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Abstract Electricity is one of the most important sources of energy. Many devices need electrical energy to operate. In 

addition to the production of electrical energy from renewable sources, the fact that it can be produced from waste heat 

sources will increase efficiency. As in many systems, it is possible to generate electricity by using thermoelectric generators 

(TEGs) on the waste heat systems of vehicles using internal combustion engines. Thanks to the electricity obtained from 

waste heat systems, the load on the alternators and batteries in the vehicles is reduced, thus increasing their service life. In 

addition, since the charging time of the vehicle battery is reduced, fuel savings can be achieved. Therefore, making electricity 

generation predictions using machine learning algorithms in internal combustion engines will make a great contribution to 

the initial project planning phase of the design of automobile systems. Nowadays, research on waste heat energy recovery 

from automobile exhaust with TEGs using machine learning is a new topic. In this study, a data set containing the attributes 

of 2692 current and voltage values obtained from a thermoelectric generator on an automobile exhaust system was used. 

AdaBoost and Random Forest machine learning algorithms were used in the estimation process of the designed model. The 

most successful result was achieved when estimating the current with the AdaBoost algorithm. In this study, it has been 

shown that with the proposed model, electrical energy production estimation can be made over the waste heat sources of 

different systems. 

Keywords: Thermoelectric generator, waste heat source, machine learning, estimation, performance, 

measurement 

1. INTRODUCTION

It has been established that internal combustion engines have two important sources of heat dissipation, representing about 

70%. Exhaust gas (∼35-40%) and radiator (∼30%) systems are sources of heat dissipation of internal combustion engines.  In 

such engines, recovering some or all of this wasted heat will increase energy efficiency and reduce fuel consumption. 

Electricity can be produced from wasted waste heat by using thermoelectric generators for waste heat recovery of an internal 

combustion engine. Thermoelectric generators are seen to be more advantageous than other thermal energy recovery methods 

due to their environmental friendliness, low noise level as there are no moving parts, no vibration, no working fluid, low 

maintenance, scalability, modularity, ability to operate in a wide range of temporary temperature conditions, high reliability 

level and direct conversion of thermal energy into electrical energy [1].  

Thermoelectric generators can be used to generate electricity at many points where heat generation occurs in automobiles. 

Electricity can be generated with the heat from the brake system and the batteries of electric vehicles; especially the exhaust 

gas waste heat energy [2, 3]. In vehicles with internal combustion engines, the electrical energy produced by thermoelectric 

generators reduces the load on the alternator and helps to reduce fuel consumption. 

Kunt [4] recovered a waste heat from the exhaust gas of an internal combustion gasoline engine. By comparing the 

experimental results with the simulation results, it was observed that they were compatible with each other. As a result, it 



Estimation of Current and Voltage Values Generated… 

ECJSE Volume 13, 2026  18 

obtained a voltage of 6.75 V and a current of 0.65 A at a load resistance of 10 Ω with a temperature difference of 165 OC 

between hot and cold surfaces.  

Albatati et al. [5] conducted an analytical thermal system design and experimental verification of the TEG system for the 

recovery of waste heat from the exhaust of truck engines. In the study, they used 100 modules in the TEG system and the total 

power generated by the system was 1.25 kW. It represents 20% of the alternator power requirement of a truck engine and a 

power density of 1.4 W/cm2. They found that the experiments and simulation values were compatible. 

Li et al. [6] conducted a study on the conversion efficiency of the Automotive Thermoelectric Generator (ATEG). In 

addition, it improved the maximum electrical power generated by ATEG by optimizing the number of thermoelectric modules 

(TEMs). According to ATEG's optimization results, the maximum electrical power produced by the system was 139.47 W and 

the conversion efficiency was 2.51% under stationary motor condition. As a result, the optimized design was tested in different 

engine conditions. They found that when the exhaust inlet temperature was 805 K and the mass flow rate was 0.5 kg/s, the 

maximum power and efficiency produced by ATEG increased by 49.8% and 106.5%, respectively, after optimization. 

Thermoelectric generators can also be operated using electrical energy in vehicles where they need to be heated or cooled 

[7]. During their operation, no waste energy or harmful gas emissions are generated. 

Electrical energy is of great importance in the economic development of nations [8]. Through electrical power generation 

estimation studies, it is seen that the amount of energy production for any practical situation can be easily estimated without 

actually carrying out the design [9]. In addition, the predicted results; it has shown that it is possible to have information about 

energy production by predicting in advance and that the forecast data can be used in electrically efficient load distribution [10].  

In recent years, machine learning, which is a sub-branch of deep learning, has attracted great attention due to its strong 

generalization ability, unsupervised feature learning ability, and ability to receive training from large data [11]. Using machine 

learning algorithms, predictions are made by making automatic inferences from patterns, trends, and complex relationships of 

large amounts of data that human analysts cannot see [10]. 

Machine learning algorithms are widely applied in pattern recognition, image processing, error detection, classification, and 

prediction tasks [12]. In recent years, learning-based prediction models have proven to be high-performing in terms of 

accuracy. Energy estimation applications made by using  learning methods have started to be widely used [13]. 

Chang et al. [14] proposed a novel integration method based on deep learning methods for photovoltaic electrical power 

output estimation during the day.  In the study, they showed that computational efficiency by making prediction accuracy is 

superior to previous studies. Kadar et al. [15] conducted a spatial electric load estimation study of electric vehicles in Hungary. 

In the study, it was aimed to determine the electrical power demand of electric vehicles and the distribution of electric charging 

production centers. MdShahiduzzaman et al. [16] created a renewable energy generation forecast model from solar and wind 

energy in twelve countries. In the study, the predictive success of Support Vector Machine (SVM), Linear Regression (LR) 

and Long Short-Term Memory (LSTM) algorithms were compared, and more successful results were obtained with the Linear 

Regression machine learning algorithm. Kishore et al. [17] performed precise and efficient temperature estimation to protect 

the charge and operating environment of electric vehicles (EV). In the study, energy efficiency for air conditioning and cabin 

cooling of electric vehicles was aimed by estimating the temperature. Baran et al. [18] applied digital weather forecasting to 

predict power losses in electricity transmission lines. In the study, they presented a method for estimating resistive power 

losses in electrical distribution lines. Ullah et al. [19] proposed to efficiently detect electricity thieves in smart grids by 

designing a hybrid model with machine learning and deep learning methods. In the study, AdaBoost was used as the machine 

learning method and AlexNet was used as the deep learning model. Chang et al. [20] designed a suitable model to predict the 

quality of a semiconductor based on machine learning technologies. In the study, they showed that the improved AdaBoost 

model not only improved prediction accuracy, but also prediction reliability for semiconductor manufacturing. Khudhair et al. 

[21] established the feasibility of building a smart system to predict electrical energy consumption, as the market share of 

electricity is expected to increase in the coming decades. Adhya et al. [22] presented a comparative study between three 

machine learning algorithms to predict the likely charging demand of electric vehicles.  In the study, MSE, MAE, RMSE and 

R-squared value performance measures were used in the comparison process. Ranganathan and Rajagopalan [23] carried out 

the model for predicting excess energy and user availability for V2G (Vehicle to Grid) services using machine learning 

algorithms. They used the Mean Absolute Percentage Error (MAPE) scale for the success of the estimation process. Nti et al. 

[24] reviewed and analyzed 77 academic studies published in the last nine years (2010-2020), in which electricity demand 

forecasting research was conducted. In the studies, it has been revealed that the Artificial Neural Networks model is mostly 

used. In the studies, it was observed that the most used error metric was the Root Mean Square Error (RMSE) (38%), and the 

second was the Average Absolute Percentage Error MAPE (35%). In addition, the study also found that 50% of the electricity 

demand forecast depends on weather and economic parameters, 38.33% on past energy consumption, 8.33% on household 

lifestyle, and 3.33% on stock indices. Parhizkar [25] used the Random Forest algorithm to estimate the energy consumption of 

selected cities with high success. Wang et al. [26] used the MIFS-AdaBoost machine learning algorithm to predict electric 
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vehicles (EV) ownership. In the literature, studies comparing the prediction success of Random Forest and AdaBoost 

algorithms together have been conducted [27]. 

In this study, a current and voltage estimation model was created by using the electric current and voltage values produced 

from the thermoelectric generator mounted on the exhaust system of a Toyota brand car under real driving conditions. 

AdaBoost and Random Forest machine learning algorithms were used in the prediction model. By using these algorithms, 

prediction successes were measured and compared according to MSE, RMSE, MAE, MAPE error metric measures and R-

squared correlation coefficient according to different training and test data values. 

 

2. MATERIAL AND METHODS 

In this study, the designed system is installed on the exhaust pipe of a car, and the combined images of the TEGs are given in 

Figure 1. Here, it consists of a thermoelectric generator, cables, data loading system, data set and computer system. 

 

 

Figure 1: Diagram of the Designed System. 

 

In this system, four TEGs are placed in the vehicle's exhaust pipe. TEGs are cooled with aluminum cooling fins. In addition, 

temperature sensors are placed to measure the temperatures of the cold and hot areas of the TEGs. While the data from these 

sensors is recorded with the data loader, the voltage and current information produced by the TEGs is recorded instantly. 

Six temperature sensors were connected to the TEG devices. In addition, there is a temperature sensor to measure the 

temperature of the test environment (outdoors). The temperature data obtained from a total of seven sensors, as well as current 

and voltage data, were recorded. A data set was created by organizing the recorded data. Machine learning algorithms were 

trained using randomly selected data (75%, 50% and 25%) from this data set. Current and voltage estimations were made on 

the trained model using the feature data of randomly selected test data. The estimation values obtained were compared with 

the actual values and the estimation success was measured. 

The vehicle used in the experiments is a 1.6 liter naturally aspirated 2021 model Toyota Corolla. The vehicle has an 

automatic CVT transmission and can be operated manually if desired. Test drives were carried out in manual mode. The 

experiments were carried out at the same time and at the same ambient temperature every day. In addition, wind resistance 

was ignored. Because the thermoelectric generators mounted on the exhaust pipe are inside the shaft tunnel, there is very little 

chance of exposure to wind. Therefore, wind resistance is ignored. Fans are used to cool the TEGs. Road and driving conditions 

are given in Table 1.  

Table 1: Test conditions for the vehicle and road used for the test. 

Test condition definitions Values 

Road length  15.4 km 

Ambient temperature  29 o C 

Rolling resistance coefficient  0.0015 

Average traffic density  20% 

Road surface  Asphalt  

Road slope  4 km (landing), 4 km (ascent) and 7.4 km (straight)  

Gearbox  6 forward manual 

Experiment speeds  40, 60, 80 and 100 km/h  

Tyre pressure  221 kPa 
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2.1. Thermoelectric Generator Structure 

Approximately 70% of the heat energy generated in vehicles with internal combustion engines (ICE) is discharged through 

exhaust, cooling and lubrication systems [28]. This heat energy is called waste heat energy. Waste heat energy discharged 

through exhaust accounts for approximately 30% of this rate [29]. The heat energy discharged from here, together with the 

burnt gases, is transferred to the external environment along the exhaust pipe. From the moment they first exit the exhaust 

manifold, the burnt gases are expelled through the exhaust pipe, losing their temperature. If thermoelectric generators (TEG) 

are placed in the appropriate sections on the exhaust pipe, electricity is produced from waste heat energy [30-32]. TEGs 

produce electricity by taking advantage of the temperature difference in their environment [33]. This potential for electricity 

generation is called the Seebeck effect [34]. TEGs have positive and negative semiconductor pairs connected to each other by 

copper wires. These pairs are insulated from the external environment with a ceramic plate from the top and bottom (Figure 

2).  

 

Figure 2: Internal structure of TEG [33]. 

 

If the ceramic plates are touched to a cold surface on one side and a hot surface on the other, electricity is produced from 

the temperature difference in the TEG (Figure 3). 

 

Figure 3: Electricity generation with TEGs [34].  

 

The amount of electricity production in TEGs depends on the magnitude of the temperature difference between hot and cold 

sources. In internal combustion engines, the temperature of the exhaust gases is around 700 oC when they first exit the exhaust 

manifold [35]. This temperature decreases along the exhaust pipe depending on the outdoor temperature. For the best possible 

electricity generation, it is necessary to place the TEGs close to the exhaust manifold. The cold sides of TEGs face the external 

environment. This area is cooled by the air flow while the vehicle is moving with the heat exchanger with aluminum cooling 

fins placed on it. However, when the vehicle stops, it is necessary to place a fan on the heat exchangers for cooling. 
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2.2. Machine Learning Algorithms 

Machine learning algorithms are used for classification and regression forecasting operations in many different areas [36]. 

It is widely used, healthcare, disease diagnosis prediction [37], depression risk estimation [38], prediction of heating and 

cooling loads of residential buildings [39], capacity estimation of lithium-ion batteries [40], wind power forecasting [41], 

Churn prediction in industry [42], charge [43] and carbon emission estimation [44]. In this study, voltage and current 

estimations that TEG devices can produce were carried out by using AdaBoost and Random Forest algorithms. The machine 

learning algorithms used can be successfully applied on the data obtained in different roads, vehicles and geographical 

conditions. However, the attributes of the records in the data set to be processed must be selected correctly. 

 
2.2.1. AdaBoost Machine Learning Algorithm 

Freund and Schapire [45] developed AdaBoost.M2 to solve regression problems and named the new method AdaBoost.R 

in 1997. In this method, regression problems are calculated by reducing classification problems. AdaBoost.R algorithm and 

introduced the AdaBoostR2 algorithm and obtained successful results [46]. By using this algorithm, it is seen that successful 

predictions are made to the correct learning structures repeated on the training data [44].  

In the AdaBoost algorithm, the data set is reconstructed by adding re-weights for incorrectly estimated samples. In boosting 

by reweighting all the training examples are used to train the weak learning machine with weights assigned to each example 

[46]. The flowchart of the AdaBoost algorithm is shown in Figure 4.  

 

Figure 4: The flowchart of the AdaBoost algorithm 

 

In this algorithm, weight calculations are performed first (with updated results), followed by the generation of probability, 

prediction function, and reliability coefficient. In the final stage, a new prediction value is produced [39, 46].The weight 

calculation (recalculation) is presented in equation 1. 

 

𝑤𝑖 = 𝑤𝑖𝛽(1−𝐿𝑖)                   (1) 

 

The probability is computed based on the assigned weight values, as illustrated in equation 2 [46]. 

 

𝑝𝑖 =
𝑤𝑖

∑ 𝑤𝑖
                             (2) 

 

The prediction process utilizes the computed probability value to identify losses. A linear loss function is adopted in this 

study, as illustrated in equation 3 [39, 46]. 

𝐿𝑖 =
𝑦𝑖

𝑝
(𝑥𝑖)−𝑦𝑖

𝐷
                    (3) 
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The loss function is denoted by Li and 𝐷 refers to the distribution. The dataset consists of feature values xi and yi. Based on 

these values, the average loss is computed, as shown in equation 4 [39, 46]. 

 
𝐿̅ = ∑ 𝐿𝑖𝑝𝑖

𝑛
𝑖=1                     (4) 

 

Based on the computed loss values, the reliability coefficient is obtained. Its formulation is provided in Equation 5 [46]. 

𝛽𝑖 =
𝐿̅

1−𝐿̅
                           (5) 

 

The reliability coefficient is represented by βi.  At the final stage, the output prediction value is calculated. 

 
2.2.2. Random Forest Machine Learning Algorithm 

The Random Decision Trees (RDT) algorithm, which forms the basis of the Random Forest (RF) algorithm, was first 

introduced by Ho [47] in 1995. An improved version of this algorithm, the Random Forest algorithm, was developed by 

Breiman [48]. RF makes classification and regression problems a different model. By using this algorithm, the training phase 

of training test data is carried out very quickly. Random Forest is made up of a large number of DTs (Decision Trees). In the 

Random Forest algorithm, there is a difference between decision trees. In this algorithm, records are randomly selected to 

generate a random forest tree and obtain the result [27]. In the RF algorithm, the most appropriate partitioning is selected from 

a randomly selected set of features for each intermediate node [49].   

The Random Forest algorithm is based on multiple decision trees. In this algorithm, the values of the new data are estimated 

by averaging the results of the predictions obtained with multiple decision trees. When the correct attributes are selected, they 

are used in this algorithm to obtain high-success predictions [50]. Many decision trees that act as regression functions are 

generated using the random forest algorithm. In the final stage, the output of all decision trees is averaged to create the output 

of the random forest regression [40]. The flowchart of the Random Forest algorithm is shown in Figure 5. 

Figure 5: The flowchart of the Random Forest algorithm. 

 

The data set and the attributes of the data in it are shown in the equation 6 [40]. 

 

𝑆𝑛 = (𝑋1, 𝑌1 … . 𝑋𝑛, 𝑌𝑛)               (6) 

 

𝑆𝑛 is data set and 𝑋𝑛, 𝑌𝑛 are features. Prediction function is shown in the equation 7 [40, 48]. 

 

𝑌̂𝑞 = ℎ̂(𝑋, 𝑆𝑛

𝑄𝑞
)                         (7) 
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𝑆𝑛

𝑄𝑞   is bootstrap sample and X is input vector. 𝑞 prediction trees output numbers. At last output function is shown in 

equation 8 [40,41] 

𝑌̂ =
1

𝑞
∑ ℎ̂(𝑋, 𝑆𝑛

𝑄𝑞𝑞
𝑙=1 )                  (8) 

 

L tree-structured based in Random Forest algorithm.  𝑌̂ the output of 𝑙 th tree (𝑙 = 1,2. . . . 𝑞) [40]. 

 

2.3. Machine Learning Evaluation Metrics 

The MSE, MAE, RMSE, metrics are used in the predictive performance analysis of a model to determine error rates. The 

R-Squared metric measure is used to evaluate the prediction success performance of a model. 

 

2.3.1. MAE (Mean Absolute Error) 

The MAE metric measure is calculated as the average of the absolute error values on a data set. The result represents the 

difference between the original values and the predicted values. MAE is a popular success measurement metric. Changes in 

MAE are shown linearly. In this metric, scores increase linearly with increasing errors between the forecast and the original 

data. The different errors obtained in MAE cannot be weighted more or less. The MAE metric is measured as the average of 

the absolute error values. Absolute is a mathematical function that used to make numbers for positive. When calculating MAE, 

it will necessarily be positive. Therefore, the difference can be positive between expected and predicted values. The MAE 

calculation is shown on equation 3[51]. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦1 − 𝑦𝑖|𝑛

𝑖=1                               (3) 

𝑦1, represents the actual data, 𝑦𝑖  indicates the estimated data, and 𝑛 indicates the number of test data 

 

2.3.2. MSE (Mean Squared Error) 

The MSE metric measure represents the difference between the original and predicted values, which is subtracted by 

squaring the average difference over the data set.  This metric value is measured the mean square error of the mismatch between 

the predicted results and the test data. A low MSE result value means that the predicted values match the actual values. The 

MSE calculation is shown on equation 4. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦1 − 𝑦𝑖)2𝑛

𝑖=1             (4) 

2.3.3. RMSE (Root Mean Squared Error) 

The RMSE metric measure is the error rate relative to the square root of the MSE metric measure. The RMSE is calculated 

in order of magnitude of the observed values. Therefore, it varies significantly from one application to another. The RMSE 

calculation is shown on equation 5[52]. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦1 − 𝑦𝑖)2𝑛

𝑖=1   (5) 

2.3.4. MAPE (Mean Absolute Percentage Error) 

The MAPE metric measure demonstrates the accuracy of a prediction. The size of the error between the estimate and the 

actual value is calculated. The MAPE calculation is shown on equation 6[51]. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦1−𝑦𝑖

𝑦1
| ∗ 100𝑛

𝑖=1   (6) 

2.3.5. R-squared (Coefficient of determination) 

The R-squared (R2) metric measure represents the coefficient of how well the predicted values fit compared to the original 

values. The value between 0 and 1 obtained with this metric is interpreted as a percentage. It is used to test how well the model 

fits the data with linear regression. When the number of terms increases in the designed model, the R-squared value also 

increases. The value of R-squared data can be positive or negative. If it is negative, a forecast mismatch occurs. The R-squared 

success calculation is shown on equation 7. 

 

𝑅2 = 1 −
∑ (𝑦1−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦1−𝑦1̅̅̅̅ )2𝑛
𝑖=1

               (7) 

𝑦1̅̅ ̅ shows the sum of the actual data. 
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(c) 

 

Figure 6: The differences between actual current values and predicted current values: (a)The predicted current 

values (for 75% training, 25% test rates) and actual current values; (b)The predicted current values (for 50% 

training, 50% test rates) and actual current values; (c) The predicted current values (for 25% training, 75% test 

rates) and actual current values. 
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(c) 
Figure 7: The differences between actual voltage values and predicted voltage values: (a)The predicted voltage 

values (for 75% training, 25% test rates) and actual voltage values; (b)The predicted voltage values (for 50% 

training, 50% test rates) and actual voltage values; (c)The predicted voltage values (for 25% training, 75% test rates) 

and actual voltage values. 
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3. EXPERIMENTAL RESULTS 

In this study, graphs comparing the current and voltage values estimated according to different training and test data with 

the actual current and voltage values are shown in Figure 6 and Figure 7. The green plot on the graph shows the actual current 

values. The blue plot on the graphs shows the values predicted by the AdaBoost algorithm, and the red plot shows the values 

predicted by the Random Forest algorithm. The intersection of the drawings on the graphs indicates that the forecast success 

is high. Table 2 shows the data counts and percentages selected for training and testing. 

 

Table 2: The number and percentage ratio of data selected for training and testing. 

Train Test 

Percentage  Number  Percentage Number 

75% 2019  25% 673 

50% 1346  50% 1346 

25% 673  75% 2019 

 

Figure 6 shows the comparison of the predicted current values obtained by AdaBoost and Random Forest algorithm with 

the actual (A) values when 75%, 50% and 25% data are selected for training and 25%, 50% and 75% data are selected for 

testing. In the first model, when 75% data is selected for training and 25% for testing, the difference between the actual current 

values and the predicted current values is shown in the graph on Figure 6.a. In this model, the highest success is seen because 

the training data is selected high. In the second model, when the training data is selected at a rate of 50% and the test at a rate 

of 50%, the difference between the actual current values and the predicted current values is shown in the graph on Figure 6.b. 

In the third model, when the data is selected at the rate of 25% of the training and 75% of the test, the difference between the 

actual current values and the predicted current values is shown in the graph on Figure 6.c. In this model, since the training data 

is selected low, the lowest performance was observed on this graph.  
Figure 7 shows the comparison of the actual (A) voltage values with the predicted voltage values by the AdaBoost and 

Random Forest algorithm when 75%, 50% and 25% data are selected for training and 25%, 50% and 75% data are selected for 

testing. In the first model, when 75% data is selected for training and 25% for testing, the difference between the actual voltage 

values and the predicted voltage values is shown in the graph on Figure 7.a. In this model, the highest success is seen because 

the training data is selected high. In the second model, when the training data is selected at a rate of 50% and the test is selected 

at a rate of 50%, the difference between the actual voltage values and the predicted voltage values is shown in the graph on 

Figure 7.b. In the third model, when the training data is 25% and the test is 75%, the difference between the actual voltage 

values and the predicted voltage values is shown in the graph on Figure 7.c. In this model, since the training data is selected 

low, the lowest performance was observed on this graph. 

In this study, electricity was produced from the heat generated on the exhaust system by using TEG devices. The article 

provides the test environment, vehicle characteristics, road condition, and load condition. In addition, the basic building blocks 

of electricity generation are current and voltage values. Therefore, it is of great importance. The comparison of voltage and 

current estimates produced are showing according to different numbers of training and test data with the actual in the Figure 4 

and Figure 5. The red and blue regions on the figures indicate erroneous estimates. From the figures, it can be seen that the 

error rate is very low. This shows that the results obtained are remarkable. 

 

3.1. Comparison of Results Based on the Performance Metrics 

Table 3 shows the success of the current values estimated by AdaBoost and Random Forest algorithms. The MSE metric 

value was found to be 0.000 in all tests performed on the designed model. The RMSE metric value was found to be 0.004, the 

highest by the Random Forest algorithm, when 25% data was selected for training and 75% for testing. The MAE metric value 

was found to be the lowest 0.001 with the AdaBoost algorithm when 75% data was selected for training and 25% data for 

testing.  

Table 3: Success rates of the current estimation. 

Model Train Test     MSE RMSE MAE MAPE R2 

AdaBoost 

75% (2019)  25% (673) 4×10-6 2×10-3 1×10-3 15×10-3 999×10-3 

50% (1346)  50% (1346)   4×10-6 2×10-3 2×10-3 18×10-3 998×10-3 

25% (673)  75% (2019)   9×10-6 3×10-3 2×10-3 25×10-3 997×10-3 

Random Forest 

75% (2019)  25% (673)   4×10-6 2×10-3 2×10-3 17×10-3 998×10-3 

50% (1346)  50% (1346)   4×10-6 2×10-3 2×10-3 20×10-3 998×10-3 

25% (673)  75% (2019) 16×10-6 4×10-3 2×10-3 27×10-3 995×10-3 
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The MAPE metric value was found to be the lowest 0.001 by the AdaBoost algorithm when 75% data was selected for 

training and 25% data for testing. However, the MAPE metric value was found to be the highest 0.027 by the Random Forest 

algorithm when 25% of the data was selected for training and 75% for testing. The R2 metric value was found to be the highest 

0.999 by the AdaBoost algorithm when 75% of the data was selected for training and 25% for testing. However, the R2 metric 

value was found to be the lowest 0.995 by the Random Forest algorithm when was selected at a rate of 25% for training and 

75% for testing. 

Table 4 shows the success of the voltage values estimated by AdaBoost and Random Forest algorithms. The MSE metric 

value was found to be the lowest 0.010, by the AdaBoost algorithm, when 75% data was selected for training and 25% data 

was selected for testing on the designed model. However, the MSE metric value was found to be the highest 0.037 by the 

Random Forest algorithm when 25% of the data was selected for training and 75% for testing. The RMSE metric value was 

found to be the lowest, 0.098, by the AdaBoost algorithm when 75% of the data was selected for training and 25% for testing. 

However, the RMSE metric value was found to be the highest, 0.193 by the Random Forest algorithm when 25% The MAE 

metric value was found to be the lowest 0.070 by the AdaBoost algorithm, when 75% of the data was selected for training and 

25% for testing. However, the MAE metric value was found to be the highest 0.130 by the Random Forest algorithm when 

25% of the data was selected for training and 75% for testing. The MAPE metric value was found to be the lowest, 0.017, by 

the AdaBoost algorithm, when 75% of the data was selected for training and 25% for testing. However, the MAPE metric 

value was found to be the highest 0.033, by the Random Forest algorithm, when 25% data were selected for training and 75% 

for testing. The R2 metric value was found to be the lowest 0.995, by the Random Forest algorithm, when 25% of the data was 

selected for training and 75% for testing. 

 

Table 4: Success rates of the voltage estimation. 

Model Train Test MSE RMSE    MAE MAPE R2 

AdaBoost 

75% (2019)   25% (673)   9604×10-6   98×10-3   70×10-3 17×10-3 999×10-3 

50% (1346)   50% (1346) 11236×10-6 106×10-3   74×10-3 19×10-3 999×10-3 

25% (673)   75% (2019) 26896×10-6 164×10-3 110×10-3 28×10-3 997×10-3 

Random Forest 

75% (2019)    25% (673) 10816×10-6 104×10-3   74×10-3 18×10-3 999×10-3 

50% (1346)    50% (1346) 13924×10-6 118×10-3   79×10-3 20×10-3 998×10-3 

25% (673)    75% (2019) 37249×10-6 193×10-3 130×10-3 33×10-3 995×10-3 

 

4. DISCUSSION 

Artificial intelligence-supported smart models can create very important beneficial results for sustainable energy 

management and planning. In the literature, many studies have been conducted on energy production and consumption 

estimations using different models [53]. Energy generation from thermoelectric systems is one of the renewable energy 

conversion technologies that can convert heat into electricity. In recent years, a large number of model designs have begun to 

be carried out in the literature to predict and optimize the performance of thermoelectric generator systems [54]. Table 5 

presents studies from the literature in which various algorithms have been used for energy production forecasting, as well as 

regression prediction studies that specifically employ the AdaBoost and Random Forest algorithms. There are important points 

that distinguish this study from other studies. To the best of our knowledge in existing literature, no other study was found in 

which real data obtained from thermoelectric generators were used on an automobile exhaust system and current and voltage 

values estimation using error metrics. In the table, 6 related studies are shown that have been previously conducted using 

different learning algorithms in the literature. In addition, with the model developed in this study, the achievements obtained 

in the literature studies were compared with numerical data.  

MdShahiduzzaman et al. [16] carried out a renewable energy production forecasting model. It was designed a renewable 

energy forecasting model for twelve (12) countries in the study. It was used three machine learning model as Support Vector 

Machine, Linear Regression, and Long Short-Term Memory (LSTM) in the estimation process. According to the results, the 

Linear Regression algorithm found at least error rate of 2.282 according to the MAE metric measurement, 9.592 according to 

the MSE metric measurement, and 3.097 according to the RMSE metric measurement. 

Cetin et al. [53] used a new geothermal-thermoelectric hybrid system to predict electrical power generation using smart 

models. In the study, it has been shown that it can be used to predict real-time power production by using artificial intelligence-

supported smart models based on machine learning algorithms. In the study, a model was designed to predict energy production 

from waste geothermal fluid on a real test platform. Support Vector Machine (SVM), Support Vector Regression, k-Nearest 

Neighbor, Decision Tree (DT), Random Forest, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 

(LightGBM), Categorical Gradient Boosting (CatBoost) algorithms were used in the estimation model. According to the results 

obtained, power generation estimates were obtained with 98.7% accuracy according to the R2 metric with LightGBM learning 
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algorithms. The study shows that the models used to classify different hot and cold water levels have high classification 

performance. 

 

Table 5: Comparison with studies in the literature. 

Researcher Estimation process Algorithm Success / Error Rate 

Angeline et al. [9] 
 Performance estimation of thermoelectric 

generator (Matlab simulation) 
Artificial Neural Network MER<0.03 

MdShahiduzzaman et al. [16] Renewable energy production Linear Regression 

MSE=9.592 

MAE=2.282 

RMSE=3.097 

Cetin et al. [53] 

Estimation of electrical power generation that 

can be generated from a geothermal-

thermoelectric hybrid system (Real data) 

Light gradient boosting 

machine (LightGBM) 

 

R2=0.987 

Belovski et al. [55]  
Voltage production estimation of 

thermoelectric generator (Matlab simulation) 
Artificial Neural Network MSE=0.143 

Ozbektas et al. [56] 

Current production estimation of 

thermoelectric generator (Real data) 

Artificial Neural Network 

R2=0.995 

MAE=0.006 

MSE= 8.32* 10-5 

RMSE=9.12*10-3 

Voltage production estimation of 

thermoelectric generator (Real data) 

R2=0.982 

MAE=0.061 

MSE=0.007  

RMSE=0.086 

Power production estimation of 

thermoelectric generator (Real data) 

R2=0.942 

MAE=0.025 

MSE= 0.001 

RMSE=0.037 

Efficiency production estimation of 

thermoelectric generator (Real data) 

R2=0.980 

MAE=5.1*10-4 

MSE= 4.22*10-7 

RMSE=6.4.10-5 

Celik et al. [57] 

Electric power production prediction and 

classification of thermoelectric generator 

(Real data) 

Random Forest Accuracy=96.6% 

Proposed Model 

Current production estimation of 

thermoelectric generator (Real data) 

AdaBoost 

 

MSE=0.000 

RMSE=0.002 

MAE=0.001 

MAPE=0.015 

R2=0.999 

Voltage production estimation of 

thermoelectric generator (Real data) 

AdaBoost 

 

MSE=0.010 

RMSE=0.098 

MAE=0.070 

MAPE=0.017 

R2=0.999 

 

Angeline et al. [9] performed performance estimation of a hybrid thermoelectric generator using the artificial neural 

networks tool on the simulation created on MATLAB software under various temperature, load and series conditions. The 

simulated parameters (up to an inlet heater temperature of approx. 250 °C) were compared with the experimental results. For 

all parameter values, the mean error rate (MER) between the experimental approach and the ANN-based approach was found 

to be less than 0.03. 

Belovski et al. [55] designed the Seebeck module on the Matlab. In the study, they performed voltage production estimation 

with the ANN algorithm using the data they received from the thermoelectric generator simulation. In the study, the direct 

conversion of temperature differences into electrical energy was modeled using the Seebeck module.  Using this model, the 

electrical voltage values generated from the thermoelectric generator simulation were obtained. Then, the voltage values 

produced by the thermoelectric generator simulation module were compared with the voltage estimation values obtained by 
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the ANN algorithm and the estimation error rates were compared. According to the results, it was found an error rate of 0.143 

in the MSE metric measurement. 

Ozbektas et al. [56] performed performance comparison by estimating the effects of load resistance and heat input on TEG 

performance using ANN models on an experimental set. In the study, three-dimensional finite volume methods were applied 

using ANSYS software and the results were compared with experimental and ANN estimation results in terms of voltage, 

current, power output and efficiency. According to the study, according to the correlation of determination (R2), mean absolute 

error (MAE), mean square error (MSE) and root mean square error (RMSE) performance metrics, 0.9958, 0.0061, 0.0000832, 

0.00912 for current; 0.982, 0.0611, 0.0075, 0.086 for voltage; 0.9422, 0.025, 0.0014, 0.037 for power and 0.98056, 0.00051, 

4.22*10-7, 0.000064 for efficiency results were obtained. According to the results obtained; the results of the ANN forecast 

model and the actual data are very close to each other. 

Celik et al. [57] designed a model for prediction seven electric power classification using Random Forest, Support Vector 

Machine and Naive Bayes machine learning algorithms.  In the model, 76% of the dataset was used for training and 24% was 

used for testing process. In the study, classification prediction success was achieved rate of 96.6% by Random Forest algorithm, 

94.6% using the Support Vector Machine algorithm and 76.7% using the Naive Bayes algorithm. In the study accuracy success 

metric was used for classification prediction. According to the obtained results; electrical power classification process was 

predicted more successfully by Random Forest machine learning algorithm.   

In the proposed model, the current and voltage values that can be produced from the thermoelectric generator on an 

automobile exhaust system were estimated with AdaBoost and Random Forest algorithms.  

According to the results obtained, it was seen that the AdaBoost algorithm made a more successful prediction. When the 

current estimation was made with the AdaBoost algorithm, 0.000 values were obtained according to the MSE metric 

measurement, 0.002 according to the RMSE metric measurement, 0.001 according to the MAE metric measurement, 0.015 

according to the MAPE metric measurement and 0.999 according to the R2 correlation coefficient. In addition, when voltage 

estimation was made with the AdaBoost algorithm, values of 0.010 were obtained according to the MSE metric measurement, 

0.098 according to the RMSE metric measurement, 0.070 according to the MAE metric measurement, 0.017 according to the 

MAPE metric measurement and 0.999 according to the R2 correlation coefficient. When compared with all studies in the 

literature, it is seen that the R2 correlation coefficient in the proposed model is the highest. In addition, it is seen that the 

estimation is made with the least error rate compared to other studies with an error rate of 0.000 according to the MSE metric 

in the current production estimation. When compared with other metrics, it is seen that the error rates are small. The results 

obtained show that artificial intelligence models can effectively use waste thermal energy and contribute to electrical energy 

production. Unlike the study by Ozbektas et al. [56], this research employs alternative forecasting models. Furthermore, it 

differs from the work of Celik et al. [57] in terms of the predicted and classified output variables. 

  

5. CONCLUSION 

In the study, a dataset consisting of the current and voltage values obtained from the TEG mounted on the exhaust system 

was created which is the waste heat source of an automobile. In the study, the data obtained from the thermoelectric generator 

on the exhaust system in the real driving environment on the determined route were recorded with the help of a data recorder. 

In the data set consisting of 2692 records, there are 10 attribute data for each record, including speed, engine speed, gear, 

outdoor temperature and temperature values of the 6 channels of the TEG. Using this data set, current and voltage estimations 

were made by machine learning algorithms for future states. AdaBoost and Random Forest machine learning algorithms were 

used for prediction. In the study different training and test rates were used for comparing and verifying prediction performance 

results. When 75% for training and 25% for the test records were selected from this data set randomly, the estimation was 

performed more successful with the AdaBoost machine learning algorithms. MSE, RMSE, MAE, MAPE error metrics and R2 

correlation coefficient success metrics were used as estimation measurement parameters. The limited number of TEGs and the 

application of only one vehicle to the exhaust system can be seen as the limit of the study. TEG performance is achieved 

through effective cooling of cold surfaces. In our study, cooling is achieved with fans. Liquid cooling systems are being 

considered for future studies, allowing for more effective and stable cooling. In future studies, it is planned to make voltage 

and current estimates that can be produced with TEG devices on the waste heat systems of different vehicles/machines using 

others types of learning algorithms.  In addition, it is thought that our study, which is a new topic in the literature, will help the 

future applications of exhaust gas waste heat recovery prediction of automobiles using TEGs. 
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