\ i

INESEG

Vol.15, No.2, 2025

Research Article

European Journal of Technique

journal homepage: https://dergipark.org.tr/en/pub/ejt

Comparative Analysis of Transfer Learning and
Vision Transformer Models for Skin Cancer
Classification Using Enhanced Dermoscopic

Images

Yasin OZKANY'®

“Department of Computer Technologies, Zonguldak Bulent Ecevit University, Zonguldak, Turkey (e-mail: yasin.ozkan@beun.edu.tr).

ARTICLE INFO ABSTRACT

Received: May., 28. 2025
Revised: Oct., 31. 2025
Accepted: Dec., 23. 2025

Keywords:
Classification
Deep learning
Medical imaging
Skin cancer
Transfer learning
Vision transformer

Corresponding author: Yasin OZKAN

ISSN: 2536-5010 | e-ISSN: 2536-5134

DOI: https://doi.org/10.36222/ejt.1708219

In recent years, deep learning has achieved remarkable advancements in medical image
analysis, particularly through Convolutional Neural Networks (CNNs) and Transformer-
based architectures. This study aims to evaluate and compare the performance of five
transfer learning models (DenseNet169, InceptionV3, MobileNetV2, VGG16 and
Xception) and a Vision Transformer (ViT) model for the classification of skin cancer
using the “Skin Cancer: Malignant vs. Benign” dataset .In the first phase, the ViT model
achieved the highest overall performance with 93.79% recall, 92.22% precision, 93.00%
F1-score and 92.42% accuracy. Although InceptionVV3 and MobileNetV2 demonstrated
strong recall values, they did not match the overall accuracy of ViT. In the second phase,
image enhancement techniques—grayscale conversion, thresholding, Canny edge
detection, dilation, and erosion were applied to emphasize lesion boundaries and improve
contrast. Using these enhanced images, the ViT model again achieved the best
performance, with 95.49% recall, 94.17% precision, 94.83% F1-score, and 94.39%
accuracy. These results indicate that the ViT architecture provides superior accuracy and
reliability in complex and enhanced medical images. Furthermore, the study
demonstrates that incorporating image preprocessing techniques can significantly
enhance the performance of deep learning models in medical imaging applications.

1. INTRODUCTION

Ultraviolet (UV) rays are the type of electromagnetic
radiation outside of visible sunlight that has significant effects
on human health. UV rays are classified into three different
wavelength ranges: UVA, UVB and UVC. UVA can cause
deep damage to the skin, leading to premature aging and DNA
damage, while UVB rays directly cause mutations in DNA and
contribute to the development of skin cancer [1]. UVC rays do
not reach the Earth's surface because they are largely absorbed
by the ozone layer in the atmosphere. Excessive exposure to
UV rays is the most important environmental factor that
increases the risk of skin cancer. Skin cancer mainly occurs in
three main types: basal cell carcinoma (BCC), melanoma and
squamous cell carcinoma (SCC) [2]. While BCC and SCC
generally have lower mortality rates, melanoma is more
aggressive and can be fatal if not diagnosed early. The fact that

UVB radiation, in particular, causes direct DNA damage in
skin cells and that this damage accumulates and leads to
carcinogenesis plays a key role in understanding the
pathogenesis of skin cancer [3]. Genetic predisposition, skin
type, excessive exposure to sunlight, use of solarium and some
environmental factors are among the prominent risk factors for
skin cancer. Skin cancers diagnosed early can usually be
successfully treated with surgical intervention and other
treatment modalities, but cases diagnosed late can adversely
affect the treatment process and prognosis [4].

Early detection of skin cancer is a vital factor that directly
determines the chances of a cure and the impact on the patient's
future health. In recent years, deep learning and machine
learning methods have emerged as technologies with the
capacity to transform this process. Machine learning can be
used as a powerful tool in the early detection of diseases such
as skin cancer, especially by analyzing large data sets.
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Machine learning is used as a powerful tool for early detection
of diseases such as skin cancer, especially by analyzing large
data sets [5]. Deep learning, on the other hand, offers very
successful results, especially in the analysis of dermatological
images. By automatically classifying skin lesions, deep
learning networks can detect subtle changes that expert
dermatologists may miss. In this way, patients can be
accurately diagnosed at earlier stages [6].

In this study, existing deep learning-based approaches in
the literature are considered to be effective in terms of
classification accuracy and speed, but some challenges still
remain in terms of accurate diagnosis and early stage
detection. If skin cancer, especially aggressive types such as
melanoma, is treated with early diagnosis, treatment success
increases and patient survival rate improves. Deep learning-
based algorithms enable fast and accurate evaluation of
dermatologic images. This means lower error rates and shorter
response times in the diagnostic process [7]. Furthermore,
these technologies allow doctors to work as decision support
systems, thus contributing to fast, accurate and reliable results
in the diagnosis of skin cancer [8].

Although techniques such as transfer learning and
convolutional neural networks (CNNSs) used in existing studies
provide accurate classification, some classification errors can
lead to confusion, especially between benign and malignant
lesions with similar shapes. To address this problem, deep
learning techniques and transfer learning models need to be
further optimized. Deep learning techniques are of great
importance in skin cancer classification and diagnosis.
Accurate classification of skin cancer lesions enables faster
and more accurate results by utilizing the power of deep
learning algorithms. In this context, deep learning-based
approaches for skin cancer classification have been reviewed
in detail in the literature.

In [9], a system for automatic classification of skin cancer
and benign tumor lesions was developed. The study aims to
reduce the time loss in the diagnosis process due to the similar
shapes between skin cancer and benign lesions. The proposed
model consists of three hidden layers, each with 16, 32 and 64
output channels respectively. Various optimization algorithms
such as SGD, RMSprop, Adam and Nadam were used in the
model and the best performance with a learning rate of 0.001
was obtained with Adam optimization. Adam optimization
achieved 99% accuracy by classifying skin lesions into four
classes from the ISIC dataset. In [10], a model was developed
to classify skin cancer types. The model used image
processing, deep learning and data augmentation techniques to
classify 9 different types of skin cancers. The accuracy rate of
the CNN model was obtained as 79.45%. In [11], a DCNN-
based method was developed to detect skin lesions. The
method uses various techniques for contrast enhancement,
lesion boundary extraction and deep feature extraction. An
accuracy of 98.4% and 94.8% was achieved in PH2 and ISIC
2017 datasets, respectively. In [12], the use of image
classification algorithms to identify skin cancer types was
investigated. There are different stages of skin cancer and
survival rates vary at each stage (first stage 99%, fifth stage
20%). In this study, CNN is used to identify the different
shapes and textures of skin cancer lesions. The proposed
algorithm is applied on a dataset of 10,000 images of seven
different types of lesions. In [13], a system for skin cancer
detection and classification is proposed. In this study, skin
cancer lesions are classified using the MNIST HAM-10,000
dataset. The proposed system detects and classifies skin cancer
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into different classes using CNN. Image processing and deep
learning techniques are used to remove noise and improve the
resolution of skin cancer dermoscopy images. The number of
images is increased by various image augmentation
techniques. In addition, the classification accuracy was further
improved by transfer learning (using the ResNet model). The
weighted average accuracy of the CNN model was 88%, recall
was 74% and Fl-score was 77%. The transfer learning
approach provided 90.51% accuracy. In [14], a deep learning-
based model was developed for the diagnosis of skin cancer
types. Data on four skin cancer types were collected and the
dataset was increased with image augmentation techniques.
The CNN-based model achieved 95.98% accuracy on test data
and outperformed models such as GoogleNet and MobileNet
by 1.76% and 1.12%, respectively. In [15], a new CNN model
called TurkerNet is proposed for skin cancer detection. The
model aims to improve the classification performance by
minimizing the training parameters. TurkerNet was tested with
benign and malignant skin cancer images and achieved
92.12% accuracy. In [16], two hybrid CNN models are
proposed to classify dermoscopy images into benign or
melanoma lesions. These models combine features extracted
from the first and second CNN and feed them to an SVM
classifier. In the tests on the ISBI 2016 dataset, the proposed
models outperformed the existing CNN models by achieving
88.02% and 87.43% accuracy, respectively. In [17], SVM,
ResNet50 and MobileNet models were compared for skin
cancer diagnosis using HAM10000 dataset. SVM was
implemented with Histogram of Oriented Gradient (HOG)
features and PCA, and SMOTE was used to stabilize the
dataset. The results showed that SVM performed the best with
99.15% accuracy. In [18], the combination of human and
CNN architectures in skin cancer classification was
investigated. Using 11,444 dermoscopic images, the
independent classifications of 112 dermatologists and CNNs
were combined using gradient boosting. The results showed
that the combination of human and machine achieved 82.95%
accuracy. This is 1.36% higher than the CNN's 81.59%
accuracy. In [19], a CNN-based model was proposed to
improve accuracy in skin cancer diagnosis. The model
developed using the HAM10000 dataset classifies skin lesions
with convolutional, pooling and dense layers. To overcome
data imbalance, a data augmentation strategy is applied and the
model is trained with Adam optimization. The model achieved
97.78% accuracy, 97.9% precision, 97.9% recall and 97.8% F2
score. In [20], a model was developed for the classification of
skin cancer types. The model trained for seven classes on the
HAM10000 dataset was compared with five pre-trained CNNs
and four ansamble models. The results showed an accuracy of
93.20% for independent models and 92.83% for ansamble
models. In [21], a CNN model was developed for skin cancer
detection. This model was built in Python using Keras and
TensorFlow libraries. Trained with different network
architectures and layer structures, the model achieved early
convergence by utilizing Transfer Learning techniques. The
model was tested on the ISIC dataset and achieved high
accuracy rates in classifying skin cancer types. In [22], two
methods are proposed for skin cancer detection: one is using a
three-layer CNN and the other is a Support Vector Machine
(SVM) model with the default RBF kernel. The features
extracted by image processing techniques were used to classify
the image as Benign or Malignant. The SVM classifier
achieved 79.39% accuracy and 0.81 AUC, while the CNN
model achieved 84.39% accuracy after 100 epochs. The CNN
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model was presented as a web application using Streamlit. In
[23], a CNN for skin cancer detection is proposed. As training
data, 97 samples (50 benign and 47 malignant) from ISIC were
used. To overcome the lack of data, synthetic skin cancer
images were generated with Generative Adversarial Network
(GAN). While the CNN model trained without synthetic
images provided 53% accuracy, the accuracy of the model
increased to 71% when augmented with these images. In [24],
a DCNN model was developed to accurately classify skin
cancer lesions. The model improved accuracy by using
preprocessing and data augmentation techniques. Compared to
transfer learning models such as VGG-16, AlexNet, DenseNet,
MobileNet and ResNet on HAM10000 dataset, the proposed
model achieved more reliable results with 93.16% training
accuracy and 91.93% testing accuracy. In [25], a CNN model
trained on the HAMZ10000 dataset is proposed. The model
classifies skin lesions as cancerous or non-cancerous, allowing
doctors and laboratory technicians to quickly learn three high-
probability diagnoses.

The literature review demonstrates that deep learning and
image processing techniques have substantially advanced the
diagnosis, detection, and classification of skin cancer. These
methods enable early and accurate identification of malignant
lesions, thereby improving prognosis and treatment planning.
The superior accuracy of deep learning algorithms, combined
with the enhanced feature extraction and segmentation
capabilities of image processing, has significantly
strengthened automated diagnostic systems. However, despite
their promising performance, current studies emphasize the
need for further research on model optimization, robustness,
and image enhancement strategies to address the inherent
variability in dermoscopic images.

In this study, a two-phase experimental framework was
designed to evaluate and enhance the performance of deep
learning-based skin cancer classification. In the first phase,
five transfer  learning  architectures  (DenseNet169,
InceptionV3, MobileNetV2, VGG16, and Xception) and a
Vision Transformer (ViT) model were trained and compared
on the original skin cancer dataset. In the second phase, the
dataset was preprocessed using various edge detection filters
to enhance lesion boundaries, and the same models were re-
evaluated on these improved images. The results revealed that
both the enhanced images and the ViT architecture achieved
the  highest classification accuracy, outperforming
conventional CNN-based models. Unlike previous studies, this
work not only highlights the efficiency of ViT in medical
image analysis but also demonstrates the significant
contribution of image preprocessing to overall model
performance. Nevertheless, the findings suggest that
additional efforts are required to optimize the computational
efficiency and memory utilization of ViT-based systems for
real-time clinical deployment. The main contributions of this
study can be summarized as follows:

(1) a comprehensive comparative evaluation of multiple
transfer learning architectures and the Vision Transformer
model on both raw and edge-enhanced dermoscopic images
(2) the introduction of an image preprocessing pipeline
combining edge detection and enhancement techniques, which
significantly improved classification performance

(3) empirical verification of ViT’s superiority over CNN-
based models in skin lesion classification

The study is structured as follows: in Section 2, the dataset,
the development of the hybrid classification framework, the
proposed image processing approach, the transfer learning

architectures, and the Vision Transformer implementation are
described in detail; in Section 3, the results and discussion
present model performances on original and enhanced images
and compare them with existing studies; and finally, in Section
4, the conclusion summarizes the main findings and outlines
future directions for efficient, real-time clinical applications.

2.MATERIALS AND METHODS

Skin cancer is a treatable disease with early detection and
accurate diagnosis can greatly improve the treatment process.
While traditional diagnostic methods are based on visual
examinations by dermatologists and assessments with tools
such as dermoscopy, these methods can be time-consuming
and subjective [5]. Therefore, artificial intelligence and deep
learning techniques play an important role in the early
detection of skin cancer. CNNs, in particular, are widely used
in the automatic analysis of medical images, but large data sets
are needed for high accuracy [26]. At this point, transfer
learning techniques provide better results with limited labeled
data and benefit from the previous experience of the model
[27].

With these developments, artificial intelligence techniques

used in skin cancer diagnosis have become more diversified.
In particular, the recent successes of the Vision Transformer
(ViT) model in the field of visual classification have attracted
attention. VIT divides images into fixed-size chunks and
processes these chunks using a transformer architecture, thus
learning global dependencies more efficiently [28]. This
feature is especially useful for accurately classifying small and
complex lesions in the diagnosis of diseases that require visual
inspection, such as skin cancer [29]. Another important
advantage of ViT is that it considers global relationships over
the whole image rather than local features. This approach
enables the model to perform a more precise classification,
resulting in high accuracy in early detection of skin cancer.
In this study, an innovative classification method is developed
by combining image processing approaches, transfer learning
techniques and VIiT methods to classify skin cancers. The
study explains in detail how these methods are applied
respectively.

2.1.Dataset

The dataset used in this study is a balanced image dataset
compiled to distinguish between malignant and benign skin
lesions [30]. The balanced nature of the dataset allows the
model to learn both classes accurately. The number of images
used for classification in the transfer learning models and ViT
methods used in the study are presented in detail in Table 1.

TABLE |
NUMBER OF IMAGES BELONGING TO THE CLASSES IN THE DATASET
Classes in Test(%20) Train (%80) Total
the data set
Benign 360 1440 1800
Malign 300 1197 1497
Total 660 2637 3297

Furthermore, Figure 1 shows sample images of the benign
and malignant classes in the dataset. Images in the benign class
generally have smooth edges and homogeneous color
distribution, while images in the malignant class have more
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irregular edges and color variations. These images allow the
model to learn the distinguishing features of both classes.

Bening Samples

Malignant Samples

=5 /é L Ve - ==
Figure 1. Examples of benign, malignant classes in the “Skin Cancer:
Malignant vs. Benign” dataset.

A total of 3297 original images in the dataset are split into
80% training data and 20% test data in order to optimize the
training process of the model. These ratios aim both to train
the model efficiently during the learning phase and to provide
enough test data to evaluate its accuracy.
2.2.Model Development

In the field of image classification, CNN is a fundamental
technique for extracting visual features and improving the
success of classification tasks based on these features. CNNs
are particularly powerful in detecting edges, textures and

Original Dataset

Figure 2. Overview of the metodology used in the study.

2.2.1.lmage Processing

Image processing is a field that involves the digital
analysis, processing and interpretation of digital images.
Images can be defined as data, usually two-dimensional,
obtained as a result of the reflection or transmission of light
on a surface. While the visual perception of the human eye
processes these light reflections through a biological
mechanism, computers treat these images as digital data and
analyze them with various algorithms. Image processing
offers a wide range of applications not only in aesthetics but
also in many disciplines such as engineering, medicine,
biometrics, space exploration, industrial automation and
security [32]. The basic processes in this field involve
applying mathematical and algorithmic operations to the

Transfer Learning and ViT
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patterns in images because they learn local features by
performing convolution on each image segment [31]. This
allows CNNs to generally operate with high accuracy.
However, in areas where data sets are limited, such as
healthcare, training with large datasets can be time-consuming
and the accuracy of models trained with limited data can be
degraded. In this context, Transfer Learning comes into play.
Transfer learning accelerates the learning process and
improves accuracy rates by reusing the knowledge of a model
that has been previously trained on large data sets for a new
task. This method has the potential to achieve high
performance with limited data, especially in medical imaging
applications such as skin cancer.

Transfer learning can improve the accuracy of the model in
specialized and complex tasks such as skin cancer
classification, as it enables the adaptation of features from
larger datasets to current tasks. However, in recent years, new
model architectures such as ViT have attracted attention by
exhibiting superior performance in image classification tasks.
Unlike the ability of conventional CNNs to extract local
features, ViT processes images into small parts and processes
each part with an attention mechanism, thus learning global
contexts more effectively [28]. This feature allows the model
to more efficiently acquire general information and make more
accurate classifications, especially in large datasets. These
advantages of VIiT contribute to rapid accurate diagnoses in
sensitive tasks such as medical imaging. In this context, both
Transfer Learning and ViT models stand out as important tools
to improve classification accuracy and achieve more efficient
results. Figure 2 presents an overview of the metadology used
in the study.

Classification Results

Benign

Malignant

numerical representations of pixels in an image, analyzing
the features in the image (e.g., edges, textures, colors), and
transforming these features when necessary [33]. Image
processing techniques are used to remove image distortions,
optimize contrast and brightness levels, perform edge
detection, object recognition and more complex operations.
In addition, significant advances have been made in the field
of image processing in recent years with the integration of
artificial intelligence and deep learning methods. By learning
from large data sets, these approaches improve the accuracy
and efficiency of image analysis and recognition [31]. In this
context, image processing has become not only a theoretical
field, but also an increasingly preferred technology in
practical applications.
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2.2.1.1.Proposed Hybrid Image Processing Approach

Medical image processing has become one of the
fundamental components of modern healthcare systems,
contributing significantly to early diagnosis, treatment
planning, and continuous disease monitoring. The accuracy
and interpretability of diagnostic models largely depend on
the quality and clarity of the input images. Therefore,
preprocessing and enhancement techniques play a vital role
in preparing medical data for deep learning-based analysis.
In this study, a comprehensive image preprocessing pipeline
was implemented to improve image clarity, enhance lesion
boundaries, and ensure that critical features were effectively
represented for subsequent model training.

The preprocessing workflow consisted of six main
stages: color-to-grayscale conversion, inverse thresholding,
Canny edge  detection, morphological  dilation,
morphological erosion, and visualization of the intermediate
results. Initially, each color image in the dataset was
converted to grayscale to remove chromatic variations and
emphasize intensity-based information. This transformation
simplifies image representation by retaining only luminance
components, enabling algorithms to focus on structural
rather than color features. Grayscale conversion also reduces
computational complexity and noise, thereby facilitating
more efficient feature extraction in later stages.

Following grayscale conversion, an inverse thresholding
operation was applied to segment the image into binary
regions based on pixel intensity levels. Pixels below a
defined threshold value were set to white (255), while those
above were assigned as black (0). This binary separation
effectively highlights regions of interest, such as skin
lesions, and removes irrelevant background details.
Thresholding is particularly valuable in medical imaging,
where contrast enhancement can make pathological
structures more discernible and measurable.

After segmentation, edge information was extracted
using the Canny edge detection algorithm. This multi-stage
process includes Gaussian filtering to suppress noise,
computation of image gradients to identify areas with rapid
intensity change, and application of dual thresholds to
determine true edges. The Canny algorithm’s precision in
localizing boundaries makes it an ideal choice for identifying
lesion margins in dermoscopic and histopathological images.
Detecting these boundaries with high fidelity is crucial for
downstream tasks such as segmentation, morphological
analysis, and classification.

To further refine the detected edges, morphological
dilation was performed using a 5x5 kernel. Dilation enlarges
bright regions (white pixels) in the image, which helps to
close small gaps and make the boundaries more continuous.
This step improves the connectivity of edge structures and
enhances the overall visibility of lesions. Subsequently,
morphological erosion was applied as a complementary
operation to dilation. Erosion reduces the size of bright
regions, removing small artifacts and irregularities
introduced during dilation. Together, these two
morphological transformations help maintain sharp and
well-defined contours while eliminating unnecessary noise
and smoothing over-segmented areas.

After all preprocessing operations were completed, the
results of each transformation stage were visualized to
illustrate the cumulative effect of the pipeline. The
comparative visualization demonstrated a clear progression
in image enhancement — from raw color images to refined

representations with distinct lesion boundaries. This
structured enhancement process provides valuable insights
into how successive operations contribute to improved visual
and analytical interpretability.

Overall, the proposed preprocessing framework
establishes a robust foundation for advanced image analysis
techniques such as segmentation, feature extraction, and
deep learning-based classification. By systematically
emphasizing contrast and structural details, the approach
enhances the discriminative capacity of learning models.
Figure 3 presents the complete flowchart of the proposed
hybrid preprocessing and analysis approach, summarizing
the logical sequence and interdependencies among the
applied operations.

Original image Thresholding

L A

Grayscale

Sharpening Edges with Canny Edge Detection

Morphological Erosion

Clarifying Edges with
Morphological
Expansion (Dilate)

Figure 3. Flowchart of the proposed hybrid image processing approach

Different image processing techniques are used in turn in
the hybrid image processing approach shown in Figure 2.
Following clarification of the picture features, the images
were registered in order to compare the performance of

various VIiT models and transfer learning models
(DenseNet169, InceptionvV3, MobileNetV2, VGGI6,
Xception).

2.3.Transfer Learning Architectures Used in the Study

In the field of deep learning, various architectures have
been developed to meet the requirements of large datasets
and high processing power. These architectures have
achieved significant success, especially in tasks such as
processing and classifying visual data. At this point, transfer
learning techniques allow previously trained models to be
reused for another task, reducing training times and
improving performance. Various deep learning architectures
have been used for transfer learning and each offers different
advantages. In this paper, we will discuss in detail the
features, applications and impact on transfer learning of
widely used models such as DenseNet169, InceptionV3,
MobileNetV2, VGG16 and Xception. These models have an
important place in deep learning with their different building
blocks and optimization strategies.

DenseNet169 is a remarkable and high-performing
architecture in deep learning. This model is a part of the
DenseNet family and makes the learning process more
efficient by establishing dense connections between each
layer. In particular, DenseNetl69 aims to achieve high
accuracy with fewer parameters by using depth-separable
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convolutions and short connections. The main advantage of
the model is that each layer directly receives all feature maps
from previous layers, thus creating richer and deeper
representations. This structure both prevents the gradient
loss problem and makes the model work more efficiently
[34]. DenseNet169 has achieved successful results especially
in areas such as image classification, object recognition and
medical image processing and is frequently preferred for
transfer learning applications.

InceptionV3 is a model developed by Google and has an
important place in the field of deep learning. This model,
which is the evolution of the Inception architecture, offers a
structure that allows the efficient extraction of multi-scale
features. By combining structures with different layer depths
and filter sizes, InceptionV3 optimizes computational cost
while increasing the overall efficiency of the model. An
important feature of the model is the combination of 1x1, 3x3
and 5x5 filters in the inception block, allowing for a wider
range of information. In addition, the “auxiliary classifier”
structure of the model enables faster learning in deep layers
[35]. InceptionV3 is frequently used in transfer learning
applications, exhibiting strong performances in tasks such as
image recognition and classification.

MobileNetV2 is a deep learning model developed
especially for mobile and low processing power devices. The
most prominent feature of this model is that it computes more
efficiently by using a structure called “inverted residuals”.
By adopting depth-separable convolutions, MobileNetV2
first applies each filter on a single channel and then combines
these channels to achieve high accuracy with lower
parameter counts [36]. Furthermore, the linear bottleneck
structure used in the output layers of the model offers
advantages in terms of speed and efficiency, especially on
mobile devices. MobileNetV2 has become a popular choice
for transfer learning applications due to its low
computational power requirement and high efficiency,
especially in tasks such as image recognition on mobile
devices.

VGGL16 is a model developed by the Visual Geometry
Group (VGG) of the University of Oxford, which has an
important place in the field of deep learning. The basic
structure of this model consists of convolutional layers of
increasing depth and consists of 16 layers. VGG16 is
characterized by its simple structure and strong performance.
An important advantage of the model is that it improves its
generalization ability by training on large datasets. In
particular, it allows for more efficient processing of images
without increasing the number of parameters by using fixed
filter sizes in each layer [37]. VGG16 is a frequently
preferred model as it can achieve high accuracy rates and can
be easily adapted for transfer learning.

Xception is a model that has attracted attention in the
field of deep learning and is considered as a more advanced
version of the Inception architecture. This model, which can
be defined as “Extreme Inception”, replaces traditional
convolution operations with “depthwise separable
convolutions”. This structure reduces computational costs by
applying each filter in a single channel, while increasing the
parameter efficiency of the model. Xception performs
particularly well in deep and complex network structures,
achieving more accurate results with fewer parameters [38].
The model is highly effective for transfer learning
applications, provides high accuracy on large datasets, and is
currently used in many visual recognition applications.

2.4.Vision Transformer

In recent years, VIiT architectures have emerged as a
transformative paradigm in computer vision, representing a
major shift from traditional CNN-based frameworks [28].
Unlike CNNs, which rely on local convolutional filters to
extract spatially constrained features, ViT employs a global
self-attention mechanism originally developed for Natural
Language Processing (NLP) tasks. This innovation allows
ViT to model long-range dependencies and global contextual
relationships across the entire image, overcoming one of the
key limitations of CNNs.

VIiT divides each image xeRHW**into a sequence of
non-overlapping patches of size PxP. Each flattened patch
x;',is linearly embedded into a vector representation using a
learnable projection matrix EEE and its mathematical
representation is presented in Equation (1).

zh = xLE D

To preserve spatial information, positional encodings are
added to these embeddings before being processed by the
Transformer encoder. The self-attention mechanism, which
forms the core of the Transformer, models the relationships
between all image patches as in Equation (2).

Attention(Q,K,V) = softmax (%)V 2)

where Q,K,V are the query, key, and value matrices,
respectively, and dy is the dimension of the key vectors.

To enhance representational richness, ViT uses Multi-
Head Self-Attention (MSA), where multiple attention heads
are computed and combined in parallel, and is calculated as
in Equation (3).

MSA(X) = [heady; head,; ...
3)

.; head, |W,

This multi-head design enables the model to capture
diverse dependencies among image patches. By leveraging
this architecture, VIiT achieves a comprehensive
understanding of the global structure of images, surpassing
the locality limitations of CNNSs. Its effectiveness becomes
particularly evident when trained on large-scale datasets,
where the self-attention mechanism allows ViT to
outperform traditional convolutional models in both
accuracy and generalization.

3.RESULT AND DiISCUSSION

In recent years, deep learning techniques have
transformed the field of medical imaging. CNN is still one of
the most widely used methods for analyzing medical images,
often with successful results on data types such as
radiological images, pathology specimens. However, the
emergence of Transformer-based models such as ViT is
reshaping visual data processing paradigms. ViT provides a
significant improvement, especially in the classification of
small and complex images, thanks to the attentional
mechanisms used to understand the broader context in visual
data [28].

In contrast, traditional CNN-based architectures still
provide distinct advantages in environments with limited
computational resources. Although these models are not
capable of learning the global context, they are highly
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efficient in more localized and targeted learning processes.
Therefore, when deciding which model to use in medical
imaging and diagnostic applications, factors such as the
computational cost of the model, the size of the dataset and
the application requirements should be taken into account. In
the future, making Transformer-based models more efficient
could further expand their applications in the medical field.
However, this process will require significant investments in
terms of both data and computing resources. In this context,
considering the advantages and limitations of each model,

optimal solutions should be developed for the effective use
of medical imaging technologies.

In this study, we compare the classification performance of
ViT models with five different transfer learning architectures
such as DenseNet169, InceptionV3, MobileNetV2, VGG16
and Xception in classifying skin cancer types. First, the
performance metrics obtained on the original images are
presented in Table 2.

TABLE Il

PERFORMANCE METRICS OF VIT MODELS WITH 5 DIFFERENT TRANSFER LEARNING ARCHITECTURES ON ORIGINAL IMAGES.
Transfer TP TN FN TN Recall Precision F1-score Accuracy
Learning (%) (%) (%) (%)
Models
DenseNet169 282 78 32 268  89.81 78.33 83.68 83.33
Inceptionv3 292 68 25 275 9211 81.11 86.26 85.91
MobileNetV2 285 75 25 275 9194 79.17 85.07 84.85
Vggl6 268 82 37 263  87.87 76.57 81.83 81.69
Xception 259 91 30 270  89.62 74.00 81.06 81.38
ViT 332 28 22 278  93.79 92.22 93.00 92.42

The primary metrics used to assess a classification
model's performance are True Negative (TN), True Positive
(TP), False Negative (FN), and False Positive (FP) values.
These values help us understand how accurate or inaccurate
the model predicts. Precision measures the rate at which the
model correctly predicts the positive class, while Recall
refers to the rate at which the model finds true positive
examples. F1 Score provides a balanced combination of
precision and recall, assessing the model's ability to both
predict correctly and correctly detect positive classes.
Accuracy indicates the overall performance of the model, i.e.
the rate at which the model makes correct predictions across
all classifications. These metrics are used to measure the
effectiveness of the model and to more accurately assess the
performance of the model, especially in imbalanced data sets
[39]. The mathematical expressions of the metrics are
presented in Equations (4), (5), (6) and (7).

Accuracy = (TN + TP) 4)
(FP + TN + FN + TP)
Precision = ﬁ ®)
Recall = __* (6)
(FN + TP)
F1 — Seore — Recall x Precision @)

2
X (Recall + Precision)

Table 2 shows the classification performance of ViT
models with 5 different transfer learning architectures. The
ViT model achieved the best performance in all metrics with
Recall (93.79%), Precision (92.22%), F1-score (93.00%) and
Accuracy (92.42%). This result shows that ViT can classify
complex medical data with high accuracy thanks to its ability
to learn in a global context.

However, Inceptionv3 and MobileNetV2 models stood

out with high Recall values of 92.11% and 91.94%
respectively. However, Inceptionv3 stands out with higher
Fl-score (86.26%) and Accuracy (85.91%), while
MobileNetV2 offers an advantage with its usability in
environments with low computational resources. The
DenseNet169 and Xception models, on the other hand,
despite their high Recall values, lagged behind in Precision
and Fl-score metrics, and thus, although they are more
efficient, they underperformed in terms of resource
utilization. These findings suggest that each model offers
advantages in different usage scenarios.
In the second part of the study, the classification
performances of the same transfer learning architectures and
ViT models are compared on the dataset obtained from the
enhanced images. Table 3 presents the performance metrics
obtained from the enhanced images.

TABLE 11l
PERFORMANCE METRICS OF VIT MODELS WITH 5 DIFFERENT TRANSFER LEARNING ARCHITECTURES ARE COMPARED BASED ON THE RESULTS OBTAINED
FROM THE ENHANCED IMAGES.

Transfer TP TN FN TN Recall Precision F1-score Accuracy
Learning (%) (%) (%) (%)
Models

DenseNet169 289 71 25 275 92.04 80.28 85.76 85.45
Inceptionv3 295 65 22 278  93.06 81.94 87.15 86.82
MobileNetV2 287 73 23 277 9258 79.72 85.67 85.45
Vggl6 274 86 26 274 91.33 76.11 83.03 83.03
Xception 264 96 19 281  93.29 73.33 82.12 82.58
ViT 339 21 16 284  95.49 94.17 94.83 94.39
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According to the data presented in Table 3, ViT shows a
prominent performance in all metrics. In particular, the high
recall (95.49%) and precision (94.17%) rates, F1-score
(94.83%) and accuracy (94.39%) show that the ViT model is
very successful in accurate classification and can effectively
distinguish both classes (positive and negative). Figure 4
shows the training and loss graph for the most successful
result (ViT) in the study.
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Figure 4. Loss and accuracy plots of the enhanced images in the ViT
model.

The performance of the InceptionVV3 model is close to
ViT, but with a slight regression in recall and precision
(recall 93.06%, precision 81.94%). This suggests that the
model is not as effective as ViT in reducing false negatives,
but its overall accuracy (accuracy 86.82%) is high. Other
models, such as DenseNet169, MobileNetV2 and Xception,
perform poorly compared to ViT. For example,
DenseNet169's recall rate (92.04%) is lower than ViT, while
it outperforms ViT in metrics such as F1-score and accuracy.
Xception, on the other hand, has a high recall (93.29%) but
a very low precision (73.33%), indicating that the model
makes more false positive classifications. The VGG16
model, on the other hand, performed poorly compared to the
other models, especially in terms of precision (76.11%) and
F1-score (83.03%), indicating that the model over-identified
false positives and thus made misclassifications. Overall, the
ViT model achieved the highest success in the classification
task with high recall, precision and Fl-score values and
significantly outperformed the other models. This shows that
VIT is a strong candidate for classification in enhanced
images and has the ability to cope with challenges such as
class imbalance. Figure 5 shows the accuracy graph of the
achievements of the models applied on the original and
enhanced images.
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Figure 5. Accuracy results obtained from the original and enhanced images.

Analysis of the two experimental phases revealed that
CNN-based architectures underperformed compared to ViT
models. While CNNs effectively captured local spatial
patterns, their limited receptive field restricted their ability to
model global dependencies within images. In contrast, ViT
leveraged its self-attention mechanism to integrate long-
range  contextual  relationships,  achieving  more
discriminative and holistic feature representations.
Additionally, the applied image processing techniques—
such as grayscale conversion, thresholding, Canny edge
detection, dilation, and erosion—significantly enhanced
model performance. These operations improved image
contrast and lesion boundary clarity, leading to notable gains
in recall, precision, and overall accuracy. The results indicate
that preprocessing steps play a crucial role in improving the
effectiveness of deep learning models, particularly in
complex medical image datasets.

Finally, to assess the competitiveness of the proposed
method, its performance was compared with recent deep

learning-based studies using skin cancer datasets. As
presented in Table 4, the proposed ViT-based framework
achieved superior accuracy and reliability, confirming its
advantage over conventional CNN approaches and its
potential as a robust tool for medical image classification.

TABLE IV
AN OVERVIEW OF THE LITERATURE ON THE CLASSIFICATION OF SKIN
CANCER IMAGES.

Study Data Set Method Accuracy (%)
[40] HAM10000 EfficientNet BO- 87.91
B7, Transfer
Learning, Fine-
Tuning
[41] HAM10000 CNN and ViT 94,30
[42] 5846 CNN 915
clinical
images were
collected.
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[15] Skin cancer CNN 92.12
dataset
[43] Skin cancer CNN and 89.09
dataset Transfer
Learning
Proposed Skin cancer  Image 94.39
model dataset processing,
Transfer
Learning and
ViT

Table 4 presents various literature studies on the
classification of skin cancer images and the accuracy rates
obtained with the methods used in each study. In the study
by [40], EfficientNet BO-B7 models, transfer learning and
fine-tuning techniques were used to classify the HAM10000
dataset. The accuracy rate obtained with this method was
reported as 87.91%. [41], using the same dataset, preferred
the combination of CNN and VIiT and obtained an accuracy
rate of 94.30% with this method. [42] used only CNN
method in their study on 5846 clinical images and achieved
an accuracy rate of 91.5%.

In [15], [43] and the proposed study, three different skin
cancer classification studies were conducted on skin cancer
dataset. In the study by [15], an accuracy rate of 92.12% was
obtained using CNN only. [43] achieved 89.09% accuracy
using a combination of CNN and transfer learning methods
on the same dataset. In the proposed study, image
processing, transfer learning and ViT techniques were
applied separately on the Skin cancer dataset and a high
accuracy rate of 94.39% was obtained.

Research in the field of skin cancer classification shows
that deep learning methods are effective in improving
accuracy rates. High success has been achieved with
techniques such as CNN, transfer learning and ViT. In our
proposed work, 94.39% accuracy rate was achieved by
applying each of these methods separately on the Skin
Cancer Dataset. This result reveals that the combination of
multiple methods provides higher success, especially in
complex classification tasks such as skin cancer. The
proposed method makes a significant contribution to the
field by providing one of the highest accuracy rates in the
literature.

4.CONCLUSION

Skin cancer is a disease of great importance in the health
field, requiring early diagnosis and accurate classification. In
recent years, the increasing use of deep learning techniques
in this field has led to high accuracy rates in skin cancer
classification tasks. In this study, we compared the
performance of the models in the classification of skin cancer
types through a two-stage analysis on original images and
enhanced images. In the first part, the performances of five
different transfer learning models and ViT are compared. As
a result of this comparison, the ViT model showed the
highest success in the analysis performed on the original
images, reaching an accuracy rate of 92.42%. In the second
stage analysis on the enhanced images, it was evident that
the image processing techniques improved the performance
of the ViT model. At this stage, VIiT achieved the highest
performance with an accuracy of 94.39%. It was observed
that image processing techniques, especially edge detection
and other enhancement methods, significantly improve the

accuracy of the model and are effective in dealing with
challenges such as class imbalance. The performance of ViT
was further strengthened in classifications with the enhanced
images, with high results in metrics such as recall (95.49%),
precision (94.17%) and F1-score (94.83%). The results show
that the combination of image processing techniques and the
VIiT model provides high accuracy rates in skin cancer
classification. The contribution of the ViT model to the field
of medical imaging is especially evident in early diagnosis
processes. The ability of this model to perform more accurate
and faster classifications can make a great contribution to
clinical decision support systems. As the diagnosis of early-
stage skin cancer can directly impact treatment success,
ViT's high accuracy rates in this area can enable patients to
be treated earlier and more accurately. Therefore, optimizing
future studies to make the ViT model more suitable for
clinical applications could lead to significant improvements
in medical imaging and early diagnosis.
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