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Abstract: LiDAR technology enables precise distance measurements by emitting laser pulses that reflect off surface objects, allowing
for the calculation of spatial coordinates. Alongside spatial data associated color values of LiDAR points can be extracted from images
captured by onboard cameras. As the laser beams reflect upon their initial contact with surfaces, the resulting point cloud must be
appropriately classified to support specific analytical or operational objectives. This study uses different machine learning methods to sort
and label LiDAR point cloud data into ground and non-ground points, then compares how well each method works. For this purpose, a
dataset acquired by an unmanned aerial vehicle over the Democratic Republic of Congo was utilized. The dataset comprises 114,557
points, each described by three geometric features (DeltaH, Verticality, 3" Eigenvalue) and two normalized color attributes (Red and
Green Ratios), derived from RGB values. A total of ten machine learning algorithms were implemented and assessed. Among them, the
XGBoost algorithm demonstrated the highest classification accuracy at 84.1%, while the Naive Bayes algorithm yielded the lowest
accuracy, at 72.4%.
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Sayisal arazi modeli olusturmada makine 6grenme algoritma performanslarinin karsilagtiriimasi

Oz: LiDAR teknolojisi, yiizey nesnelerinden yansiyan lazer darbeleri gondererek hassas mesafe ol¢timleri yapilmasina olanak tanir ve bu
sayede mekansal koordinatlarin hesaplanmasi miimkiin olur. Mekdnsal verilerin yani sira, LiDAR noktalarina ait renk bilgileri de arag
tizerindeki kameralarla ¢ekilen goriintiilerden elde edilebilir. Lazer isinlar yiizeylerle ilk temas ettikleri anda yansidigindan, ortaya ¢ikan
nokta bulutunun belirli analizsel veya operasyonel amaglara hizmet edebilmesi igin uygun sekilde siniflandirilmast gerekmektedir. Bu
calismada, LiDAR nokta bulutu verilerini siralamak ve analiz etmek icin ¢esitli makine ogrenmesi yontemleri kullanilmis ve her bir
yontemin performansi karsilastirilmistir. Bu amagla, insansiz hava araci ile Demokratik Kongo Cumhuriyeti 'nde elde edilen bir veri seti
kullanilmigtir. Veri seti, ii¢ geometrik ozellik ve iki renk bilgisi igeren toplam 114 557 noktadan olusmaktadir. On farkli makine ogrenmesi
algoritmast uygulanmis ve degerlendirilmistir. Bu algoritmalar arasinda XGBoost, %84.1 ile en yiiksek sinmiflandirma dogrulugunu
gosterirken, Naive Bayes algoritmasi ile %72.4 ile en diisiik dogruluga ulasilmistir.
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m00mparison of machine learning algorithm performances in digital terrain model generation

1. Introduction

With the rapid advancement of remote sensing technologies, their adoption has become increasingly widespread across
various sectors, including engineering, architecture, industry, and construction (Almohsen, 2024). These innovations have
made the measurement and analysis process faster, more precise, and more efficient, enabling significant developments in
different sectors. Today, modern remote sensing methods like laser scanning, Interferometric Synthetic Aperture Radar
(InSAR), photogrammetry, Synthetic Aperture Radar (SAR), and LiDAR (Light Detection and Ranging) are essential tools
in engineering. LiIDAR is especially important in many projects because it provides highly accurate and high-density three-
dimensional terrain data, which is essential for generating detailed and reliable digital elevation models (DEMs) (Liu et al.,

2007). This study specifically focuses on binary classification to distinguish ground from non-ground points in LiDAR data.

Accuracy is becoming increasingly important in creating a Digital Terrain Model (DTM) in three-dimensional (3D) modeling,
especially in map production. Advances in technology have made it more feasible to meet these needs. The improved
capabilities of measurement devices and the increased processing capacity of computers and algorithms enable more efficient
processing of collected data. However, using rule-based algorithms and data reduction processes to summarize the point

cloud leads to data loss, resulting in a loss of accuracy in DEM production.

In recent years, machine learning methods have become widely used and have taken on a key role in engineering and map
production. Recent studies have shown the growing relevance of machine learning-based classification in 3D point cloud
analysis, not only for terrain modeling but also for complex architectural and heritage documentation tasks. For example,
Teruggi et al. (2020) proposed a hierarchical multi-resolution classification approach using machine learning, which
demonstrated reliable and replicable results across large-scale datasets. Ozdemir et al. (2019) tested and evaluated several
classification algorithms for aerial point cloud data, including both deep learning and traditional machine learning methods,
demonstrating the effectiveness of these approaches in high-resolution remote sensing applications. The proposed network,
Mo-Net, simplifies shape coordinates by mapping them into a smaller, moment-friendly space. This makes it easier for the
model to learn efficiently, using less memory and processing power, and also helps improve classification accuracy compared
to similar approaches (Joseph-Rivlin et al., 2019). Since LiDAR data processing demands high computational resources and
cost, two common approaches are used: developing new machine learning models and tools that reduce reliance on command-
based LiDAR data. However, it is worth noting that reducing or interpolating LiDAR data is not always the ideal choice in

industrial applications (Gharineiat et al., 2022).

According to Kucak (2022), in his work with laser scanning data, the RANSAC algorithm can produce high-precision and
complete three-dimensional geometric models, resulting in reliable 3D data that is important for restoration and other
engineering works. Maturana and Scherer (2015) pointed out that machine learning is valuable for understanding land shapes
and surface features. These algorithms are generally grouped into two types: supervised and unsupervised. Since
unsupervised learning does not use training data to build models, it is not ideal for tasks requiring high accuracy. Wu et al.
(2019) showed that supervised learning gives better results than unsupervised methods. Duran et al. (2021) conducted a study
to evaluate the effectiveness of various machine learning algorithms in classifying LIDAR point cloud data. In the survey, 21
geometric features were derived from both the photogrammetric model and the LiDAR point cloud. A total of nine different
machine learning algorithms were assessed. The results indicated that the multilayer neural network achieved the highest
classification accuracy, reaching 96%. The percentage of correctly classified points among 15 577 sample points in
Columbus, Ohio, amounts to 96.5%. Random Forest (RF) method yields outcomes much closer to the ground truth than

earlier classification approaches (Park & Guldmann, 2019). In their study, Jakovljevic et al. (2019) showed that the model
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well processed both classes by obtaining recall values above 0.70 and precision values above 0.85 for both ground and non-
ground points in the classification of point clouds based on deep learning using an artificial neural network in pixel-based
evaluation (Jakovljevic et al., 2019). Kang et al. (2017) showed, experiments demonstrate that the Bayesian Network
classifier can effectively distinguish four types of basic ground objects, including ground, vegetation, trees, and buildings,

with a high accuracy of over 90%.

The novelty of this study lies in the integration of selected geometric and normalized color features for ground classification,
using a large-scale LIDAR dataset acquired over a topographically diverse area. Additionally, the study compares ten machine

learning algorithms on a balanced dataset to assess performance under complex terrain conditions.

2. Materials and Methods
2.1 Materials

Various machine learning methods were used to analyze the geometric and color features taken from the LiDAR point cloud.
These methods are ordered as classification tree (CT), bagging (BCT), random forest (RFC), logistic regression (LR), K-
nearest neighbors (KNN), support vector machine (SVM), Naive Bayes (NB), neural networks (ANN), multilayer perceptron
(MLP), and XGBoost (XGB). The analyses were done in R (version 4.2.3) and Python (version 3.11), using a 5% significance
level (o = 0.05).

The dataset utilized in this study was acquired via LiDAR technology during an aerial survey conducted over Kinshasa,
Democratic Republic of Congo, in March 2023. An international construction company provided the data used in this study
and dataset includes a point cloud of over 43 million points. The LiDAR system used was a RIEGL mini VUX-1UAYV scanner
operating at 100 kHz pulse frequency, mounted on a fixed-wing UAV flying at 150 meters above ground level with a speed
of approximately 60 km/h. The scan angle was £30°, and the data included only first returns. It has a spatial density of 15
points per square meter and covers 27 682.6 hectares. The sample points used in the study, shown in Figure 1, come from
various land types, such as steep and flat areas, developed and undeveloped zones, forests, and open land, with a density of
1 point per square meter. Accordingly, 114 557 points, including 45 203 ground points and 69 354 other points, were analyzed

over an area of approximately 12 hectares.

Figure 1: Study area on Google Earth map

Ozen and Cilengiroglu (2024), used a total of 9391-point data from March 2023 in a different region of the same city,

consisting of 4766 terrain points and 4625 non-terrain points distributed over an area of approximately 1 hectar, with 1
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point/m?2. The most significant difference between the two datasets is the larger sample size and the inclusion of a valley

topography to challenge the prediction performance of the models (Figure 2).

Figure 2: LiDAR study data

2.1.1 Variables

Geometric and color features were taken from the LiDAR point cloud. The geometric features include Verticality, DeltaH,
and the 3" Eigenvalue. The color features include red, green, blue, and brightness. In total, more than 20 different geometric
variables, including Verticality and 3™ Eigenvalue variables, were found to be used in the studies in literature. A total of over
20 geometric features commonly found in the literature—such as linearity, planarity, eigenentropy, and surface variation—
were initially considered. To ensure model efficiency and avoid multicollinearity, a correlation matrix was computed for all
candidate features. DeltaH, Verticality, and 3" Eigenvalue were selected based on their low correlation with one another and
high predictive contribution in preliminary model runs. Features exhibiting high pairwise correlation or low variance were
excluded. This selection aimed to reduce model complexity while preserving classification accuracy. In addition to all these
variables, DeltaH and color-based variables for each point were also calculated and included in the models. The model
contributions and model performances of all variables were evaluated, and as a result, it was decided to analyze the models

with 5 variables (DeltaH, Verticality, 3™ Eigenvalue, Red Ratio and Green Ratio).

Verticality refers to the angular deviation of the normal vector of a point from the vertical axis (Z-axis) (Figure 3). This
measurement is used to analyze how vertical or horizontal surfaces or points are. It is particularly useful in LiDAR data for
detecting steep surfaces such as walls of buildings, tree trunks, etc. Verticality is usually expressed as a value, not as an angle.

This value is scaled between 0 and 1.
If the normal vector of a point is called N = (Nx, Ny, Nz) and the verticality of this point is called V, it is calculated as:
V=1—|N,] )

Here N represents the normal vector of the point, and V denotes verticality. Here, it can be considered as:
e I =1, fully vertical (e.g., wall)

e I =0, fully horizontal (e.g., floor)
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Figure 3: Visual representation of verticality (Tan et al., 2023)

DeltaH is a variable that represents the vertical deviation of a point relative to its surrounding surface. It is calculated as the
difference between a given LiDAR point’s Z-value (elevation) and the neighboring triangles’ average Z-value that share this
point as a vertex (Figure 4). These neighboring triangles are generated through Delaunay triangulation based on Voronoi
diagrams constructed from the entire LiDAR point set. This metric provides insight into the relative height of the center point
with respect to the local surface geometry defined by its neighbors. Considering the number of neighbor points as n, the

height (Z) values of the points as H, and the DeltaH value at the center point as Ay it is written as follows:
H= Z?=1 H; (2)

Ay =H, —H 3)

Figure 4: Visual representation of DeltaH

3" Eigenvalue is a value calculated in the neighborhood analysis of a point that describes the local structure of the point cloud
geometry (Figure 5). This value helps us understand the size and direction of the distribution around a point. The smallest
eigenvalue refers to the distribution perpendicular to the surface. In an area with a radius of 3 m, neighbor points are selected,
the number of these neighbor points is N, the coordinates of these points are p(x,y, z), and the covariance matrix (C) is

calculated using the neighbor points as follows:
1 _ _
C=2Eli -0 —p)" @

In Equation 4, C represents the covariance matrix calculated from the 3D coordinates of N neighboring points. Each p; is the
position vector of a neighboring point, and p is the mean position vector. The term (p; — p)(p; — p)T captures the deviation
of each point from the mean, and their average defines the local geometric distribution around the central point. After solving

this covariance matrix with eigenvalues 4, 4,, 5 for the 3™ Eigenvalue;
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e A3 is the smallest eigenvalue and indicates how flat the local surface is.
e If A; is very small, the points are concentrated on a flat surface.

e A large value of A5 indicates a coarser, rougher, or curved surface.

x2

x1

x0

Figure 5: Visual representation of 3 Eigenvalue (URL-1)

Every point in the LiDAR point cloud has a color value based on the Red-Green-Blue (RGB) model, which was recorded
when the data was collected. The RGB values for each point have an 8-bit depth per channel, allowing for intensity values

ranging from 0 to 255 for each color component.

The red ratio (RR) shows how much red there is compared to the total amount of red, green, and blue (R + G + B = T). The
green ratio (GR) is calculated in the same way, showing the amount of green. The blue ratio (BR) represents the share of blue
in the overall color. In Equations 5 to 7, R represents red value, G represents green value, B represents blue value and T
represents sum of color values (R + G + B). These ratios represent the contribution of the color components to the overall

color distribution over each point and take a value between 0 and 1.

RR =R/T (5)
GR =G/T (6)
BR = BT (7)

Brightness is calculated by dividing the sum of the red, green, and blue values by the highest possible color value. This means
the brightness shows how much light there is at a point. A higher brightness means more light is present. For example, a

shaded spot high up will have lower brightness than a spot in direct sunlight.

Since color values are perceived in 8-bit depth, each color component (Red, Green, Blue) ranges from 0 to 255. This allows
the total color value (R + G + B) to be between 0 and 765. The brightness value of a spot is calculated by the ratio of this

total value to the maximum value (765) on the color scale.

Brightness = (®)

3X255

Due to their very low contribution to the model, BR and brightness were excluded in order to reduce model complexity, and
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only RR and GR were used as color-related variables.

2.2 Methods

The LiDAR system, as shown in Figure 6, sends laser beams to the surface with the help of a sensor and determines the
distance between the surface and the sensor with great precision by measuring the arrival time of the returning beams. This
technology is not only limited to measuring distances but also allows for creating a detailed three-dimensional model of the
surface. LIDAR devices, often used with cameras, record each point’s color information (red, R, green, G, and blue, B),
allowing for more comprehensive and visually enriched data. LiDAR data allows the precise location of each point to be
determined using a three-dimensional Cartesian coordinate system (X, Y, Z). In addition, the surface color information
provides a detailed representation of visual features in the digital environment. These features make LiDAR widely used in
various fields, such as terrain modeling, building design, infrastructure planning, environmental analysis, and archaeological
research. The superior accuracy and versatility of LiDAR technology offer innovative solutions in engineering projects and
urban planning, forest management, disaster risk assessment, and autonomous vehicle development. With its advantages and

opportunities, this technology contributes to transforming modern engineering and design processes.

2. GNSS Receiver \
3. Inertial Measurement Unit

7 -
v \] X Pitch
-

Roll

Figure 6: LiDAR scanning (URL-2)

LiDAR sensors send out laser beams that record the location of the first surface they hit. In addition to spatial coordinates,
LiDAR systems record other properties such as intensity (reflectance strength), scan angle, and multiple return levels (e.g.,
first and last return). These features can significantly impact classification outcomes. However, the dataset used in this study
contains only single returns and does not include intensity or scan angle attributes. Also, it needs to be organized and
appropriately classified to use this point cloud data effectively in a specific area. For this purpose, traditionally used rule-
based algorithms provide a fast solution, but their accuracy is considerably lower than that of machine learning algorithms.
Several studies have demonstrated that machine learning methods outperform rule-based approaches, particularly in complex
terrain and object classification tasks. According to Gharineiat et al. (2022), machine learning techniques provide better
results than rule-based methods in LiDAR data classification. Machine learning algorithms are more successful in this field
because they can evaluate various variables together on the training data while analyzing complex point cloud data. A DTM
is a 3D model of the ground’s surface, created using data from different measurement techniques. It is used in many areas,
like engineering and graphic design. The main difference between a Digital Surface Model (DSM) and a DTM is that a DTM
shows only the bare ground. This distinction is essential for this study, as the primary goal is to generate a DTM by classifying
LiDAR point cloud data into ground and non-ground points. Correctly identifying and removing non-ground elements is
fundamental for accurate terrain modeling. Figure 7 illustrates this difference. Surface objects like buildings, trees, and poles

are not included in a DTM.
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Figure 7: Digital surface and terrain model (URL-3)

2.2.1 Statistical Analysis

The classification task in this study is binary, aiming to distinguish ground points from all other objects. To define the surface
geometry based on point cloud data, neighboring points for each LiDAR point were identified using Delaunay triangulation—
one of the most widely adopted triangulation methods—constrained by a maximum neighbor distance of 3 meters. This step
was essential for calculating point-specific geometric attributes, which require accurately determining adjacent points. Once
the neighbors were identified, three geometric variables (Verticality, DeltaH, and 3™ Eigenvalue) were computed for each
point using curvature angle and surface roughness formulas. In the same way, red, green, and blue ratios and brightness

values were calculated using their specific color and brightness formulas.

The complete dataset was split into 70% training and 30% testing subsets, as shown in Table 1. After the split, all models
were trained using the training subset, and predictions were made on the test subset. Confusion matrices were generated based
on these predictions, and performance metrics such as accuracy, precision, recall, specificity, and F1 score were calculated
accordingly. While a separate validation phase or k-fold cross-validation was not applied in this study, future research will
consider incorporating such approaches to enhance model robustness and ensure unbiased performance estimation. Machine
learning methods (CT, BCT, RFC, LR, KNN, SVM, NB, ANN, MLP, XGB) were trained using the training data. The model

settings were adjusted as needed, and their performance was tested on the test data.

Table 1: Train-test dataset distribution

Ground Non-Ground Total

Train (70%) 31642 48548 80190
Test (30%) 13561 20806 34367
Total 45203 69354 114557

The performance metrics were calculated with the following formulas:

Accuracy = (TP + TN) /(TP + TN + FP + FN) 9)
Precision = TP /(TP + FP) (10)
Sensitivity (Recall) = TP/(TP + FN) (11)
Specificity = TN /(TN + FP) (12)
F1 Score = 2 X (Precision X Recall)/(Precision + Recall) (13)

J. Geod. Geoinf., 2025, 12(2):179-193
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Upon analyzing the results from models utilizing all seven variables, it was observed that the blue ratio and brightness
consistently exhibited negligible importance scores across all algorithms. To reduce model complexity and enhance
computational efficiency, the study used only the five most informative variables: Verticality, DeltaH, 3" Eigenvalue, RR,

and GR.

Machine learning algorithms offer various methods for data classification and prediction problems. DT decomposes the
dataset based on features, while BCT and RF combine multiple trees to produce more stable and accurate results. LR is
particularly effective in binary classifications by adopting a probabilistic approach. KNN classifies based on neighborhood
relations, while SVM aims to find hyperplanes with the broadest margin separating classes. As a probabilistic model, NB is
widely used in text analysis. ANN and MLP perform strongly on nonlinear problems. In contrast, XGB provides high
accuracy with a fast and streamlined structure. Each algorithm offers different advantages and provides various solutions
depending on the problem type. Decision trees classify data by recursively splitting it based on feature values, creating a tree-
like structure for decision-making (Breiman et al., 1984). Bagging reduces variance by training multiple decision trees on
bootstrapped subsets and aggregating their results (Breiman, 1996). Random Forest is an ensemble of decision trees where
each tree is trained on a random subset of data and features, improving accuracy and controlling overfitting (Breiman, 2001).
Logistic regression is a probabilistic model used for binary classification by modeling the relationship between input features
and a binary target using the logistic function (Hosmer & Lemeshow, 2000). KNN is a non-parametric method that classifies
a data point based on the majority class among its k closest neighbors (Cover & Hart, 1967). SVM finds the optimal
hyperplane that maximizes the margin between classes in a high-dimensional space (Cortes & Vapnik, 1995). Naive Bayes
is a probabilistic classifier based on Bayes’ theorem assuming feature independence (McCallum & Nigam, 1998). ANN is a
network of interconnected nodes (neurons) that learn complex patterns through backpropagation and weight adjustment
(Schmidhuber, 2015). MLP is a class of feedforward neural network consisting of multiple layers of neurons with nonlinear
activation functions (Bishop, 1995). XGBoost is a scalable, gradient-boosted decision tree algorithm designed for speed and

performance, using regularization to prevent overfitting (Chen & Guestrin, 2016).

The algorithm’s results were checked using an error matrix, and a detailed review was done using different statistics, such as
specificity, precision, accuracy, sensitivity, and F1 score. In this process, the effects of each criterion on the classification
success of the algorithms were analyzed and compared to see which algorithm gave the most effective results. Thus, it has
been revealed in detail how successful each algorithm is compared to the others and which criteria affect the performance

more.

Ozen and Cilengiroglu (2024) tested fewer machine learning models (CT, RFC, LR, KNN, SVM, NB, ANN, MLP) using
only three features (Angle of Curvature, Roughness, and RR). The ANN model gave the best F1 score of 0.836.

The main differences between the two studies are that a more challenging data set was used, different highly correlated
variables were included in the models, and the model richness was increased with two different machine learning algorithms

(BCT and XGB).

3. Results

The LiDAR point cloud data was analyzed with different machine learning methods using the training data. Then, the models
were tested on separate data to measure their performance. The outcomes of these evaluations are summarized in Table 2.

Based on the results, while the differences in performance among the algorithms are not statistically significant, the highest
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accuracy rate of 81.1% was achieved by both the XGB and SVM algorithms. This conclusion is supported by a Kruskal-
Wallis H-test applied to the classification accuracies, which yielded a p-value above 0.05, indicating no statistically
significant difference among the models. In contrast, the NB algorithm yielded the lowest accuracy at 70.8%. Notably, the
NB model demonstrated a relatively higher sensitivity of 63.9% compared to the other models. The results of the SVM and
XGB models show less than 1% difference. XGB has the highest F1 score with 84.1%, followed by RFC, SVM, and ANN
with 84%.

Table 2: Performance results of algorithms

Accuracy Sensitivity Specificity Precision  F1 Score
CT 0.789 0.877 0.652 0.793 0.832
BCT 0.800 0.832 0.746 0.833 0.833
RFC 0.808 0.840 0.762 0.843 0.840
LR 0.753 0.782 0.705 0.801 0.792
K-NN 0.769 0.798 0.728 0.817 0.805
SVM 0.811 0.827 0.785 0.854 0.840
NB 0.708 0.639 0.818 0.842 0.724
ANN 0.809 0.842 0.754 0.839 0.840
MLP 0.807 0.781 0.848 0.886 0.837
XGB 0.811 0.836 0.777 0.851 0.841

In Figure 8, contour lines derived using linear interpolation from DTMs generated using ten different machine learning
algorithms are visually compared with those of the reference (baseline) terrain model by overlaying them. In each
visualization, black lines represent the reference terrain model, while red lines correspond to the terrain model produced by
the respective algorithm for the given segment. These visualizations provide insight into how accurately each model captures
topographic details. As illustrated in the sample figure above, the contour lines produced using XGBoost closely match those
of the reference model, particularly in areas with significant elevation changes. However, minor deviations are observed in

some contours, which can be attributed to terrain complexity and local point density variations.

In the XGB model, the LR model was used as the objective function; the error was used as the evaluation metric, and the
error threshold was set as 0.01, which was obtained by performing 100 iterations in total. LR was chosen because it is a
function that gives good results, especially in binary classifications. For each observation, the total score of the trees is
calculated, and this score is converted into probability by passing it through a sigmoid function;

1
1+e~%2

Py=1= (14)

Here, P(y = 1) represents the probability that a given input belongs to class 1. The value z is the linear combination of input

features, and the sigmoid function T !

—=z maps this value into a probability range between 0 and 1, enabling binary
classification. The threshold value is set as 0.5, and a positive result is obtained if P > 0.5, and a negative result is obtained

if P <0.5.

For the XGBoost model, training was conducted on the 70% training subset using the xgboost package in R. The model was
trained with 100 boosting rounds (nrounds = 100), using the “binary:logistic” objective for binary classification and “error”
as the evaluation metric. No manual hyperparameter tuning was applied; instead, default settings were used for all other

parameters: maximum tree depth (max_depth = 6), learning rate (eta = 0.3), subsample ratio (subsample = 1), column
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sampling ratio (colsample bytree = 1), and L2 regularization term (lambda = 1). These defaults provided a baseline model
configuration for performance comparison.

Figure 8: Comparison of contours (a) RF, (b) NB, (c) ANN, (d) MLP, (e) LR, (f) SVM, (g9) KNN, (h) CT, (i) BCT, (j) XGB

Figure 9 presents the variable importance scores and the model graph associated with the final version of the algorithm.
Figure 10 presents the simplified structure of the decision trees generated using the XGBoost algorithm with a logistic
regression objective function, where the error threshold was set at 0.01. To prevent overfitting, the model was limited to 100
iterations. Examination of the decision structure reveals that the first split occurs on the DeltaH variable, confirming its role
as the most informative feature. As shown in Figure 9, the variable contributions were determined as 40% for DeltaH, 19%

for Rratio, 18% for Gratio, 13% for the 3™ Eigenvalue, and 10% for Verticality. While geometric variables accounted for
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63% of the total contribution, color-based variables contributed 37%. This distribution indicates that the model primarily

relies on geometric criteria in its decision-making process, with color ratios serving a complementary role.
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Figure 9: Variable weight distribution chart
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Figure 10: XGB model diagram

An examination of the confusion matrix (Table 3) reveals that the XGB model achieves higher performance in the “non-
ground” class, whereas its accuracy in the “ground” class remains comparatively lower. This discrepancy can be primarily
attributed to the tendency of the model to misclassify ground points as non-ground, particularly in areas characterized by
complex topography and dense vegetation. The model’s heavier reliance on geometric variables (DeltaH, Verticality, and the
3" Eigenvalue) may further amplify this effect, as above-ground objects exhibit more distinctive geometric and color features,
making the non-ground class easier to discriminate. Additionally, the unequal distribution of ground and non-ground points
in the dataset (with non-ground points being more numerous) likely biases the model toward the majority class, contributing
to the reduced prediction accuracy for the ground class. These findings indicate that, although the overall performance of the
model aligns with comparable studies in the literature, improvements such as addressing class imbalance and enhancing the

contribution of color-based variables may further increase its effectiveness in classifying ground points.

The model results show that geometric variables (DeltaH, RR, GR, 3™ Eigenvalue, and Verticality) dominate the prediction
process, contributing 63%. The DeltaH variable has the highest contribution of 40% and is decisive in the model’s accuracy.

Its selection as the first split point in the decision tree confirms the high information gain of this variable. The total
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contribution of color-based variables such as RR and GR is 37%, indicating that these variables play an auxiliary role. The
analysis reveals that the model is more sensitive to geometric features and suggests that these features should be improved.

Alternatively, methods to increase the contribution of color-based variables should be investigated to improve the model.

Table 3: Confusion matrix of XGB model results

Predicted: Ground  Predicted: Non-ground
Actual: Ground 6992 7048
Actual: Non-ground 6621 13389

4. Discussion

In this study, the LiDAR point cloud was divided into ground and non-ground points using the XGB method, reaching an
accuracy of 81.1%. This performance level is considered sufficient for professional applications, especially given the inherent
measurement uncertainties in geospatial sciences. In literature, achieving 100% accuracy is widely acknowledged as
unrealistic due to the complexities and variabilities in terrain modeling. Thus, the results presented here align with or exceed

those of similar studies.

A distinguishing aspect of this research is the inclusion of the DeltaH geometric variable (representing the height differences
among neighboring points) combined with color-based attributes. This variable contributed 40% to the model’s predictive
power, surpassing the combined contribution (37%) of red and blue color ratios. The deliberate exclusion of photogrammetric
modeling steps also resulted in a more efficient workflow by reducing time consumption, which can be advantageous in time-

sensitive projects.

However, it is essential to recognize that none of the original positional (X, Y, Z) or color (R, G, B) values were directly used
as input features. Instead, all independent variables were derived through mathematical and geometric transformations. While
this approach enhances the interpretability and abstraction of features, it also introduces variability in model outcomes

depending on the choice of algorithm and variable engineering methods.

5. Conclusion

This study demonstrates that machine learning algorithms, particularly XGB, can effectively classify LIDAR point cloud data
when derived geometric and color-based features are supported. The results suggest that, although traditional

photogrammetric approaches were bypassed, the model still achieved competitive accuracy levels.

Nonetheless, due to the limitations imposed by the nature of geospatial measurements, perfect modeling remains unattainable.
Novel geometric features based on shape distributions demonstrate reliable performance across multiple scales and
outperform covariance-based features in all tested cases (Blomley et al., 2014). Future studies will aim to enhance model
accuracy by introducing new variables, exploring alternative algorithms, and testing different datasets. Furthermore, the
research will focus on filling the spatial gaps between ground points and predicting elevation (Z values) using machine
learning approaches, offering a novel alternative to classical interpolation techniques in DTM production. It is anticipated

that such efforts will lead to improved precision and broader applicability in geospatial analysis workflows.
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