16 layers. VGG16 is 

characterized by its simple structure and strong performance. 

An important advantage of the model is that it improves its 

generalization ability by training on large datasets. In 

particular, it allows for more efficient processing of images 

without increasing the number of parameters by using fixed 

filter sizes in each layer [37]. VGG16 is a frequently 

preferred model as it can achieve high accuracy rates and can 

be easily adapted for transfer learning. 

Xception is a model that has attracted attention in the 

field of deep learning and is considered as a more advanced 

version of the Inception architecture. This model, which can 

be defined as “Extreme Inception”, replaces traditional 

convolution operations with “depthwise separable 

convolutions”. This structure reduces computational costs by 

applying each filter in a single channel, while increasing the 

parameter efficiency of the model. Xception performs 

particularly well in deep and complex network structures, 

achieving more accurate results with fewer parameters [38]. 

The model is highly effective for transfer learning 

applications, provides high accuracy on large datasets, and is 

currently used in many visual recognition applications. 

2.4.Vision Transformer  
In recent years, ViT architectures have emerged as a 

transformative paradigm in computer vision, representing a 

major shift from traditional CNN-based frameworks [28]. 

Unlike CNNs, which rely on local convolutional filters to 

extract spatially constrained features, ViT employs a global 

self-attention mechanism originally developed for Natural 

Language Processing (NLP) tasks. This innovation allows 

ViT to model long-range dependencies and global contextual 

relationships across the entire image, overcoming one of the 

key limitations of CNNs. 

ViT divides each image x∈RH×W×Cx into a sequence of 

non-overlapping patches of size P×P. Each flattened patch 

𝑥𝑝
𝑖 is linearly embedded into a vector representation using a 

learnable projection matrix EEE and its mathematical 

representation is presented in Equation (1). 

 

𝑧0
𝑖 = 𝑥𝑝

𝑖 𝐸                     (1) 

To preserve spatial information, positional encodings are 

added to these embeddings before being processed by the 

Transformer encoder. The self-attention mechanism, which 

forms the core of the Transformer, models the relationships 

between all image patches as in Equation (2). 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉               (2) 

 

where Q,K,V are the query, key, and value matrices, 

respectively, and dk is the dimension of the key vectors. 

To enhance representational richness, ViT uses Multi-

Head Self-Attention (MSA), where multiple attention heads 

are computed and combined in parallel, and is calculated as 

in Equation (3). 

 

𝑀𝑆𝐴(𝑋) = [ℎ𝑒𝑎𝑑1; ℎ𝑒𝑎𝑑2; … . ; ℎ𝑒𝑎𝑑ℎ]𝑊0               

(3) 

 

This multi-head design enables the model to capture 

diverse dependencies among image patches. By leveraging 

this architecture, ViT achieves a comprehensive 

understanding of the global structure of images, surpassing 

the locality limitations of CNNs. Its effectiveness becomes 

particularly evident when trained on large-scale datasets, 

where the self-attention mechanism allows ViT to 

outperform traditional convolutional models in both 

accuracy and generalization. 

 
3.RESULT AND DİSCUSSİON 
 

In recent years, deep learning techniques have 

transformed the field of medical imaging. CNN is still one of 

the most widely used methods for analyzing medical images, 

often with successful results on data types such as 

radiological images, pathology specimens. However, the 

emergence of Transformer-based models such as ViT is 

reshaping visual data processing paradigms. ViT provides a 

significant improvement, especially in the classification of 

small and complex images, thanks to the attentional 

mechanisms used to understand the broader context in visual 

data [28]. 

In contrast, traditional CNN-based architectures still 

provide distinct advantages in environments with limited 

computational resources. Although these models are not 

capable of learning the global context, they are highly 
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efficient in more localized and targeted learning processes. 

Therefore, when deciding which model to use in medical 

imaging and diagnostic applications, factors such as the 

computational cost of the model, the size of the dataset and 

the application requirements should be taken into account. In 

the future, making Transformer-based models more efficient 

could further expand their applications in the medical field. 

However, this process will require significant investments in 

terms of both data and computing resources. In this context, 

considering the advantages and limitations of each model, 

optimal solutions should be developed for the effective use 

of medical imaging technologies. 

In this study, we compare the classification performance of 

ViT models with five different transfer learning architectures 

such as DenseNet169, InceptionV3, MobileNetV2, VGG16 

and Xception in classifying skin cancer types. First, the 

performance metrics obtained on the original images are 

presented in Table 2. 

 

 
TABLE II 

 PERFORMANCE METRICS OF VIT MODELS WITH 5 DIFFERENT TRANSFER LEARNING ARCHITECTURES ON ORIGINAL IMAGES. 

Transfer 

Learning 

Models 

TP TN FN TN Recall 

(%) 
Precision 

(%) 
F1-score 

(%) 
Accuracy 

(%) 

DenseNet169 282 78 32 268 89.81 78.33 83.68 83.33 
Inceptionv3 292 68 25 275 92.11 81.11 86.26 85.91 
MobileNetV2 285 75 25 275 91.94 79.17 85.07 84.85 
Vgg16 268 82 37 263 87.87 76.57 81.83 81.69 
Xception 259 91 30 270 89.62 74.00 81.06 81.38 
ViT 332 28 22 278 93.79 92.22 93.00 92.42 

The primary metrics used to assess a classification 

model's performance are True Negative (TN), True Positive 

(TP), False Negative (FN), and False Positive (FP) values. 

These values help us understand how accurate or inaccurate 

the model predicts. Precision measures the rate at which the 

model correctly predicts the positive class, while Recall 

refers to the rate at which the model finds true positive 

examples. F1 Score provides a balanced combination of 

precision and recall, assessing the model's ability to both 

predict correctly and correctly detect positive classes. 

Accuracy indicates the overall performance of the model, i.e. 

the rate at which the model makes correct predictions across 

all classifications. These metrics are used to measure the 

effectiveness of the model and to more accurately assess the 

performance of the model, especially in imbalanced data sets 

[39]. The mathematical expressions of the metrics are 

presented in Equations (4), (5), (6) and (7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TN + TP)

(FP + TN + FN + TP)
 (4) 

Precision =
TP

(FP +  TP)
 

(5) 

Recall =
TP

(FN +  TP)
 (6) 

F1 −  Score = 2 x
Recall x Precision

(Recall +  Precision)
 

(7) 

 
Table 2 shows the classification performance of ViT 

models with 5 different transfer learning architectures. The 

ViT model achieved the best performance in all metrics with 

Recall (93.79%), Precision (92.22%), F1-score (93.00%) and 

Accuracy (92.42%). This result shows that ViT can classify 

complex medical data with high accuracy thanks to its ability 

to learn in a global context. 

However, Inceptionv3 and MobileNetV2 models stood 

out with high Recall values of 92.11% and 91.94% 

respectively. However, Inceptionv3 stands out with higher 

F1-score (86.26%) and Accuracy (85.91%), while 

MobileNetV2 offers an advantage with its usability in 

environments with low computational resources. The 

DenseNet169 and Xception models, on the other hand, 

despite their high Recall values, lagged behind in Precision 

and F1-score metrics, and thus, although they are more 

efficient, they underperformed in terms of resource 

utilization. These findings suggest that each model offers 

advantages in different usage scenarios. 

In the second part of the study, the classification 

performances of the same transfer learning architectures and 

ViT models are compared on the dataset obtained from the 

enhanced images. Table 3 presents the performance metrics 

obtained from the enhanced images. 

 
TABLE III 

 PERFORMANCE METRICS OF VIT MODELS WITH 5 DIFFERENT TRANSFER LEARNING ARCHITECTURES ARE COMPARED BASED ON THE RESULTS OBTAINED 

FROM THE ENHANCED IMAGES. 

Transfer 

Learning 

Models 

TP TN FN TN Recall 

(%) 
Precision 

(%) 
F1-score 

(%) 
Accuracy 

(%) 

DenseNet169 289 71 25 275 92.04 80.28 85.76 85.45 
Inceptionv3 295 65 22 278 93.06 81.94 87.15 86.82 
MobileNetV2 287 73 23 277 92.58 79.72 85.67 85.45 
Vgg16 274 86 26 274 91.33 76.11 83.03 83.03 
Xception 264 96 19 281 93.29 73.33 82.12 82.58 
ViT 339 21 16 284 95.49 94.17 94.83 94.39 
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According to the data presented in Table 3, ViT shows a 

prominent performance in all metrics. In particular, the high 

recall (95.49%) and precision (94.17%) rates, F1-score 

(94.83%) and accuracy (94.39%) show that the ViT model is 

very successful in accurate classification and can effectively 

distinguish both classes (positive and negative). Figure 4 

shows the training and loss graph for the most successful 

result (ViT) in the study. 

 

 

Figure 4. Loss and accuracy plots of the enhanced images in the ViT 
model. 

 

The performance of the InceptionV3 model is close to 

ViT, but with a slight regression in recall and precision 

(recall 93.06%, precision 81.94%). This suggests that the 

model is not as effective as ViT in reducing false negatives, 

but its overall accuracy (accuracy 86.82%) is high. Other 

models, such as DenseNet169, MobileNetV2 and Xception, 

perform poorly compared to ViT. For example, 

DenseNet169's recall rate (92.04%) is lower than ViT, while 

it outperforms ViT in metrics such as F1-score and accuracy. 

Xception, on the other hand, has a high recall (93.29%) but 

a very low precision (73.33%), indicating that the model 

makes more false positive classifications.  The VGG16 

model, on the other hand, performed poorly compared to the 

other models, especially in terms of precision (76.11%) and 

F1-score (83.03%), indicating that the model over-identified 

false positives and thus made misclassifications. Overall, the 

ViT model achieved the highest success in the classification 

task with high recall, precision and F1-score values and 

significantly outperformed the other models. This shows that 

ViT is a strong candidate for classification in enhanced 

images and has the ability to cope with challenges such as 

class imbalance. Figure 5 shows the accuracy graph of the 

achievements of the models applied on the original and 

enhanced images. 

 

 

Figure 5.  Accuracy results obtained from the original and enhanced images. 

 

Analysis of the two experimental phases revealed that 

CNN-based architectures underperformed compared to ViT 

models. While CNNs effectively captured local spatial 

patterns, their limited receptive field restricted their ability to 

model global dependencies within images. In contrast, ViT 

leveraged its self-attention mechanism to integrate long-

range contextual relationships, achieving more 

discriminative and holistic feature representations. 

Additionally, the applied image processing techniques—

such as grayscale conversion, thresholding, Canny edge 

detection, dilation, and erosion—significantly enhanced 

model performance. These operations improved image 

contrast and lesion boundary clarity, leading to notable gains 

in recall, precision, and overall accuracy. The results indicate 

that preprocessing steps play a crucial role in improving the 

effectiveness of deep learning models, particularly in 

complex medical image datasets. 

Finally, to assess the competitiveness of the proposed 

method, its performance was compared with recent deep 

learning-based studies using skin cancer datasets. As 

presented in Table 4, the proposed ViT-based framework 

achieved superior accuracy and reliability, confirming its 

advantage over conventional CNN approaches and its 

potential as a robust tool for medical image classification. 

 
TABLE IV 

AN OVERVIEW OF THE LITERATURE ON THE CLASSIFICATION OF SKIN 

CANCER IMAGES. 

Study Data Set Method Accuracy (%) 

[40] HAM10000 EfficientNet B0-

B7, Transfer 

Learning, Fine-

Tuning 

87.91 

[41] HAM10000 CNN and ViT 94,30 

[42] 5846 

clinical 

images were 

collected. 

CNN 91.5 

70

75

80

85

90

95

100

DenseNet169 Inceptionv3 MobileNetV2 Vgg16 Xception ViT

Accuracy (%) 

Original dataset Processing dataset
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[15] Skin cancer 

dataset 

CNN 92.12 

[43] Skin cancer 

dataset 

CNN and 

Transfer 

Learning 

89.09 

Proposed 

model 

Skin cancer 

dataset 

Image 

processing, 

Transfer 

Learning and 

ViT 

94.39 

 
Table 4 presents various literature studies on the 

classification of skin cancer images and the accuracy rates 

obtained with the methods used in each study. In the study 

by [40], EfficientNet B0-B7 models, transfer learning and 

fine-tuning techniques were used to classify the HAM10000 

dataset. The accuracy rate obtained with this method was 

reported as 87.91%. [41], using the same dataset, preferred 

the combination of CNN and ViT and obtained an accuracy 

rate of 94.30% with this method. [42] used only CNN 

method in their study on 5846 clinical images and achieved 

an accuracy rate of 91.5%.  

In [15], [43] and the proposed study, three different skin 

cancer classification studies were conducted on skin cancer 

dataset. In the study by [15], an accuracy rate of 92.12% was 

obtained using CNN only. [43] achieved 89.09% accuracy 

using a combination of CNN and transfer learning methods 

on the same dataset. In the proposed study, image 

processing, transfer learning and ViT techniques were 

applied separately on the Skin cancer dataset and a high 

accuracy rate of 94.39% was obtained. 

Research in the field of skin cancer classification shows 

that deep learning methods are effective in improving 

accuracy rates. High success has been achieved with 

techniques such as CNN, transfer learning and ViT. In our 

proposed work, 94.39% accuracy rate was achieved by 

applying each of these methods separately on the Skin 

Cancer Dataset. This result reveals that the combination of 

multiple methods provides higher success, especially in 

complex classification tasks such as skin cancer. The 

proposed method makes a significant contribution to the 

field by providing one of the highest accuracy rates in the 

literature. 

 

4.CONCLUSION 
 

Skin cancer is a disease of great importance in the health 

field, requiring early diagnosis and accurate classification. In 

recent years, the increasing use of deep learning techniques 

in this field has led to high accuracy rates in skin cancer 

classification tasks. In this study, we compared the 

performance of the models in the classification of skin cancer 

types through a two-stage analysis on original images and 

enhanced images. In the first part, the performances of five 

different transfer learning models and ViT are compared. As 

a result of this comparison, the ViT model showed the 

highest success in the analysis performed on the original 

images, reaching an accuracy rate of 92.42%. In the second 

stage analysis on the enhanced images, it was evident that 

the image processing techniques improved the performance 

of the ViT model. At this stage, ViT achieved the highest 

performance with an accuracy of 94.39%. It was observed 

that image processing techniques, especially edge detection 

and other enhancement methods, significantly improve the 

accuracy of the model and are effective in dealing with 

challenges such as class imbalance. The performance of ViT 

was further strengthened in classifications with the enhanced 

images, with high results in metrics such as recall (95.49%), 

precision (94.17%) and F1-score (94.83%). The results show 

that the combination of image processing techniques and the 

ViT model provides high accuracy rates in skin cancer 

classification. The contribution of the ViT model to the field 

of medical imaging is especially evident in early diagnosis 

processes. The ability of this model to perform more accurate 

and faster classifications can make a great contribution to 

clinical decision support systems. As the diagnosis of early-

stage skin cancer can directly impact treatment success, 

ViT's high accuracy rates in this area can enable patients to 

be treated earlier and more accurately. Therefore, optimizing 

future studies to make the ViT model more suitable for 

clinical applications could lead to significant improvements 

in medical imaging and early diagnosis. 
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