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ABSTRACT 
Histopathological images of smallpox-infected tissue are complex and high-dimensional, which poses 
challenges for analysis and diagnosis. This study investigates the use of dimensionality reduction 
techniques — specifically, an autoencoder (AE) and kernel principal component analysis (Kernel PCA) 
to preserve meaningful structure in such images while reducing dimensionality. We describe the data 
pre-processing, model training, and variance explanation ratio calculation for both methods. We then 
present the resulting low-dimensional representations for comparison. The experimental results 
demonstrate that the non-linear autoencoder achieved a higher single-component variance explanation 
capacity on the histopathology data than linear PCA methods. At the same time, kernel PCA with various 
kernel functions (radial basis function, sigmoid, linear, and polynomial) also yielded valuable reduced 
representations that contribute to distinguishing diseased tissue. Notably, the autoencoder's two-
dimensional latent representation retained 85.19% of the data variance in its most significant component, 
effectively capturing essential features. Among the Kernel PCA variants, meanwhile, the RBF kernel 
explained up to 88.81% of the variance in the first principal component, outperforming the other kernels. 
The motivation for this study lies in the clinical and diagnostic need to efficiently interpret complex 
histopathological structures associated with viral infections such as smallpox. Although smallpox is 
eradicated, the risk of emerging or engineered orthopoxviruses remains a global concern. Hence, 
developing computational tools that can extract discriminative features from such images is not only 
scientifically relevant but also medically significant for early identification, preparedness, and 
differential diagnosis of similar conditions. These findings suggest that combining both methods could 
improve the accuracy of smallpox diagnosis through histopathological image analysis.  

 
Keywords: Dimensionality Reduction, Autoencoder, Kernel PCA, Histopathology, Smallpox, Variance 
Ratio. 

 
 

1. INTRODUCTION 
Smallpox, caused by the variola virus, was 
historically a deadly infectious disease 
characterized by distinctive skin lesions. 
Although it has been eradicated, research on 
smallpox remains relevant for understanding 
poxvirus pathogenesis and for preparedness 
against potential re-emergence or related 
viruses. Histopathological examination of tissue 
samples is a critical tool for diagnosing such 
infections, as microscopic analysis reveals 
cellular changes due to the virus. These 
histopathological images are typically very 
high-dimensional – each image containing 

thousands or millions of pixels encoding color 
and textural information. High dimensionality 
not only increases storage and computation 
requirements but also complicates analysis, 
since the presence of many features can obscure 
the underlying patterns (often referred to as the 
“curse of dimensionality” Effective 
dimensionality reduction can mitigate these 
issues by compressing the data while preserving 
the most informative aspects. 
 
Principal Component Analysis (PCA) is a 
classic linear technique for reducing 
dimensionality by transforming the data to a 
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new coordinate system defined by orthogonal 
principal components that capture the greatest 
variance. PCA has been widely used in medical 
image analysis to simplify data while retaining 
important variance [1]. However, PCA is 
limited to linear relationships and may not 
capture complex non-linear structures present in 
histopathological images. In the context of 
smallpox histopathology, tissue morphology 
and staining patterns might have non-linear 
variations that linear PCA could inadequately 
represent. 
 
To address this limitation, non-linear 
dimensionality reduction methods can be 
employed. One approach is Kernel PCA, an 
extension of PCA that uses kernel functions to 
project data into a higher-dimensional feature 
space where linear PCA is then applied. By 
choosing an appropriate kernel, Kernel PCA 
can capture non-linear relationships in the 
original data space [2]. Another powerful non-
linear approach is to use an Autoencoder (AE), 
which is a type of artificial neural network 
trained to compress data into a lower-
dimensional latent representation and then 
reconstruct the original input from this code. 
Autoencoders can learn complex non-linear 
mappings and have been shown to produce 
embeddings that preserve important data 
structure [3]. In particular, deep Autoencoders 
have been applied to biomedical images for 
feature extraction, often outperforming linear 
methods in capturing essential features. Among 
dimensionality reduction techniques, t-SNE [4] 
and UMAP [5] are particularly effective tools 
for visualizing high-dimensional data. Kernel 
PCA uses kernel-based nonlinear projection 
methods to reveal complex structures in the data 
[6]. 
 
Although smallpox has been eradicated 
globally, the disease remains a subject of 
significant biomedical interest due to its 
potential use in bioterrorism, as well as the 
emergence of genetically similar 
orthopoxviruses such as monkeypox. 
Histopathological analysis of archived 
smallpox cases thus provides a valuable 
opportunity to investigate tissue-level viral 
pathogenesis and to develop diagnostic tools 
that could be repurposed for related infections. 
In this context, dimensionality reduction 
becomes essential for extracting meaningful 
information from high-resolution 

histopathological images, which are inherently 
high-dimensional and structurally complex. The 
motivation behind this study lies in evaluating 
whether advanced non-linear reduction 
techniques can effectively capture the subtle 
morphological changes induced by the variola 
virus and distinguish them from healthy tissue 
characteristics. 
 
Furthermore, the decision to reduce the data to 
two dimensions stems from the goal of visual 
interpretability. A 2D latent space enables 
direct visual comparison between techniques 
and allows researchers and pathologists to 
intuitively explore class separability. While 
higher-dimensional reductions may yield 
additional detail, the two-dimensional approach 
serves as an initial diagnostic mapping tool and 
provides a compact, explainable representation 
suitable for visual analytics and embedding-
based clustering or classification. 
 
In this study, we apply Kernel PCA and an 
Autoencoder to smallpox histopathological 
images. Our goal is to evaluate how well each 
method reduces dimensionality while 
preserving the information necessary to 
distinguish between healthy and infected tissue. 
We compare the variance explanation ratios of 
the resulting components and examine the two-
dimensional (2D) projections of the image data. 
By visualizing the reduced representations, we 
aim to assess which method yields more 
meaningful clustering of smallpox-infected 
versus healthy samples. We also discuss how 
these techniques could assist pathologists in 
identifying diagnostic patterns more efficiently. 
Figure 1 provides examples of the 
histopathology dataset, illustrating the kind of 
images being analyzed in this work. 
 

 
Figure 1. Examples from the smallpox 

histopathology image dataset [7]. 
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(1) Histological section showing smallpox-
infected skin tissue; (2) Histological section of 
healthy skin tissue; (3) Augmented variant of a 
smallpox-infected tissue image; (4) Augmented 
variant of a healthy tissue image. Augmentation 
techniques (e.g., rotations, flips) were applied to 
increase the dataset size and diversity. Despite 
differences, infected tissue images exhibit 
distinct cellular changes (such as epidermal 
necrosis and inflammatory infiltrates) 
compared to healthy tissue. 
 
2. LITERATURE REVIEW 
Dimensionality reduction plays a vital role in 
medical image analysis by simplifying data 
without losing critical information. Traditional 
methods like PCA have been used to analyze 
various medical images, including radiology 
scans and histology slides, to identify patterns 
that might not be apparent in the raw high-
dimensional pixel data. Jolliffe and Cadima [1] 
provide a comprehensive review of PCA and 
note its effectiveness and limitations in 
contemporary applications. In histopathology, 
PCA has been utilized, for example, to reduce 
spectral imaging data and to visualize tissue 
sample distributions in a lower-dimensional 
space for clustering and classification tasks. 
 
However, many studies have pointed out that 
linear methods like PCA may fail to capture 
complex structures in biomedical data. For 
instance, non-linear manifold learning 
techniques have gained attention. Kernel PCA 
was introduced by Schölkopf et al. [2] as a 
nonlinear generalization of PCA using the 
kernel trick methodology. By using a kernel 
function (such as Gaussian RBF or Sigmoid), 
data that is not linearly separable in the original 
space can become separable in an implicit 
higher-dimensional feature space. This 
approach has been applied in biomedical 
contexts; for example, some researchers have 
used Kernel PCA to improve the classification 
of pathological images by capturing non-linear 
feature interactions. Liu et al. [8] reported that 
kernel-based dimensionality reduction 
improved classification accuracy in medical 
imaging tasks, highlighting the potential of 
Kernel PCA in handling complex image data. 
Although Liu et al.’s work was a general 
commentary on machine learning in medical 
literature, it underscores the importance of 
choosing appropriate dimensionality reduction 
techniques for complex biomedical data. 

Meanwhile, Autoencoders and other neural 
network-based approaches for representation 
learning have shown great promise in recent 
years. An Autoencoder consists of an encoder 
network that compresses the input into a latent 
code, and a decoder network that reconstructs 
the input from this code. When trained on image 
data, the Autoencoder learns a latent 
representation that retains the key factors of 
variation needed to rebuild the original image 
[3]. In the context of histopathology, 
Autoencoders (including convolutional 
variants) have been used to learn features for 
tasks such as anomaly detection, segmentation, 
and classification of tissue images. For 
smallpox histopathology, an Autoencoder could 
potentially learn complex virus-induced 
morphological changes (e.g., cell swelling, 
inclusion bodies) in an unsupervised manner. 
Goodfellow et al. [9] note that an 
undercomplete linear Autoencoder is closely 
related to PCA, but with non-linear layers and 
appropriate training, an Autoencoder can 
capture variations that PCA cannot. This non-
linear capacity is advantageous for images 
where pixel intensities relate to underlying 
pathology in a complex way. 
 
In summary, the literature suggests that while 
PCA provides a strong baseline for 
dimensionality reduction, more advanced 
methods like Kernel PCA and Autoencoders 
often perform better on image data with non-
linear characteristics. Smallpox 
histopathological images likely contain such 
non-linear patterns, given the complex interplay 
of tissue structures and pathological changes. 
Therefore, it is worthwhile to compare Kernel 
PCA and Autoencoder side-by-side on this task. 
This comparison can reveal the strengths of 
each approach – for example, Kernel PCA’s 
ability to provide a deterministic transformation 
with clear variance explanation, versus the 
Autoencoder’s ability to learn a custom-tailored 
representation through training (potentially 
capturing subtle texture differences). The next 
section describes the methodology of applying 
these techniques to our image dataset.  
 
3. METHODOLOGY 
3.1. Data Collection and Preprocessing 
For this study, we used a dataset of smallpox 
histopathological images consisting of 150 
samples of skin tissue, of which a subset are 
from confirmed smallpox cases and the rest 
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from healthy controls (normal skin tissue). The 
images were obtained from archived pathology 
slides and digitized at high resolution 
(originally 3840×2160 pixels in RGB color). 
Before analysis, the images were converted to 
grayscale to simplify the color space, since 
histological slides in this case were 
hematoxylin-and-eosin stained (where color 
information may be less crucial than intensity 
patterns). We then downsampled each image to 
64×64 pixels to further reduce dimensionality 
and noise, as well as to standardize input size 
for the Autoencoder. This downsampling 
dramatically lowers the feature count per image 
(from millions of pixels to only 4096), making 
subsequent analysis tractable. 
 
Each image was then normalized (pixel 
intensities scaled) to have zero mean and unit 
variance, which is a common preprocessing step 
to ensure that features are on comparable scales 
for PCA and neural network training. We split 
the dataset into a training set (80% of the 
images) and a test set (20%), maintaining a 
balanced representation of infected and healthy 
tissue in both. Data augmentation techniques, 
such as rotations and flips, were applied to the 
training images to generate additional samples 
(augmenting the infected images in particular). 
This augmentation aimed to improve the 
Autoencoder’s ability to generalize and to 
prevent it from overfitting to specific 
orientations or artifacts. The homogeneity and 
representativeness of the dataset were important 
to obtain reliable results – for instance, all 
images were taken under similar microscopy 
conditions to avoid technical biases. The critical 
features of smallpox histopathology include 
epidermal necrosis, dermal edema, and 
inflammatory cell infiltration; these features 
should ideally be preserved through the 
preprocessing steps. 
 
Autoencoders have achieved great success in 
extracting features from medical images, 
particularly when convolutional structures are 
used [10-11]. Unlike traditional principal 
component analysis (PCA) methods, deep 
learning-based autoencoders can model 
complex nonlinear relationships in the data [12-
13]. 
 
 
 
 

3.2. Autoencoder Architecture 
We designed a deep Autoencoder to perform 
non-linear dimensionality reduction on the 
histopathology images. The Autoencoder model 
is composed of three main parts: the encoder, 
the latent representation, and the decoder. 
Figure 2 illustrates the architecture of the 
Autoencoder. The encoder consists of a series 
of fully-connected layers that progressively 
reduce the dimensionality of the input. 
Specifically, the encoder in our implementation 
takes the 4096-dimensional input (64×64 image 
flattened) and maps it to successively smaller 
internal layers (we used layer sizes 1024, 256, 
and 64) using ReLU activation functions. The 
final layer of the encoder is a bottleneck layer 
of size 2, which constitutes the latent code – this 
is the compressed representation of the image. 
We chose a 2-dimensional latent space to enable 
easy visualization of results in two dimensions. 
 

 
Figure 2. Architecture of the Autoencoder model 

used for dimensionality reduction.[7]  
 
It is well established in the literature that 
convolutional neural networks (CNNs) 
outperform fully-connected architectures in 
many medical imaging tasks, including 
histopathology, due to their ability to exploit 
spatial locality and hierarchical features. In this 
study, we intentionally employed a fully-
connected Autoencoder to retain architectural 
simplicity and to isolate the effect of non-linear 
compression in a controlled latent space. 
 
The use of a simple dense network allows for 
easier interpretation of the latent space and 
ensures that the comparison with Kernel PCA, 
which also does not model spatial structure, 
remains balanced. However, we acknowledge 
that CNN-based Autoencoders could provide 
superior performance by capturing local 
textural patterns, tissue boundaries, and 
structural motifs more effectively. 
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As a direction for future research, we plan to 
extend the current work by implementing 
convolutional Autoencoders, which are 
expected to better preserve spatially-distributed 
histological features relevant to disease 
classification and segmentation. 
 
While the Autoencoder used in this study was 
implemented with fully connected layers for 
simplicity and comparability with Kernel PCA, 
it is acknowledged that convolutional 
autoencoders are generally more effective for 
image data. CNN-based architectures exploit 
spatial locality and hierarchical features, which 
are particularly valuable for histopathological 
images. The current model design thus reflects 
a trade-off between interpretability and 
architectural optimality. As part of future work, 
a convolutional version of the Autoencoder will 
be investigated to enhance spatial feature 
preservation. 
 
The encoder (left) compresses the 64×64 pixel 
image through several hidden layers down to a 
2-dimensional latent vector (z). The decoder 
(right) then reconstructs the image from this 2D 
latent vector. Each layer’s dimensions are 
indicated in the diagram. Non-linear activation 
functions (ReLU) are used in all hidden layers, 
and a sigmoid activation is used in the output 
layer to ensure pixel intensity outputs are in a 
valid range [0,1]. 
 
The decoder is a mirror of the encoder, with 
layers of size 64, 256, 1024, and finally 4096 
(reshaped back to 64×64) to reconstruct the 
image. We used a sigmoid activation on the 
output layer of the decoder to produce pixel 
intensity values between 0 and 1 (after scaling). 
The Autoencoder was trained using the mean 
squared error (MSE) loss between the input and 
reconstructed output. We employed the Adam 
optimizer with a learning rate of 0.0001 for 
stable training. To prevent overfitting and to 
ensure the Autoencoder does not simply learn 
an identity mapping, early stopping was 
implemented: the training was halted if the 
validation loss did not improve for 10 
consecutive epochs. This regularization 
technique helped the model converge to a 
solution where it captures the most salient 
features for reconstruction rather than 
memorizing the training images. 
 

The training process was conducted on an 
NVIDIA A100 GPU, which provided the 
necessary compute power for handling the 
training of the neural network. The batch size 
was set to 16. We trained the Autoencoder for 
up to 50 epochs, although early stopping usually 
stopped training earlier (around epoch 30 in our 
runs) once reconstruction error plateaued. After 
training, we extracted the 2-dimensional latent 
vectors for all images by feeding them through 
the encoder part of the network. These latent 
vectors constitute the Autoencoder’s reduced 
representation of the data. We then computed 
the variance explained by each of the two latent 
dimensions. Although Autoencoders do not 
directly provide a notion of “explained 
variance” like PCA does, we can interpret the 
learned 2D embedding by measuring how much 
of the total variance in the dataset is captured 
along each axis of the latent space. In our 
results, we found that the second latent 
dimension of the Autoencoder accounted for 
85.19% of the total variance in the data’s feature 
space, indicating that one of the two learned 
dimensions was especially informative (this 
likely corresponds to features differentiating 
infected vs. healthy tissue). 
 
3.3. Kernel PCA Implementation 
For comparison, we performed Kernel PCA on 
the same dataset. Unlike the Autoencoder, 
Kernel PCA is not a learning algorithm per se, 
but rather a transformation based on eigen-
decomposition of the kernelized covariance 
matrix (it does not require iterative training in 
the gradient descent sense). We explored 
several kernel functions commonly used in 
Kernel PCA: 
 
Linear kernel: This essentially reduces to 
standard PCA. It was included as a baseline to 
compare against the non-linear kernels. 
 
RBF (Gaussian) kernel:  
 
𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = exp (−𝛾𝛾�𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗�

2)                         (1) 
 
The RBF kernel can capture non-linear 
relationships by emphasizing local similarity 
between data points. We used an RBF width 
parameter $\gamma$ chosen via cross-
validation. 
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Sigmoid kernel:  
 
𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = tanh (𝛼𝛼𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗 + 𝑐𝑐)                         (2) 
 
This kernel, akin to a neural network activation, 
was also tested. We used the default parameters 
of 𝛼𝛼 = 0.01 and   𝑐𝑐 = 0 initially. 
 
Polynomial kernel:  
 
𝐾𝐾�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗� = (𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗 + 𝑐𝑐)𝑑𝑑                               (3) 
 
We tried a polynomial of degree 𝑑𝑑 = 3 for a 
moderate non-linearity. 
 
We applied each kernel to the dataset and 
computed the Kernel PCA, extracting the 
principal components in the transformed feature 
space. Because we are interested in a 2-
dimensional embedding (for visualization 
similar to the Autoencoder’s 2D code), we kept 
the top 2 principal components from each 
Kernel PCA. We then calculated the variance 
explained by these components. In Kernel PCA, 
the concept of variance explained can be 
interpreted by looking at the eigenvalues of the 
kernel matrix. We normalized the eigenvalues 
such that their sum represents 100% of variance 
in the feature space, and then determined the 
percentage accounted for by the first component 
(and by the first two combined). 
 
Figure 3 outlines the workflow of the Kernel 
PCA process. First, each image (after 
preprocessing) is mapped through the chosen 
kernel function to compute a similarity matrix. 
Next, this kernel matrix is centered (to 
correspond to zero-mean in feature space), and 
eigen-decomposition is performed. The top 
eigenvectors (principal components) are then 
used to project the data. We implemented this 
using Python’s scikit-learn library for PCA with 
a kernel option, which internally handles the 
above steps. 
 

 
Figure 3. Kernel PCA application flow. 

 
The high-dimensional image data is 
transformed using a kernel function into an 
implicit feature space, where principal 
component analysis is then performed. The 
diagram illustrates the steps: (a) Compute the 
kernel matrix for all image pairs; (b) Center the 
kernel matrix; (c) Compute eigenvalues and 
eigenvectors; (d) Project the data onto the top 
principal components in the kernel-defined 
space; (e) Obtain the reduced-dimension 
representation (in this study, 2D). 
 
For each kernel, we noted the variance 
explanation ratio of the first principal 
component. As expected, using the Linear 
kernel (which is equivalent to standard PCA on 
the 4096 features), the first component 
explained a large portion of variance, about 
87.48%. The Polynomial kernel (degree 3) had 
a slightly lower first-component variance 
explanation (~85.61%), indicating that its first 
principal component captured a bit less of the 
total variance – this can happen if variance is 
spread more evenly across non-linear 
dimensions. The Sigmoid kernel resulted in the 
first component explaining 88.16% of variance, 
and the RBF kernel achieved the highest with 
88.81% on the first component. These figures 
are summarized later in Table 1. It was evident 
that the RBF kernel was particularly effective 
for this dataset, suggesting that the data 
manifold of histopathology images is better 
linearized in the RBF feature space than in 
others (including the original pixel space). 
 
After obtaining the 2D projections from Kernel 
PCA, we had analogous data to what the 
Autoencoder produced – each image now had 
coordinates (𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2)in a 2-dimensional space 
defined by the first two kernel principal 
components. 
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3.4. Evaluation Metrics 
To evaluate and compare the dimensionality 
reduction methods, we considered both 
quantitative and qualitative criteria: 
 
Variance Explained: We use the proportion of 
total variance captured by the reduced 
dimensions as a quantitative measure. For PCA-
based methods, this is straightforward from the 
eigenvalues. For the Autoencoder, we 
approximated it by computing the variance in 
the original data recovered by each latent 
dimension (by linear regression from latent to 
original data variance). This helps in 
understanding how well each method preserves 
information. 
 
Clustering in 2D Space: We visually inspected 
the scatter plots of the 2D representations for 
any natural clustering of the data points 
corresponding to smallpox-infected vs. healthy 
tissue. A successful dimensionality reduction 
for diagnostic purposes would ideally separate 
infected and healthy samples into distinct 
regions in the reduced space. We also calculated 
the within-class and between-class distances in 
the 2D embeddings to quantify this separation. 
 
Reconstruction Error: For the Autoencoder, the 
mean squared reconstruction error on the test set 
indicates how much information is lost in 
compression. We recorded the reconstruction 
loss and ensured it was low enough that 
reconstructed images were recognizable 
(though some fine details inevitably blurred). 
 
Computational Efficiency: We noted the time 
taken by each method. Kernel PCA (with n=150 
images) was computationally fast for 2 
components, while training the deep 
Autoencoder took longer (several minutes on 
GPU). However, once trained, the Autoencoder 
encoding of new images is nearly instantaneous. 
We mention this because in practical 
deployment, one might consider the trade-off 
between an upfront training cost vs. repeated 
computation for new data. 
 
The following section presents the experimental 
findings, including the variance ratios, scatter 
plots of the embeddings, and a discussion on 
how these outcomes relate to each method’s 
theoretical strengths. 
 
 

4. EXPERIMENTAL RESULTS 
4.1. Dimensionality Reduction Performance 
After applying both techniques to the dataset, 
we summarized the variance explanation 
capacity and ratios in Table 1.  
 

Table 1. Comparison of Variance Explanation 
Ratios (Autoencoder vs. Kernel PCA with different 

kernels) 
 

Method 
Total Variance 

Represented 
(%) 

Highest Single 
Component 

Variance (%) 

Autoencoder 
(2D latent) 100% 85.19% 

Kernel PCA 
(RBF kernel) 100% 88.81% 

Kernel PCA 
(Sigmoid kernel) 100% 88.16% 

Kernel PCA 
(Polynomial 
kernel, d=3) 

100% 85.61% 

Kernel PCA 
(Linear kernel) 100% 87.48% 

 
For the Autoencoder, since it is not a variance-
maximizing method in the same way PCA is, 
we treat its two latent dimensions as capturing 
100% of the variance of the encoded data by 
definition (the Autoencoder’s latent space aims 
to represent all important information). We then 
computed the percentage of that variance 
attributable to each latent dimension. For 
Kernel PCA, we report the total variance 
captured by the two principal components 
(which we set to 100% for fair comparison since 
we only keep 2 components in both methods) 
and the percentage captured by the single most 
informative component for each kernel. 
 
As shown in Table 1, the Autoencoder’s two-
dimensional code allocates about 85.19% of the 
encoded variance to one dimension (and thus 
14.81% to the other). This suggests that one 
latent factor dominates, likely corresponding to 
the presence or absence of infection, since that 
is a primary source of variation in the images. 
The remaining variance could relate to other 
features, like differences between individual 
slides or minor staining intensity variations. In 
contrast, the Kernel PCA with the RBF kernel 
had its top principal component account for 
88.81% of variance, slightly higher, indicating 
a very dominant first mode of variation as well. 
Interestingly, the Sigmoid and Linear kernels 
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also showed a single component capturing 
around 88% and 87%, respectively, while the 
Polynomial kernel’s top component was a bit 
lower (85.61%). This indicates that in the 
kernel-transformed spaces, much of the 
dataset’s variance can be distilled into one 
strong principal component. 
 
4.2. Visualization of 2D Embeddings 
We next evaluated how well the 2D embeddings 
produced by each method separated the 
smallpox-infected tissue samples from the 
healthy samples. Figure 4 and Figure 5 show the 
scatter plots of the data in the two-dimensional 
space for Kernel PCA (with RBF kernel) and for 
the Autoencoder, respectively. Each point in the 
plots represents an image from the dataset, 
plotted with coordinates either (𝑦𝑦1,𝑦𝑦2) from 
Kernel PCA or (𝑧𝑧1, 𝑧𝑧2) from the Autoencoder’s 
latent space. Points are color-coded (purple for 
healthy, yellow for infected) for clarity. 
Each point represents a histopathological 
image, projected onto the first two non-linear 
principal components. Purple “x” markers 
denote healthy tissue images, and yellow “x” 
markers denote smallpox-infected tissue 
images. In this Kernel PCA plot, there is some 
overlap between the two classes, but a general 
trend can be observed: infected samples tend to 
lie towards the right and upper part of the plot, 
 

 
Figure 4. Two-dimensional visualization of the 

dataset using Kernel PCA (RBF kernel) [7]. 
 

whereas healthy samples cluster more towards 
the left. The RBF kernel’s first component 
(horizontal axis) seems to largely separate the 
groups, reflecting the largest variance in the 
data, which correlates with infection status. 
 

 
Figure 5. Autoencoder 2D representation of the 

dataset.  
 
The encoded 2D latent space learned by the 
Autoencoder is plotted, with purple “x” for 
healthy tissue and yellow “x” for infected tissue 
(same color scheme as Figure 4). The 
Autoencoder has separated the two categories: 
infected tissue images occupy the right side of 
the plot (higher values on latent dimension 1), 
while healthy tissue images are on the left side. 
The separation is more distinct here than in the 
Kernel PCA results, indicating that the 
Autoencoder captured features that differentiate 
infected vs. healthy more effectively (perhaps 
due to learning complex non-linear features like 
specific cellular morphologies). The latent 
dimension 1 roughly corresponds to an 
“infection score,” as evidenced by the grouping, 
whereas latent dimension 2 shows some 
variation within each group but does not mix the 
groups. 
 
By comparing Figures 4 and 5, we observe that 
the Autoencoder’s embedding achieved a more 
clustered separation of the two classes. In 
Figure 4 (Kernel PCA), although there is a 
tendency for points to separate along 
Component 1, there remains a region of overlap 
around the center where some healthy and 
infected samples intermingle. This suggests that 
a single RBF kernel PCA component, while 
capturing a large variance, might be capturing 
variance due to a mixture of factors (some 
related to infection, some unrelated). In 
contrast, Figure 5 (Autoencoder) shows two 
distinct clusters with a clearer gap between 
healthy and infected samples. The 
Autoencoder’s non-linear encoding appears to 
have focused on the most diagnostic features of 
the images, effectively creating a latent 
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dimension (horizontal axis) that discriminates 
infection status. This result supports the idea 
that the Autoencoder can learn a representation 
aligning with the underlying class structure 
(even though it was not given class labels during 
training, the reconstruction objective indirectly 
emphasizes the key differences). 
 
To quantify this, we looked at the scatter of 
points: the intra-class distance (average distance 
between points of the same category) in the 
Autoencoder space was smaller than in the 
Kernel PCA space, and the inter-class distance 
(average distance between points of different 
categories) was larger in the Autoencoder 
space. This confirms a better class separation 
for the Autoencoder. Such separation is 
promising for downstream tasks – for instance, 
if one were to build a classifier on top of these 
2D features, it would likely achieve higher 
accuracy with the Autoencoder features than 
with the Kernel PCA features, given the clearer 
clustering. 
 
4.3. Reconstruction and Model Insights 
For completeness, we examined the quality of 
image reconstructions from the Autoencoder to 
ensure it was not discarding important 
information. The Autoencoder’s reconstruction 
of infected tissue images preserved the general 
tissue architecture and the presence of pox 
lesions (such as epidermal necrosis). Health 
images were also reconstructed well, with 
cellular details slightly blurred but overall 
structure intact. The reconstruction errors on the 
test set were low (MSE approximately 0.015 on 
normalized pixel intensities), indicating the 
Autoencoder did compress images in a way that 
retains most information needed to rebuild 
them. This gives confidence that the 2D latent 
code is a meaningful summary of the image 
content. In practical terms, this means that 
pathologically significant features (like the 
presence of a certain type of inclusion body in 
cells) were likely encoded in those 2 latent 
dimensions. 
 
In analyzing the Kernel PCA components, we 
could visualize the principal component 
“eigenimages” by inverting the transformation 
approximately. The top component for RBF 
kernel corresponded to a pattern highlighting 
regions of the epidermis: infected samples 
tended to have higher component values where 
epidermal damage is present, which aligns with 

pathology (since smallpox causes degeneration 
in the epidermal layer). The second component 
captured some variation in dermal inflammation 
that was common to both infected and some 
healthy irritated skin samples, which is perhaps 
why it did not contribute to distinguishing 
infection as much. 
 
To illustrate the stability of training, Figure 6 
shows the training and validation loss curves for 
the Autoencoder over epochs. The early 
stopping point is indicated where the validation 
loss ceased to decrease. 
 

 
Figure 6. Training and validation loss curves for 

the Autoencoder.  
 
The plot shows how the reconstruction error 
(mean squared error) on the training set (orange 
line) and validation set (red line) decreases over 
the training epochs. The Autoencoder 
converges within ~30 epochs, after which the 
validation loss flattens, triggering early 
stopping. Notably, there is no significant 
divergence between training and validation 
loss, indicating the model did not overfit. This 
stability suggests that the 2D latent space is 
capturing robust features rather than noise or 
overly specific training artifacts. 
 
The convergence of the Autoencoder without 
overfitting (validation loss remaining close to 
training loss) implies that the 2D representation 
is indeed generalizable for new images – a 
crucial factor if this were to be used in practice 
for analyzing additional histopathology 
samples. 
 
5. DISCUSSION 
The comparative results demonstrate distinct 
advantages offered by the two methods in 
handling smallpox histopathological image 
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data. Both the Autoencoder and Kernel PCA 
successfully reduced the data to two dimensions 
while retaining most of the essential variance 
(over 85% in the first component alone for 
each). This indicates that the dataset has an 
underlying low-dimensional structure – likely 
dominated by whether an image is infected or 
not – that both methods managed to capture in 
part. 
 
However, the Autoencoder’s performance was 
notably superior in terms of producing a useful 
embedding for class discrimination. The clear 
separation of infected and healthy clusters in the 
Autoencoder’s latent space (Figure 5) suggests 
that the network discovered features 
specifically relevant to the presence of smallpox 
pathology. This is not surprising given that 
neural networks can learn complex, task-
specific features; in our case, although we did 
not supervise the Autoencoder with class labels, 
the objective of image reconstruction inherently 
forced it to encode the most prominent image 
variations. Infected vs. healthy status is a major 
variation, so the Autoencoder naturally 
gravitated to representing it distinctly (as 
evidenced by one latent dimension largely 
correlating with infection). Kernel PCA, on the 
other hand, does not “learn” features – it 
transforms data based on variance 
maximization. It captured the largest variance 
direction, which corresponded to a mix of 
features (some related to infection, possibly 
some related to slide-to-slide staining 
differences). Thus, while Kernel PCA with an 
RBF kernel did separate many samples, it was 
less clean than the Autoencoder separation. 
 
An interesting point is that the RBF kernel 
outperformed other kernels in our tests, yielding 
the highest single-component variance ratio and 
a somewhat better clustering than, say, the 
polynomial kernel. This suggests that the 
similarity structure of the histopathology 
images is well-captured by a Gaussian measure 
– in other words, images can be effectively 
compared by their pixel-level Euclidean 
distance after appropriate scaling. The 
polynomial kernel might have been too rigid or 
introduced additional noise, whereas the RBF 
kernel is more flexible in adapting to local data 
structure. The Sigmoid kernel gave results 
comparable to RBF in variance explained, 
which is interesting because the Sigmoid kernel 
can mimic a shallow neural network’s behavior. 

It slightly underperformed RBF in clustering 
quality, though. 
 
In terms of practical implications, the 
Autoencoder’s 2D embedding could be directly 
useful for visual analytics in a pathology 
workflow. A pathologist or researcher could 
plot new tissue samples in this learned space to 
quickly see if they reside in the “infected” 
cluster or not. Such a tool could complement 
traditional microscopy by flagging borderline 
cases or quantifying the degree of infection. 
Kernel PCA, while simpler to implement and 
mathematically tractable, might require using 
more than two components to achieve a similar 
level of separation, as the second component 
still contained relevant information (and we 
limited to 2 for fair comparison). Using, for 
instance, a three-dimensional Kernel PCA 
space might bring healthy and infected 
separation to a comparable level, but then 
visualization becomes slightly more complex 
(though still possible through 3D scatter plots or 
pairwise projections). The effectiveness of 
autoencoder-based methods in diagnosing 
specific diseases, such as smallpox, has been 
demonstrated [14]. Similarly, these approaches 
could be used to analyze other dermatological 
diseases [15]. 
 
Despite the promising results obtained from 
both Kernel PCA and the Autoencoder, certain 
limitations must be acknowledged, particularly 
regarding the conditions under which these 
models may underperform. 
 
First, the relatively small dataset (150 images) 
may limit the generalizability of the learned 
representations, especially for the Autoencoder, 
which relies on sufficient variation in training 
data to avoid overfitting. Although data 
augmentation was applied, rare morphological 
patterns might still be underrepresented, leading 
to diminished performance in detecting atypical 
or borderline cases. 
 
Second, the fully-connected Autoencoder lacks 
spatial inductive biases and may struggle to 
capture fine-grained histological details, such as 
localized lesion boundaries or subtle nuclear 
abnormalities. This limitation could become 
more pronounced in larger or more 
heterogeneous datasets. 
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Additionally, both methods operate in an 
unsupervised setting. As such, their 
performance heavily depends on whether the 
dominant axes of variation in the data align with 
the pathological status (infected vs. healthy). In 
scenarios where other confounding factors (e.g., 
staining artifacts, sample preparation 
differences) dominate the variance, the models 
may fail to effectively cluster or separate 
pathological samples. 
 
Finally, robustness against out-of-distribution 
samples was not evaluated in this study. Future 
work should assess how well the learned 
representations generalize to unseen tissues, 
different magnifications, or images obtained 
from different laboratories or staining 
protocols. 
 
One must also consider computational 
efficiency and scalability. Kernel PCA has a 
computational complexity that scales roughly 
with 𝑂𝑂(𝑛𝑛3) for n data points due to kernel 
matrix decomposition, which can be 
problematic for very large datasets (though our 
dataset of 150 images is small). Autoencoders 
can handle larger n easily if trained with mini-
batches, but the complexity lies in the 
dimensionality of each data point. However, by 
using convolutional layers (which we did not do 
in this fully-connected implementation), one 
could better exploit image structure and scale to 
higher resolutions. In our experiment, training 
the Autoencoder on 150 images was trivial, and 
in fact, we had to augment data to fully train the 
network’s millions of parameters. In real 
scenarios with more data, the Autoencoder 
approach becomes even more appealing, as it 
can leverage big data to learn even better 
representations, whereas Kernel PCA doesn’t 
directly benefit from more data beyond 
improved covariance estimates. 
 
It is worth noting that while our Autoencoder 
was not explicitly tuned for classification, one 
could fine-tune such a model or use a variant 
(like a sparse Autoencoder or a variational 
Autoencoder) to enforce certain properties in 
the latent space (such as clustering). For 
instance, a supervised dimensionality reduction 
like Linear Discriminant Analysis (LDA) could 
also be compared, but LDA requires class labels 
and maximizes class separation rather than data 
variance. In an unsupervised context, the results 
we obtained show that autoencoders can 

inadvertently perform a task akin to LDA by 
capturing the largest sources of variation, which 
here correlates strongly with the presence of 
disease. 
 
Finally, we include Figure 7 to summarize the 
overall workflow of our study and highlight 
where each method fits in the pipeline of 
smallpox histopathology image analysis. 
 
The pipeline begins with raw histopathology 
slides (left), which are digitized and 
preprocessed (grayscale conversion and 
resizing). Two parallel dimensionality 
reduction paths are then applied: (A) Kernel 
PCA (with various kernels tested) and (B) 
Autoencoder. The Kernel PCA path involves 
computing the kernel matrix and extracting 
principal components, yielding a 2D projection 
for each image. The Autoencoder path involves 
training the neural network to compress and 
reconstruct images, then using the 2D latent 
code as the reduced representation. The 
resulting 2D embeddings are finally visualized 
and compared, and their ability to separate 
healthy vs. infected tissue is evaluated (right). 
This diagram encapsulates the approach of the 
study, highlighting how traditional statistical 
methods and modern deep learning methods can 
be combined to analyze complex medical 
imagery. 
 
The observed separation in the Autoencoder's 
2D latent space highlights its potential as a 
diagnostic tool capable of capturing the most 
salient differences between healthy and infected 
tissues. This clustering likely reflects the 
model’s ability to internalize pathological 
patterns such as epidermal necrosis or 
inflammatory infiltrates. On the other hand, the 
Kernel PCA—while effective in terms of 
variance explanation—may be capturing a 
mixture of pathological and non-pathological 
variance (e.g., staining variability), as seen in 
the more dispersed clustering. 
 
These findings suggest that although both 
methods are valuable, Autoencoders offer a 
more disease-specific embedding space. 
Moreover, the latent representation created by 
the Autoencoder appears to align with 
diagnostic categories even without supervision, 
underscoring the model’s effectiveness in 
unsupervised representation learning for 
histopathology. This insight supports the 



Şengöz and Vargün /INTERNATIONAL JOURNAL OF 3D PRINTING TECHNOLOGIES AND DIGITAL INDUSTRY  9:2 (2025) 331-343 

342 

broader notion that neural networks, even when 
not explicitly trained for classification, can 
capture clinically relevant variations inherently 
embedded in medical imagery. 
 
6. CONCLUSION 
In this work, we explored dimensionality 
reduction techniques for analyzing smallpox 
histopathological images, focusing on a deep 
Autoencoder and Kernel PCA with multiple 
kernel functions. The results demonstrate that 
both methods can significantly reduce image 
dimensionality (from 4096 features to 2) while 
preserving the majority of the variance in the 
data. However, the Autoencoder’s learned 2D 
representation provided a clearer segregation of 
smallpox-infected tissue samples from healthy 
samples in comparison to Kernel PCA’s 
outputs. The Autoencoder achieved this by 
capturing non-linear features of the images that 
strongly correlate with pathological changes 
caused by the variola virus. Kernel PCA with an 
RBF kernel was the best-performing variant of 
PCA, and it too highlighted the distinction 
between infected and healthy tissue to a large 
extent, though with slightly more overlap. 
 
The study’s findings suggest that an 
Autoencoder-based approach could be a 
powerful tool for histopathological image 
analysis, especially for diseases like smallpox, 
where specific cellular alterations need to be 
detected. By combining the strengths of deep 
learning and established statistical techniques, 
one can obtain both an interpretable measure of 
explained variance and a highly discriminative 
feature space. In practice, the 2D embeddings 
from the Autoencoder might be used to develop  
 

 
Figure 7. Schematic overview of the experimental 
workflow for dimensionality reduction in smallpox 

histopathological images.  

automated diagnostic algorithms or to aid 
pathologists by providing a second opinion on 
whether an image shows signs of infection. 
Additionally, the variance analysis indicates 
that most information in these images is 
encapsulated in one or two dimensions, 
implying that downstream machine learning 
models (e.g., clustering or classification) can be 
trained on these low-dimensional features 
without significant loss of information. 
 
Future work can expand on these results in 
several ways. First, testing these methods on a 
larger set of histopathology images from related 
conditions (e.g., other poxviruses or 
dermatological diseases) would help evaluate 
the generality of the learned features. It would 
be interesting to see if an Autoencoder trained 
on smallpox images encodes features that are 
useful for distinguishing other skin infections or 
if it overfits to smallpox-specific markers. 
Second, the integration of convolutional layers 
in the Autoencoder could improve its ability to 
capture spatial features like the distribution of 
lesions across the tissue. Third, from a 
theoretical perspective, techniques like t-
distributed Stochastic Neighbor Embedding (t-
SNE) or Uniform Manifold Approximation and 
Projection (UMAP) could be applied to the 
same data for a purely visualization-driven 
dimensionality reduction and compared to our 
Autoencoder and Kernel PCA results. 
 
In conclusion, this research highlights the value 
of dimensionality reduction in making sense of 
high-dimensional histopathological data. The 
Autoencoder and Kernel PCA each have unique 
advantages: Autoencoders offer learned, task-
relevant representations, whereas Kernel PCA 
provides a deterministic and variance-
maximizing perspective. For the specific 
challenge of analyzing smallpox 
histopathology, the Autoencoder’s ability to 
capture the essence of infection-related changes 
gives it an edge. These insights contribute to the 
broader understanding of how modern machine 
learning techniques can enhance traditional 
pathological analysis, potentially leading to 
faster and more accurate diagnoses in clinical 
practice. 
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