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Abstract Electricity is one of the most important sources of energy. Many devices need electrical energy to operate. In
addition to the production of electrical energy from renewable sources, the fact that it can be produced from waste heat
sources will increase efficiency. As in many systems, it is possible to generate electricity by using thermoelectric generators
(TEGS) on the waste heat systems of vehicles using internal combustion engines. Thanks to the electricity obtained from
waste heat systems, the load on the alternators and batteries in the vehicles is reduced, thus increasing their service life. In
addition, since the charging time of the vehicle battery is reduced, fuel savings can be achieved. Therefore, making electricity
generation predictions using machine learning algorithms in internal combustion engines will make a great contribution to
the initial project planning phase of the design of automobile systems. Nowadays, research on waste heat energy recovery
from automobile exhaust with TEGs using machine learning is a new topic. In this study, a data set containing the attributes
of 2692 current and voltage values obtained from a thermoelectric generator on an automobile exhaust system was used.
AdaBoost and Random Forest machine learning algorithms were used in the estimation process of the designed model. The
most successful result was achieved when estimating the current with the AdaBoost algorithm. In this study, it has been
shown that with the proposed model, electrical energy production estimation can be made over the waste heat sources of
different systems.

Keywords: Thermoelectric generator, waste heat source, machine learning, estimation, performance,
measurement

1. INTRODUCTION

It has been established that internal combustion engines have two important sources of heat dissipation, representing about
70%. Exhaust gas (~35-40%) and radiator (~30%) systems are sources of heat dissipation of internal combustion engines. In
such engines, recovering some or all of this wasted heat will increase energy efficiency and reduce fuel consumption.
Electricity can be produced from wasted waste heat by using thermoelectric generators for waste heat recovery of an internal
combustion engine. Thermoelectric generators are seen to be more advantageous than other thermal energy recovery methods
due to their environmental friendliness, low noise level as there are no moving parts, no vibration, no working fluid, low
maintenance, scalability, modularity, ability to operate in a wide range of temporary temperature conditions, high reliability
level and direct conversion of thermal energy into electrical energy [1].

Thermoelectric generators can be used to generate electricity at many points where heat generation occurs in automobiles.
Electricity can be generated with the heat from the brake system and the batteries of electric vehicles; especially the exhaust
gas waste heat energy [2, 3]. In vehicles with internal combustion engines, the electrical energy produced by thermoelectric
generators reduces the load on the alternator and helps to reduce fuel consumption.

Kunt [4] recovered a waste heat from the exhaust gas of an internal combustion gasoline engine. By comparing the
experimental results with the simulation results, it was observed that they were compatible with each other. As a result, it

ECJSE Volume 13, 2026 17



Estimation of Current and Voltage Values Generated... ECJ SE

obtained a voltage of 6.75 V and a current of 0.65 A at a load resistance of 10 Q with a temperature difference of 165 OC
between hot and cold surfaces.

Albatati et al. [5] conducted an analytical thermal system design and experimental verification of the TEG system for the
recovery of waste heat from the exhaust of truck engines. In the study, they used 100 modules in the TEG system and the total
power generated by the system was 1.25 kW. It represents 20% of the alternator power requirement of a truck engine and a
power density of 1.4 W/cm2. They found that the experiments and simulation values were compatible.

Li et al. [6] conducted a study on the conversion efficiency of the Automotive Thermoelectric Generator (ATEG). In
addition, it improved the maximum electrical power generated by ATEG by optimizing the number of thermoelectric modules
(TEMs). According to ATEG's optimization results, the maximum electrical power produced by the system was 139.47 W and
the conversion efficiency was 2.51% under stationary motor condition. As a result, the optimized design was tested in different
engine conditions. They found that when the exhaust inlet temperature was 805 K and the mass flow rate was 0.5 kg/s, the
maximum power and efficiency produced by ATEG increased by 49.8% and 106.5%, respectively, after optimization.

Thermoelectric generators can also be operated using electrical energy in vehicles where they need to be heated or cooled
[7]. During their operation, no waste energy or harmful gas emissions are generated.

Electrical energy is of great importance in the economic development of nations [8]. Through electrical power generation
estimation studies, it is seen that the amount of energy production for any practical situation can be easily estimated without
actually carrying out the design [9]. In addition, the predicted results; it has shown that it is possible to have information about
energy production by predicting in advance and that the forecast data can be used in electrically efficient load distribution [10].

In recent years, machine learning, which is a sub-branch of deep learning, has attracted great attention due to its strong
generalization ability, unsupervised feature learning ability, and ability to receive training from large data [11]. Using machine
learning algorithms, predictions are made by making automatic inferences from patterns, trends, and complex relationships of
large amounts of data that human analysts cannot see [10].

Machine learning algorithms are widely applied in pattern recognition, image processing, error detection, classification, and
prediction tasks [12]. In recent years, learning-based prediction models have proven to be high-performing in terms of
accuracy. Energy estimation applications made by using learning methods have started to be widely used [13].

Chang et al. [14] proposed a novel integration method based on deep learning methods for photovoltaic electrical power
output estimation during the day. In the study, they showed that computational efficiency by making prediction accuracy is
superior to previous studies. Kadar et al. [15] conducted a spatial electric load estimation study of electric vehicles in Hungary.
In the study, it was aimed to determine the electrical power demand of electric vehicles and the distribution of electric charging
production centers. MdShahiduzzaman et al. [16] created a renewable energy generation forecast model from solar and wind
energy in twelve countries. In the study, the predictive success of Support Vector Machine (SVM), Linear Regression (LR)
and Long Short-Term Memory (LSTM) algorithms were compared, and more successful results were obtained with the Linear
Regression machine learning algorithm. Kishore et al. [17] performed precise and efficient temperature estimation to protect
the charge and operating environment of electric vehicles (EV). In the study, energy efficiency for air conditioning and cabin
cooling of electric vehicles was aimed by estimating the temperature. Baran et al. [18] applied digital weather forecasting to
predict power losses in electricity transmission lines. In the study, they presented a method for estimating resistive power
losses in electrical distribution lines. Ullah et al. [19] proposed to efficiently detect electricity thieves in smart grids by
designing a hybrid model with machine learning and deep learning methods. In the study, AdaBoost was used as the machine
learning method and AlexNet was used as the deep learning model. Chang et al. [20] designed a suitable model to predict the
quality of a semiconductor based on machine learning technologies. In the study, they showed that the improved AdaBoost
model not only improved prediction accuracy, but also prediction reliability for semiconductor manufacturing. Khudhair et al.
[21] established the feasibility of building a smart system to predict electrical energy consumption, as the market share of
electricity is expected to increase in the coming decades. Adhya et al. [22] presented a comparative study between three
machine learning algorithms to predict the likely charging demand of electric vehicles. In the study, MSE, MAE, RMSE and
R-squared value performance measures were used in the comparison process. Ranganathan and Rajagopalan [23] carried out
the model for predicting excess energy and user availability for V2G (Vehicle to Grid) services using machine learning
algorithms. They used the Mean Absolute Percentage Error (MAPE) scale for the success of the estimation process. Nti et al.
[24] reviewed and analyzed 77 academic studies published in the last nine years (2010-2020), in which electricity demand
forecasting research was conducted. In the studies, it has been revealed that the Artificial Neural Networks model is mostly
used. In the studies, it was observed that the most used error metric was the Root Mean Square Error (RMSE) (38%), and the
second was the Average Absolute Percentage Error MAPE (35%). In addition, the study also found that 50% of the electricity
demand forecast depends on weather and economic parameters, 38.33% on past energy consumption, 8.33% on household
lifestyle, and 3.33% on stock indices. Parhizkar [25] used the Random Forest algorithm to estimate the energy consumption of
selected cities with high success. Wang et al. [26] used the MIFS-AdaBoost machine learning algorithm to predict electric
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vehicles (EV) ownership. In the literature, studies comparing the prediction success of Random Forest and AdaBoost
algorithms together have been conducted [27].

In this study, a current and voltage estimation model was created by using the electric current and voltage values produced
from the thermoelectric generator mounted on the exhaust system of a Toyota brand car under real driving conditions.
AdaBoost and Random Forest machine learning algorithms were used in the prediction model. By using these algorithms,
prediction successes were measured and compared according to MSE, RMSE, MAE, MAPE error metric measures and R-
squared correlation coefficient according to different training and test data values.

2. MATERIAL AND METHODS

In this study, the designed system is installed on the exhaust pipe of a car, and the combined images of the TEGs are given in
Figure 1. Here, it consists of a thermoelectric generator, cables, data loading system, data set and computer system.

Dataset Computer System

(== l—s " :
S a Heat Sink Thermoelectric
Generati
Sensor Cables
Exhast Pip
Sensor Cables Compatible

Estimation Software Aluminum Part
D::i:ﬁ:_’ o (Machine Learning Algorithms)
Voltage and
Current
Output
Ihermoelectric Exhaust Pipe
Geaeratir

Figure 1: Diagram of the Designed System.

In this system, four TEGs are placed in the vehicle's exhaust pipe. TEGs are cooled with aluminum cooling fins. In addition,
temperature sensors are placed to measure the temperatures of the cold and hot areas of the TEGs. While the data from these
sensors is recorded with the data loader, the voltage and current information produced by the TEGs is recorded instantly.

Six temperature sensors were connected to the TEG devices. In addition, there is a temperature sensor to measure the
temperature of the test environment (outdoors). The temperature data obtained from a total of seven sensors, as well as current
and voltage data, were recorded. A data set was created by organizing the recorded data. Machine learning algorithms were
trained using randomly selected data (75%, 50% and 25%) from this data set. Current and voltage estimations were made on
the trained model using the feature data of randomly selected test data. The estimation values obtained were compared with
the actual values and the estimation success was measured.

The vehicle used in the experiments is a 1.6 liter naturally aspirated 2021 model Toyota Corolla. The vehicle has an
automatic CVT transmission and can be operated manually if desired. Test drives were carried out in manual mode. The
experiments were carried out at the same time and at the same ambient temperature every day. In addition, wind resistance
was ignored. Because the thermoelectric generators mounted on the exhaust pipe are inside the shaft tunnel, there is very little
chance of exposure to wind. Therefore, wind resistance is ignored. Fans are used to cool the TEGs. Road and driving conditions
are given in Table 1.

Table 1: Test conditions for the vehicle and road used for the test.

Test condition definitions Values

Road length 15.4 km

Ambient temperature 29°C

Rolling resistance coefficient 0.0015

Average traffic density 20%

Road surface Asphalt

Road slope 4 km (landing), 4 km (ascent) and 7.4 km (straight)
Gearbox 6 forward manual

Experiment speeds 40, 60, 80 and 100 km/h

Tyre pressure 221 kPa
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2.1. Thermoelectric Generator Structure

Approximately 70% of the heat energy generated in vehicles with internal combustion engines (ICE) is discharged through
exhaust, cooling and lubrication systems [28]. This heat energy is called waste heat energy. Waste heat energy discharged
through exhaust accounts for approximately 30% of this rate [29]. The heat energy discharged from here, together with the
burnt gases, is transferred to the external environment along the exhaust pipe. From the moment they first exit the exhaust
manifold, the burnt gases are expelled through the exhaust pipe, losing their temperature. If thermoelectric generators (TEG)
are placed in the appropriate sections on the exhaust pipe, electricity is produced from waste heat energy [30-32]. TEGs
produce electricity by taking advantage of the temperature difference in their environment [33]. This potential for electricity
generation is called the Seebeck effect [34]. TEGs have positive and negative semiconductor pairs connected to each other by
copper wires. These pairs are insulated from the external environment with a ceramic plate from the top and bottom (Figure
2).

Heat
Absorbtion

(Mot side)

Negative (-) )
Electrical
conductor (Copper)

Semiconductor
n-type Semiconductor

Electrical insulator
(Ceramic) o Positive (+)

Rejection

{Cold side)

Figure 2: Internal structure of TEG [33].

If the ceramic plates are touched to a cold surface on one side and a hot surface on the other, electricity is produced from
the temperature difference in the TEG (Figure 3).

......

Hot side

Copper Copper

Heat remection

Figure 3: Electricity generation with TEGs [34].

The amount of electricity production in TEGs depends on the magnitude of the temperature difference between hot and cold
sources. In internal combustion engines, the temperature of the exhaust gases is around 700 °C when they first exit the exhaust
manifold [35]. This temperature decreases along the exhaust pipe depending on the outdoor temperature. For the best possible
electricity generation, it is necessary to place the TEGs close to the exhaust manifold. The cold sides of TEGs face the external
environment. This area is cooled by the air flow while the vehicle is moving with the heat exchanger with aluminum cooling
fins placed on it. However, when the vehicle stops, it is necessary to place a fan on the heat exchangers for cooling.
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2.2. Machine Learning Algorithms

Machine learning algorithms are used for classification and regression forecasting operations in many different areas [36].
It is widely used, healthcare, disease diagnosis prediction [37], depression risk estimation [38], prediction of heating and
cooling loads of residential buildings [39], capacity estimation of lithium-ion batteries [40], wind power forecasting [41],
Churn prediction in industry [42], charge [43] and carbon emission estimation [44]. In this study, voltage and current
estimations that TEG devices can produce were carried out by using AdaBoost and Random Forest algorithms. The machine
learning algorithms used can be successfully applied on the data obtained in different roads, vehicles and geographical
conditions. However, the attributes of the records in the data set to be processed must be selected correctly.

2.2.1. AdaBoost Machine Learning Algorithm

Freund and Schapire [45] developed AdaBoost.M2 to solve regression problems and named the new method AdaBoost.R
in 1997. In this method, regression problems are calculated by reducing classification problems. AdaBoost.R algorithm and
introduced the AdaBoostR2 algorithm and obtained successful results [46]. By using this algorithm, it is seen that successful
predictions are made to the correct learning structures repeated on the training data [44].

In the AdaBoost algorithm, the data set is reconstructed by adding re-weights for incorrectly estimated samples. In boosting
by reweighting all the training examples are used to train the weak learning machine with weights assigned to each example
[46]. The flowchart of the AdaBoost algorithm is shown in Figure 4.
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Figure 4: The flowchart of the AdaBoost algorithm
In this algorithm, weight calculations are performed first (with updated results), followed by the generation of probability,
prediction function, and reliability coefficient. In the final stage, a new prediction value is produced [39, 46].The weight
calculation (recalculation) is presented in equation 1.

w; = w07 1)

The probability is computed based on the assigned weight values, as illustrated in equation 2 [46].

Di -t 2

=ZWL'

The prediction process utilizes the computed probability value to identify losses. A linear loss function is adopted in this
study, as illustrated in equation 3 [39, 46].

yP -y
Ly ==—— (3)
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The loss function is denoted by L; and D refers to the distribution. The dataset consists of feature values x; and y;. Based on
these values, the average loss is computed, as shown in equation 4 [39, 46].

L= Lip (4)

Based on the computed loss values, the reliability coefficient is obtained. Its formulation is provided in Equation 5 [46].

pi=— ©)

1—

~

The reliability coefficient is represented by B;. At the final stage, the output prediction value is calculated.

2.2.2. Random Forest Machine Learning Algorithm

The Random Decision Trees (RDT) algorithm, which forms the basis of the Random Forest (RF) algorithm, was first
introduced by Ho [47] in 1995. An improved version of this algorithm, the Random Forest algorithm, was developed by
Breiman [48]. RF makes classification and regression problems a different model. By using this algorithm, the training phase
of training test data is carried out very quickly. Random Forest is made up of a large number of DTs (Decision Trees). In the
Random Forest algorithm, there is a difference between decision trees. In this algorithm, records are randomly selected to
generate a random forest tree and obtain the result [27]. In the RF algorithm, the most appropriate partitioning is selected from
a randomly selected set of features for each intermediate node [49].

The Random Forest algorithm is based on multiple decision trees. In this algorithm, the values of the new data are estimated
by averaging the results of the predictions obtained with multiple decision trees. When the correct attributes are selected, they
are used in this algorithm to obtain high-success predictions [50]. Many decision trees that act as regression functions are
generated using the random forest algorithm. In the final stage, the output of all decision trees is averaged to create the output
of the random forest regression [40]. The flowchart of the Random Forest algorithm is shown in Figure 5.
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Figure 5: The flowchart of the Random Forest algorithm.
The data set and the attributes of the data in it are shown in the equation 6 [40].
Sn = (Xl' Yl ....Xn, Yn) (6)

S, is data set and X,,, ¥,, are features. Prediction function is shown in the equation 7 [40, 48].

Pq = h(X,5%) )
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qu is bootstrap sample and X is input vector. g prediction trees output numbers. At last output function is shown in
equation 8 [40,41]
S 1 ~ Q
Y= ;Zle h(X,S,%) (8)

L tree-structured based in Random Forest algorithm. ¥ the output of [ th tree (I = 1,2....q) [40].

2.3. Machine Learning Evaluation Metrics
The MSE, MAE, RMSE, metrics are used in the predictive performance analysis of a model to determine error rates. The
R-Squared metric measure is used to evaluate the prediction success performance of a model.

2.3.1. MAE (Mean Absolute Error)

The MAE metric measure is calculated as the average of the absolute error values on a data set. The result represents the
difference between the original values and the predicted values. MAE is a popular success measurement metric. Changes in
MAE are shown linearly. In this metric, scores increase linearly with increasing errors between the forecast and the original
data. The different errors obtained in MAE cannot be weighted more or less. The MAE metric is measured as the average of
the absolute error values. Absolute is a mathematical function that used to make numbers for positive. When calculating MAE,
it will necessarily be positive. Therefore, the difference can be positive between expected and predicted values. The MAE
calculation is shown on equation 3[51].

1
MAE =231y = il ®3)

v1, represents the actual data, y; indicates the estimated data, and n indicates the number of test data

2.3.2. MSE (Mean Squared Error)

The MSE metric measure represents the difference between the original and predicted values, which is subtracted by
squaring the average difference over the data set. This metric value is measured the mean square error of the mismatch between
the predicted results and the test data. A low MSE result value means that the predicted values match the actual values. The
MSE calculation is shown on equation 4.

MSE = 3101 — 3 (4)

2.3.3. RMSE (Root Mean Squared Error)

The RMSE metric measure is the error rate relative to the square root of the MSE metric measure. The RMSE is calculated
in order of magnitude of the observed values. Therefore, it varies significantly from one application to another. The RMSE
calculation is shown on equation 5[52].

RMSE = |~37,(n = ¥)? 5)

2.3.4. MAPE (Mean Absolute Percentage Error)
The MAPE metric measure demonstrates the accuracy of a prediction. The size of the error between the estimate and the
actual value is calculated. The MAPE calculation is shown on equation 6[51].

MAPE =% n * 100 (6)

YVi~Vi
Y1

2.3.5. R-squared (Coefficient of determination)

The R-squared (R?) metric measure represents the coefficient of how well the predicted values fit compared to the original
values. The value between 0 and 1 obtained with this metric is interpreted as a percentage. It is used to test how well the model
fits the data with linear regression. When the number of terms increases in the designed model, the R-squared value also
increases. The value of R-squared data can be positive or negative. If it is negative, a forecast mismatch occurs. The R-squared
success calculation is shown on equation 7.

2 =1 _ ZimaOn-yd?
R =15 i Y

y; shows the sum of the actual data.
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Figure 6: The differences between actual current values and predicted current values: (a) The predicted current
values (for 75% training, 25% test rates) and actual current values; (b)The predicted current values (for 50%
training, 50% test rates) and actual current values; (c) The predicted current values (for 25% training, 75% test

rates) and actual current values.
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Figure 7: The differences between actual voltage values and predicted voltage values: (a)The predicted voltage
values (for 75% training, 25% test rates) and actual voltage values; (b)The predicted voltage values (for 50%
training, 50% test rates) and actual voltage values; (c)The predicted voltage values (for 25% training, 75%o test rates)
and actual voltage values.
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3. EXPERIMENTAL RESULTS

In this study, graphs comparing the current and voltage values estimated according to different training and test data with
the actual current and voltage values are shown in Figure 6 and Figure 7. The green plot on the graph shows the actual current
values. The blue plot on the graphs shows the values predicted by the AdaBoost algorithm, and the red plot shows the values
predicted by the Random Forest algorithm. The intersection of the drawings on the graphs indicates that the forecast success
is high. Table 2 shows the data counts and percentages selected for training and testing.

Table 2: The number and percentage ratio of data selected for training and testing.

Train Test
Percentage Number Percentage Number
75% 2019 25% 673
50% 1346 50% 1346
25% 673 75% 2019

Figure 6 shows the comparison of the predicted current values obtained by AdaBoost and Random Forest algorithm with
the actual (A) values when 75%, 50% and 25% data are selected for training and 25%, 50% and 75% data are selected for
testing. In the first model, when 75% data is selected for training and 25% for testing, the difference between the actual current
values and the predicted current values is shown in the graph on Figure 6.a. In this model, the highest success is seen because
the training data is selected high. In the second model, when the training data is selected at a rate of 50% and the test at a rate
of 50%, the difference between the actual current values and the predicted current values is shown in the graph on Figure 6.b.
In the third model, when the data is selected at the rate of 25% of the training and 75% of the test, the difference between the
actual current values and the predicted current values is shown in the graph on Figure 6.c. In this model, since the training data
is selected low, the lowest performance was observed on this graph.

Figure 7 shows the comparison of the actual (A) voltage values with the predicted voltage values by the AdaBoost and
Random Forest algorithm when 75%, 50% and 25% data are selected for training and 25%, 50% and 75% data are selected for
testing. In the first model, when 75% data is selected for training and 25% for testing, the difference between the actual voltage
values and the predicted voltage values is shown in the graph on Figure 7.a. In this model, the highest success is seen because
the training data is selected high. In the second model, when the training data is selected at a rate of 50% and the test is selected
at a rate of 50%, the difference between the actual voltage values and the predicted voltage values is shown in the graph on
Figure 7.b. In the third model, when the training data is 25% and the test is 75%, the difference between the actual voltage
values and the predicted voltage values is shown in the graph on Figure 7.c. In this model, since the training data is selected
low, the lowest performance was observed on this graph.

In this study, electricity was produced from the heat generated on the exhaust system by using TEG devices. The article
provides the test environment, vehicle characteristics, road condition, and load condition. In addition, the basic building blocks
of electricity generation are current and voltage values. Therefore, it is of great importance. The comparison of voltage and
current estimates produced are showing according to different numbers of training and test data with the actual in the Figure 4
and Figure 5. The red and blue regions on the figures indicate erroneous estimates. From the figures, it can be seen that the
error rate is very low. This shows that the results obtained are remarkable.

3.1. Comparison of Results Based on the Performance Metrics
Table 3 shows the success of the current values estimated by AdaBoost and Random Forest algorithms. The MSE metric
value was found to be 0.000 in all tests performed on the designed model. The RMSE metric value was found to be 0.004, the
highest by the Random Forest algorithm, when 25% data was selected for training and 75% for testing. The MAE metric value
was found to be the lowest 0.001 with the AdaBoost algorithm when 75% data was selected for training and 25% data for
testing.
Table 3: Success rates of the current estimation.

Model Train Test MSE RMSE MAE MAPE R2
75% (2019) 25% (673) 4x107® 2x107 1x10°8 15107 999x10-3
AdaBoost 50% (1346) 50% (1346) 4x107® 2x107° 2x10°3 18x107° 998x10°3
25% (673) 75% (2019) 9x106 3x107° 2x10°3 25x1073 997x103
75% (2019) 25% (673) 4x10°8 2x1073 2x1073 17x10%° 998x10-3
Random Forest 50% (1346) 50% (1346) 4x10° 2x10°3 2x10°3 201073 998x1073
25% (673) 75% (2019)  16x10°F 4x10°3 2x10°° 27x10°8 995x10-3
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The MAPE metric value was found to be the lowest 0.001 by the AdaBoost algorithm when 75% data was selected for
training and 25% data for testing. However, the MAPE metric value was found to be the highest 0.027 by the Random Forest
algorithm when 25% of the data was selected for training and 75% for testing. The R2 metric value was found to be the highest
0.999 by the AdaBoost algorithm when 75% of the data was selected for training and 25% for testing. However, the R2 metric
value was found to be the lowest 0.995 by the Random Forest algorithm when was selected at a rate of 25% for training and
75% for testing.

Table 4 shows the success of the voltage values estimated by AdaBoost and Random Forest algorithms. The MSE metric
value was found to be the lowest 0.010, by the AdaBoost algorithm, when 75% data was selected for training and 25% data
was selected for testing on the designed model. However, the MSE metric value was found to be the highest 0.037 by the
Random Forest algorithm when 25% of the data was selected for training and 75% for testing. The RMSE metric value was
found to be the lowest, 0.098, by the AdaBoost algorithm when 75% of the data was selected for training and 25% for testing.
However, the RMSE metric value was found to be the highest, 0.193 by the Random Forest algorithm when 25% The MAE
metric value was found to be the lowest 0.070 by the AdaBoost algorithm, when 75% of the data was selected for training and
25% for testing. However, the MAE metric value was found to be the highest 0.130 by the Random Forest algorithm when
25% of the data was selected for training and 75% for testing. The MAPE metric value was found to be the lowest, 0.017, by
the AdaBoost algorithm, when 75% of the data was selected for training and 25% for testing. However, the MAPE metric
value was found to be the highest 0.033, by the Random Forest algorithm, when 25% data were selected for training and 75%
for testing. The R2 metric value was found to be the lowest 0.995, by the Random Forest algorithm, when 25% of the data was
selected for training and 75% for testing.

Table 4: Success rates of the voltage estimation.

Model Train Test MSE RMSE MAE MAPE R2
75% (2019)  25% (673) 960410 98x1073 70x10°3 17x1073 999x1073
AdaBoost 50% (1346)  50% (1346)  11236x10° 106x107° 74x10°3 19x1073 999x107
25% (673) 75% (2019)  26896x10 164x107° 110x107° 28x107° 997x107
75% (2019)  25% (673) 10816x106 104x107° 74x10°3 18x1073 999x1073
Random Forest 509 (1346) 509 (1346)  13924x107® 118x1073 79x10°3 20x1073 998x1073
25% (673) 75% (2019) 37249107 193x1073 130x10°3 33x1073 995x1073

4. DISCUSSION

Artificial intelligence-supported smart models can create very important beneficial results for sustainable energy
management and planning. In the literature, many studies have been conducted on energy production and consumption
estimations using different models [53]. Energy generation from thermoelectric systems is one of the renewable energy
conversion technologies that can convert heat into electricity. In recent years, a large number of model designs have begun to
be carried out in the literature to predict and optimize the performance of thermoelectric generator systems [54]. Table 5
presents studies from the literature in which various algorithms have been used for energy production forecasting, as well as
regression prediction studies that specifically employ the AdaBoost and Random Forest algorithms. There are important points
that distinguish this study from other studies. To the best of our knowledge in existing literature, no other study was found in
which real data obtained from thermoelectric generators were used on an automobile exhaust system and current and voltage
values estimation using error metrics. In the table, 6 related studies are shown that have been previously conducted using
different learning algorithms in the literature. In addition, with the model developed in this study, the achievements obtained
in the literature studies were compared with numerical data.

MdShahiduzzaman et al. [16] carried out a renewable energy production forecasting model. It was designed a renewable
energy forecasting model for twelve (12) countries in the study. It was used three machine learning model as Support Vector
Machine, Linear Regression, and Long Short-Term Memory (LSTM) in the estimation process. According to the results, the
Linear Regression algorithm found at least error rate of 2.282 according to the MAE metric measurement, 9.592 according to
the MSE metric measurement, and 3.097 according to the RMSE metric measurement.

Cetin et al. [53] used a new geothermal-thermoelectric hybrid system to predict electrical power generation using smart
models. In the study, it has been shown that it can be used to predict real-time power production by using artificial intelligence-
supported smart models based on machine learning algorithms. In the study, a model was designed to predict energy production
from waste geothermal fluid on a real test platform. Support Vector Machine (SVM), Support Vector Regression, k-Nearest
Neighbor, Decision Tree (DT), Random Forest, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), Categorical Gradient Boosting (CatBoost) algorithms were used in the estimation model. According to the results
obtained, power generation estimates were obtained with 98.7% accuracy according to the R2 metric with LightGBM learning
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algorithms. The study shows that the models used to classify different hot and cold water levels have high classification
performance.

Table 5: Comparison with studies in the literature.

Researcher Estimation process Algorithm Success / Error Rate

. Performance estimation of thermoelectric .
Angeline et al. [9] . . Artificial Neural Network MER<0.03
generator (Matlab simulation)
MSE=9.592
MdShahiduzzaman et al. [16]  Renewable energy production Linear Regression MAE=2.282
RMSE=3.097
Estimation of electrical power generation that ~ Light gradient boosting
Cetin et al. [53] can be generated from a geothermal- machine (LightGBM) R2=0.987
thermoelectric hybrid system (Real data)
Voltage production estimation of

Belovski et al. [55] . . . Artificial Neural Network MSE=0.143
thermoelectric generator (Matlab simulation)

R2=0.995
Current production estimation of MAE=0.006
thermoelectric generator (Real data) MSE= 8.32* 10
RMSE=9.12*10"3
R2=0.982
Voltage production estimation of MAE=0.061
thermoelectric generator (Real data) MSE=0.007
o RMSE=0.086
Ozbektas et al. [56] Artificial Neural Network
R2=0.942
Power production estimation of MAE=0.025
thermoelectric generator (Real data) MSE= 0.001
RMSE=0.037
R2=0.980
Efficiency production estimation of MAE=5.1*10"*
thermoelectric generator (Real data) MSE= 4.22*107
RMSE=6.4.10"°
Electric power production prediction and
Celik et al. [57] classification of thermoelectric generator Random Forest Accuracy=96.6%
(Real data)
MSE=0.000
. N RMSE=0.002
Current production estimation of AdaBoost
. MAE=0.001
thermoelectric generator (Real data)
MAPE=0.015
R2=0.999
Proposed Model
MSE=0.010
. N RMSE=0.098
Voltage production estimation of AdaBoost
. MAE=0.070
thermoelectric generator (Real data)
MAPE=0.017
R2=0.999

Angeline et al. [9] performed performance estimation of a hybrid thermoelectric generator using the artificial neural
networks tool on the simulation created on MATLAB software under various temperature, load and series conditions. The
simulated parameters (up to an inlet heater temperature of approx. 250 °C) were compared with the experimental results. For
all parameter values, the mean error rate (MER) between the experimental approach and the ANN-based approach was found
to be less than 0.03.

Belovski et al. [55] designed the Seebeck module on the Matlab. In the study, they performed voltage production estimation
with the ANN algorithm using the data they received from the thermoelectric generator simulation. In the study, the direct
conversion of temperature differences into electrical energy was modeled using the Seebeck module. Using this model, the
electrical voltage values generated from the thermoelectric generator simulation were obtained. Then, the voltage values
produced by the thermoelectric generator simulation module were compared with the voltage estimation values obtained by
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the ANN algorithm and the estimation error rates were compared. According to the results, it was found an error rate of 0.143
in the MSE metric measurement.

Ozbektas et al. [56] performed performance comparison by estimating the effects of load resistance and heat input on TEG
performance using ANN models on an experimental set. In the study, three-dimensional finite volume methods were applied
using ANSY'S software and the results were compared with experimental and ANN estimation results in terms of voltage,
current, power output and efficiency. According to the study, according to the correlation of determination (R2), mean absolute
error (MAE), mean square error (MSE) and root mean square error (RMSE) performance metrics, 0.9958, 0.0061, 0.0000832,
0.00912 for current; 0.982, 0.0611, 0.0075, 0.086 for voltage; 0.9422, 0.025, 0.0014, 0.037 for power and 0.98056, 0.00051,
4.22*10-7, 0.000064 for efficiency results were obtained. According to the results obtained; the results of the ANN forecast
model and the actual data are very close to each other.

Celik et al. [57] designed a model for prediction seven electric power classification using Random Forest, Support Vector
Machine and Naive Bayes machine learning algorithms. In the model, 76% of the dataset was used for training and 24% was
used for testing process. In the study, classification prediction success was achieved rate of 96.6% by Random Forest algorithm,
94.6% using the Support Vector Machine algorithm and 76.7% using the Naive Bayes algorithm. In the study accuracy success
metric was used for classification prediction. According to the obtained results; electrical power classification process was
predicted more successfully by Random Forest machine learning algorithm.

In the proposed model, the current and voltage values that can be produced from the thermoelectric generator on an
automobile exhaust system were estimated with AdaBoost and Random Forest algorithms.

According to the results obtained, it was seen that the AdaBoost algorithm made a more successful prediction. When the
current estimation was made with the AdaBoost algorithm, 0.000 values were obtained according to the MSE metric
measurement, 0.002 according to the RMSE metric measurement, 0.001 according to the MAE metric measurement, 0.015
according to the MAPE metric measurement and 0.999 according to the R2 correlation coefficient. In addition, when voltage
estimation was made with the AdaBoost algorithm, values of 0.010 were obtained according to the MSE metric measurement,
0.098 according to the RMSE metric measurement, 0.070 according to the MAE metric measurement, 0.017 according to the
MAPE metric measurement and 0.999 according to the R2 correlation coefficient. When compared with all studies in the
literature, it is seen that the R2 correlation coefficient in the proposed model is the highest. In addition, it is seen that the
estimation is made with the least error rate compared to other studies with an error rate of 0.000 according to the MSE metric
in the current production estimation. When compared with other metrics, it is seen that the error rates are small. The results
obtained show that artificial intelligence models can effectively use waste thermal energy and contribute to electrical energy
production. Unlike the study by Ozbektas et al. [56], this research employs alternative forecasting models. Furthermore, it
differs from the work of Celik et al. [57] in terms of the predicted and classified output variables.

5. CONCLUSION

In the study, a dataset consisting of the current and voltage values obtained from the TEG mounted on the exhaust system
was created which is the waste heat source of an automobile. In the study, the data obtained from the thermoelectric generator
on the exhaust system in the real driving environment on the determined route were recorded with the help of a data recorder.
In the data set consisting of 2692 records, there are 10 attribute data for each record, including speed, engine speed, gear,
outdoor temperature and temperature values of the 6 channels of the TEG. Using this data set, current and voltage estimations
were made by machine learning algorithms for future states. AdaBoost and Random Forest machine learning algorithms were
used for prediction. In the study different training and test rates were used for comparing and verifying prediction performance
results. When 75% for training and 25% for the test records were selected from this data set randomly, the estimation was
performed more successful with the AdaBoost machine learning algorithms. MSE, RMSE, MAE, MAPE error metrics and R2
correlation coefficient success metrics were used as estimation measurement parameters. The limited number of TEGs and the
application of only one vehicle to the exhaust system can be seen as the limit of the study. TEG performance is achieved
through effective cooling of cold surfaces. In our study, cooling is achieved with fans. Liquid cooling systems are being
considered for future studies, allowing for more effective and stable cooling. In future studies, it is planned to make voltage
and current estimates that can be produced with TEG devices on the waste heat systems of different vehicles/machines using
others types of learning algorithms. In addition, it is thought that our study, which is a new topic in the literature, will help the
future applications of exhaust gas waste heat recovery prediction of automobiles using TEGs.
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