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Abstract: LiDAR technology enables precise distance measurements by emitting laser pulses that reflect off surface objects, allowing 

for the calculation of spatial coordinates. Alongside spatial data associated color values of LiDAR points can be extracted from images 

captured by onboard cameras. As the laser beams reflect upon their initial contact with surfaces, the resulting point cloud must be 

appropriately classified to support specific analytical or operational objectives. This study uses different machine learning methods to sort 

and label LiDAR point cloud data into ground and non-ground points, then compares how well each method works. For this purpose, a 

dataset acquired by an unmanned aerial vehicle over the Democratic Republic of Congo was utilized. The dataset comprises 114,557 

points, each described by three geometric features (DeltaH, Verticality, 3rd Eigenvalue) and two normalized color attributes (Red and 

Green Ratios), derived from RGB values. A total of ten machine learning algorithms were implemented and assessed. Among them, the 

XGBoost algorithm demonstrated the highest classification accuracy at 84.1%, while the Naive Bayes algorithm yielded the lowest 

accuracy, at 72.4%. 
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Sayısal arazi modeli oluşturmada makine öğrenme algoritma performanslarının karşılaştırılması 

Öz: LiDAR teknolojisi, yüzey nesnelerinden yansıyan lazer darbeleri göndererek hassas mesafe ölçümleri yapılmasına olanak tanır ve bu 

sayede mekânsal koordinatların hesaplanması mümkün olur. Mekânsal verilerin yanı sıra, LiDAR noktalarına ait renk bilgileri de araç 

üzerindeki kameralarla çekilen görüntülerden elde edilebilir. Lazer ışınları yüzeylerle ilk temas ettikleri anda yansıdığından, ortaya çıkan 

nokta bulutunun belirli analizsel veya operasyonel amaçlara hizmet edebilmesi için uygun şekilde sınıflandırılması gerekmektedir. Bu 

çalışmada, LiDAR nokta bulutu verilerini sıralamak ve analiz etmek için çeşitli makine öğrenmesi yöntemleri kullanılmış ve her bir 

yöntemin performansı karşılaştırılmıştır. Bu amaçla, insansız hava aracı ile Demokratik Kongo Cumhuriyeti’nde elde edilen bir veri seti 

kullanılmıştır. Veri seti, üç geometrik özellik ve iki renk bilgisi içeren toplam 114 557 noktadan oluşmaktadır. On farklı makine öğrenmesi 

algoritması uygulanmış ve değerlendirilmiştir. Bu algoritmalar arasında XGBoost, %84.1 ile en yüksek sınıflandırma doğruluğunu 

gösterirken, Naive Bayes algoritması ile %72.4 ile en düşük doğruluğa ulaşılmıştır. 

Anahtar Sözcükler: Uzaktan algılama, LiDAR, Fotogrametri, Makine öğrenmesi, Sınıflandırma 
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1. Introduction 

With the rapid advancement of remote sensing technologies, their adoption has become increasingly widespread across 

various sectors, including engineering, architecture, industry, and construction (Almohsen, 2024). These innovations have 

made the measurement and analysis process faster, more precise, and more efficient, enabling significant developments in 

different sectors. Today, modern remote sensing methods like laser scanning, Interferometric Synthetic Aperture Radar 

(InSAR), photogrammetry, Synthetic Aperture Radar (SAR), and LiDAR (Light Detection and Ranging) are essential tools 

in engineering. LiDAR is especially important in many projects because it provides highly accurate and high-density three-

dimensional terrain data, which is essential for generating detailed and reliable digital elevation models (DEMs) (Liu et al., 

2007). This study specifically focuses on binary classification to distinguish ground from non-ground points in LiDAR data. 

Accuracy is becoming increasingly important in creating a Digital Terrain Model (DTM) in three-dimensional (3D) modeling, 

especially in map production. Advances in technology have made it more feasible to meet these needs. The improved 

capabilities of measurement devices and the increased processing capacity of computers and algorithms enable more efficient 

processing of collected data. However, using rule-based algorithms and data reduction processes to summarize the point 

cloud leads to data loss, resulting in a loss of accuracy in DEM production. 

In recent years, machine learning methods have become widely used and have taken on a key role in engineering and map 

production. Recent studies have shown the growing relevance of machine learning-based classification in 3D point cloud 

analysis, not only for terrain modeling but also for complex architectural and heritage documentation tasks. For example, 

Teruggi et al. (2020) proposed a hierarchical multi-resolution classification approach using machine learning, which 

demonstrated reliable and replicable results across large-scale datasets. Özdemir et al. (2019) tested and evaluated several 

classification algorithms for aerial point cloud data, including both deep learning and traditional machine learning methods, 

demonstrating the effectiveness of these approaches in high-resolution remote sensing applications. The proposed network, 

Mo-Net, simplifies shape coordinates by mapping them into a smaller, moment-friendly space. This makes it easier for the 

model to learn efficiently, using less memory and processing power, and also helps improve classification accuracy compared 

to similar approaches (Joseph-Rivlin et al., 2019). Since LiDAR data processing demands high computational resources and 

cost, two common approaches are used: developing new machine learning models and tools that reduce reliance on command-

based LiDAR data. However, it is worth noting that reducing or interpolating LiDAR data is not always the ideal choice in 

industrial applications (Gharineiat et al., 2022). 

According to Kuçak (2022), in his work with laser scanning data, the RANSAC algorithm can produce high-precision and 

complete three-dimensional geometric models, resulting in reliable 3D data that is important for restoration and other 

engineering works. Maturana and Scherer (2015) pointed out that machine learning is valuable for understanding land shapes 

and surface features. These algorithms are generally grouped into two types: supervised and unsupervised. Since 

unsupervised learning does not use training data to build models, it is not ideal for tasks requiring high accuracy. Wu et al. 

(2019) showed that supervised learning gives better results than unsupervised methods. Duran et al. (2021) conducted a study 

to evaluate the effectiveness of various machine learning algorithms in classifying LiDAR point cloud data. In the survey, 21 

geometric features were derived from both the photogrammetric model and the LiDAR point cloud. A total of nine different 

machine learning algorithms were assessed. The results indicated that the multilayer neural network achieved the highest 

classification accuracy, reaching 96%. The percentage of correctly classified points among 15 577 sample points in 

Columbus, Ohio, amounts to 96.5%. Random Forest (RF) method yields outcomes much closer to the ground truth than 

earlier classification approaches (Park & Guldmann, 2019). In their study, Jakovljevic et al. (2019) showed that the model 
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well processed both classes by obtaining recall values above 0.70 and precision values above 0.85 for both ground and non-

ground points in the classification of point clouds based on deep learning using an artificial neural network in pixel-based 

evaluation (Jakovljevic et al., 2019). Kang et al. (2017) showed, experiments demonstrate that the Bayesian Network 

classifier can effectively distinguish four types of basic ground objects, including ground, vegetation, trees, and buildings, 

with a high accuracy of over 90%. 

The novelty of this study lies in the integration of selected geometric and normalized color features for ground classification, 

using a large-scale LiDAR dataset acquired over a topographically diverse area. Additionally, the study compares ten machine 

learning algorithms on a balanced dataset to assess performance under complex terrain conditions. 

2. Materials and Methods 

2.1 Materials 

Various machine learning methods were used to analyze the geometric and color features taken from the LiDAR point cloud. 

These methods are ordered as classification tree (CT), bagging (BCT), random forest (RFC), logistic regression (LR), K-

nearest neighbors (KNN), support vector machine (SVM), Naive Bayes (NB), neural networks (ANN), multilayer perceptron 

(MLP), and XGBoost (XGB). The analyses were done in R (version 4.2.3) and Python (version 3.11), using a 5% significance 

level (α = 0.05). 

The dataset utilized in this study was acquired via LiDAR technology during an aerial survey conducted over Kinshasa, 

Democratic Republic of Congo, in March 2023. An international construction company provided the data used in this study 

and dataset includes a point cloud of over 43 million points. The LiDAR system used was a RIEGL mini VUX-1UAV scanner 

operating at 100 kHz pulse frequency, mounted on a fixed-wing UAV flying at 150 meters above ground level with a speed 

of approximately 60 km/h. The scan angle was ±30°, and the data included only first returns. It has a spatial density of 15 

points per square meter and covers 27 682.6 hectares. The sample points used in the study, shown in Figure 1, come from 

various land types, such as steep and flat areas, developed and undeveloped zones, forests, and open land, with a density of 

1 point per square meter. Accordingly, 114 557 points, including 45 203 ground points and 69 354 other points, were analyzed 

over an area of approximately 12 hectares. 

 

Figure 1: Study area on Google Earth map 

Özen and Çilengiroğlu (2024), used a total of 9391-point data from March 2023 in a different region of the same city, 

consisting of 4766 terrain points and 4625 non-terrain points distributed over an area of approximately 1 hectar, with 1 
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point/m2. The most significant difference between the two datasets is the larger sample size and the inclusion of a valley 

topography to challenge the prediction performance of the models (Figure 2). 

 

Figure 2: LiDAR study data 

2.1.1 Variables 

Geometric and color features were taken from the LiDAR point cloud. The geometric features include Verticality, DeltaH, 

and the 3rd Eigenvalue. The color features include red, green, blue, and brightness. In total, more than 20 different geometric 

variables, including Verticality and 3rd Eigenvalue variables, were found to be used in the studies in literature. A total of over 

20 geometric features commonly found in the literature—such as linearity, planarity, eigenentropy, and surface variation—

were initially considered. To ensure model efficiency and avoid multicollinearity, a correlation matrix was computed for all 

candidate features. DeltaH, Verticality, and 3rd Eigenvalue were selected based on their low correlation with one another and 

high predictive contribution in preliminary model runs. Features exhibiting high pairwise correlation or low variance were 

excluded. This selection aimed to reduce model complexity while preserving classification accuracy. In addition to all these 

variables, DeltaH and color-based variables for each point were also calculated and included in the models. The model 

contributions and model performances of all variables were evaluated, and as a result, it was decided to analyze the models 

with 5 variables (DeltaH, Verticality, 3rd Eigenvalue, Red Ratio and Green Ratio). 

Verticality refers to the angular deviation of the normal vector of a point from the vertical axis (Z-axis) (Figure 3). This 

measurement is used to analyze how vertical or horizontal surfaces or points are. It is particularly useful in LiDAR data for 

detecting steep surfaces such as walls of buildings, tree trunks, etc. Verticality is usually expressed as a value, not as an angle. 

This value is scaled between 0 and 1. 

If the normal vector of a point is called 𝑁⃗⃗ = (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) and the verticality of this point is called 𝑉, it is calculated as: 

𝑉 = 1 − |𝑁𝑧|  (1) 

Here 𝑁 represents the normal vector of the point, and 𝑉 denotes verticality. Here, it can be considered as: 

• 𝑉 = 1, fully vertical (e.g., wall) 

• 𝑉 = 0, fully horizontal (e.g., floor) 
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Figure 3: Visual representation of verticality (Tan et al., 2023) 

DeltaH is a variable that represents the vertical deviation of a point relative to its surrounding surface. It is calculated as the 

difference between a given LiDAR point’s Z-value (elevation) and the neighboring triangles’ average Z-value that share this 

point as a vertex (Figure 4). These neighboring triangles are generated through Delaunay triangulation based on Voronoi 

diagrams constructed from the entire LiDAR point set. This metric provides insight into the relative height of the center point 

with respect to the local surface geometry defined by its neighbors. Considering the number of neighbor points as 𝑛, the 

height (𝑍) values of the points as 𝐻, and the DeltaH value at the center point as ∆𝐻𝑚
 it is written as follows: 

𝐻 = ∑ 𝐻𝑖
𝑛
𝑖=1   (2) 

∆𝐻𝑚
= 𝐻𝑚 − 𝐻  (3) 

 

Figure 4: Visual representation of DeltaH 

3rd Eigenvalue is a value calculated in the neighborhood analysis of a point that describes the local structure of the point cloud 

geometry (Figure 5). This value helps us understand the size and direction of the distribution around a point. The smallest 

eigenvalue refers to the distribution perpendicular to the surface. In an area with a radius of 3 m, neighbor points are selected, 

the number of these neighbor points is 𝑁, the coordinates of these points are 𝑝(𝑥, 𝑦, 𝑧), and the covariance matrix (𝐶) is 

calculated using the neighbor points as follows: 

𝐶 =
1

𝑁
∑ (𝑝𝑖 − 𝑝̅)(𝑝𝑖 − 𝑝̅)𝑇𝑁

𝑖=1   (4) 

In Equation 4, 𝐶 represents the covariance matrix calculated from the 3D coordinates of 𝑁 neighboring points. Each 𝑝𝑖  is the 

position vector of a neighboring point, and 𝑝̅ is the mean position vector. The term (𝑝𝑖 − 𝑝̅)(𝑝𝑖 − 𝑝̅)𝑇 captures the deviation 

of each point from the mean, and their average defines the local geometric distribution around the central point. After solving 

this covariance matrix with eigenvalues 𝝀1, 𝝀2, 𝝀3 for the 3rd Eigenvalue; 
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• 𝝀3 is the smallest eigenvalue and indicates how flat the local surface is. 

• If 𝝀3 is very small, the points are concentrated on a flat surface. 

• A large value of 𝝀3 indicates a coarser, rougher, or curved surface. 

 

Figure 5: Visual representation of 3rd Eigenvalue (URL-1) 

Every point in the LiDAR point cloud has a color value based on the Red-Green-Blue (RGB) model, which was recorded 

when the data was collected. The RGB values for each point have an 8-bit depth per channel, allowing for intensity values 

ranging from 0 to 255 for each color component. 

The red ratio (𝑅𝑅) shows how much red there is compared to the total amount of red, green, and blue (𝑅 + 𝐺 + 𝐵 = 𝑇). The 

green ratio (𝐺𝑅) is calculated in the same way, showing the amount of green. The blue ratio (𝐵𝑅) represents the share of blue 

in the overall color. In Equations 5 to 7, 𝑅 represents red value, 𝐺 represents green value, 𝐵 represents blue value and 𝑇 

represents sum of color values (𝑅 + 𝐺 + 𝐵). These ratios represent the contribution of the color components to the overall 

color distribution over each point and take a value between 0 and 1. 

𝑅𝑅 = 𝑅/𝑇  (5) 

𝐺𝑅 = 𝐺/𝑇  (6) 

𝐵𝑅 = 𝐵/𝑇  (7) 

Brightness is calculated by dividing the sum of the red, green, and blue values by the highest possible color value. This means 

the brightness shows how much light there is at a point. A higher brightness means more light is present. For example, a 

shaded spot high up will have lower brightness than a spot in direct sunlight. 

Since color values are perceived in 8-bit depth, each color component (Red, Green, Blue) ranges from 0 to 255. This allows 

the total color value (𝑅 + 𝐺 + 𝐵) to be between 0 and 765. The brightness value of a spot is calculated by the ratio of this 

total value to the maximum value (765) on the color scale. 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =
𝑇

3×255
  (8) 

Due to their very low contribution to the model, 𝐵𝑅 and brightness were excluded in order to reduce model complexity, and 
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only 𝑅𝑅 and 𝐺𝑅 were used as color-related variables. 

2.2 Methods 

The LiDAR system, as shown in Figure 6, sends laser beams to the surface with the help of a sensor and determines the 

distance between the surface and the sensor with great precision by measuring the arrival time of the returning beams. This 

technology is not only limited to measuring distances but also allows for creating a detailed three-dimensional model of the 

surface. LiDAR devices, often used with cameras, record each point’s color information (red, R, green, G, and blue, B), 

allowing for more comprehensive and visually enriched data. LiDAR data allows the precise location of each point to be 

determined using a three-dimensional Cartesian coordinate system (X, Y, Z). In addition, the surface color information 

provides a detailed representation of visual features in the digital environment. These features make LiDAR widely used in 

various fields, such as terrain modeling, building design, infrastructure planning, environmental analysis, and archaeological 

research. The superior accuracy and versatility of LiDAR technology offer innovative solutions in engineering projects and 

urban planning, forest management, disaster risk assessment, and autonomous vehicle development. With its advantages and 

opportunities, this technology contributes to transforming modern engineering and design processes. 

 

Figure 6: LiDAR scanning (URL-2) 

LiDAR sensors send out laser beams that record the location of the first surface they hit. In addition to spatial coordinates, 

LiDAR systems record other properties such as intensity (reflectance strength), scan angle, and multiple return levels (e.g., 

first and last return). These features can significantly impact classification outcomes. However, the dataset used in this study 

contains only single returns and does not include intensity or scan angle attributes. Also, it needs to be organized and 

appropriately classified to use this point cloud data effectively in a specific area. For this purpose, traditionally used rule-

based algorithms provide a fast solution, but their accuracy is considerably lower than that of machine learning algorithms. 

Several studies have demonstrated that machine learning methods outperform rule-based approaches, particularly in complex 

terrain and object classification tasks. According to Gharineiat et al. (2022), machine learning techniques provide better 

results than rule-based methods in LiDAR data classification. Machine learning algorithms are more successful in this field 

because they can evaluate various variables together on the training data while analyzing complex point cloud data. A DTM 

is a 3D model of the ground’s surface, created using data from different measurement techniques. It is used in many areas, 

like engineering and graphic design. The main difference between a Digital Surface Model (DSM) and a DTM is that a DTM 

shows only the bare ground. This distinction is essential for this study, as the primary goal is to generate a DTM by classifying 

LiDAR point cloud data into ground and non-ground points. Correctly identifying and removing non-ground elements is 

fundamental for accurate terrain modeling. Figure 7 illustrates this difference. Surface objects like buildings, trees, and poles 

are not included in a DTM. 
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Figure 7: Digital surface and terrain model (URL-3) 

2.2.1 Statistical Analysis 

The classification task in this study is binary, aiming to distinguish ground points from all other objects. To define the surface 

geometry based on point cloud data, neighboring points for each LiDAR point were identified using Delaunay triangulation—

one of the most widely adopted triangulation methods—constrained by a maximum neighbor distance of 3 meters. This step 

was essential for calculating point-specific geometric attributes, which require accurately determining adjacent points. Once 

the neighbors were identified, three geometric variables (Verticality, DeltaH, and 3rd Eigenvalue) were computed for each 

point using curvature angle and surface roughness formulas. In the same way, red, green, and blue ratios and brightness 

values were calculated using their specific color and brightness formulas. 

The complete dataset was split into 70% training and 30% testing subsets, as shown in Table 1. After the split, all models 

were trained using the training subset, and predictions were made on the test subset. Confusion matrices were generated based 

on these predictions, and performance metrics such as accuracy, precision, recall, specificity, and F1 score were calculated 

accordingly. While a separate validation phase or k-fold cross-validation was not applied in this study, future research will 

consider incorporating such approaches to enhance model robustness and ensure unbiased performance estimation. Machine 

learning methods (CT, BCT, RFC, LR, KNN, SVM, NB, ANN, MLP, XGB) were trained using the training data. The model 

settings were adjusted as needed, and their performance was tested on the test data. 

Table 1: Train-test dataset distribution 

 Ground Non-Ground Total 

Train (70%) 31642 48548 80190 

Test (30%) 13561 20806 34367 

Total 45203 69354 114557 

The performance metrics were calculated with the following formulas: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)  (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃)  (12) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  (13) 
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Upon analyzing the results from models utilizing all seven variables, it was observed that the blue ratio and brightness 

consistently exhibited negligible importance scores across all algorithms. To reduce model complexity and enhance 

computational efficiency, the study used only the five most informative variables: Verticality, DeltaH, 3rd Eigenvalue, RR, 

and GR. 

Machine learning algorithms offer various methods for data classification and prediction problems. DT decomposes the 

dataset based on features, while BCT and RF combine multiple trees to produce more stable and accurate results. LR is 

particularly effective in binary classifications by adopting a probabilistic approach. KNN classifies based on neighborhood 

relations, while SVM aims to find hyperplanes with the broadest margin separating classes. As a probabilistic model, NB is 

widely used in text analysis. ANN and MLP perform strongly on nonlinear problems. In contrast, XGB provides high 

accuracy with a fast and streamlined structure. Each algorithm offers different advantages and provides various solutions 

depending on the problem type. Decision trees classify data by recursively splitting it based on feature values, creating a tree-

like structure for decision-making (Breiman et al., 1984). Bagging reduces variance by training multiple decision trees on 

bootstrapped subsets and aggregating their results (Breiman, 1996). Random Forest is an ensemble of decision trees where 

each tree is trained on a random subset of data and features, improving accuracy and controlling overfitting (Breiman, 2001). 

Logistic regression is a probabilistic model used for binary classification by modeling the relationship between input features 

and a binary target using the logistic function (Hosmer & Lemeshow, 2000). KNN is a non-parametric method that classifies 

a data point based on the majority class among its k closest neighbors (Cover & Hart, 1967). SVM finds the optimal 

hyperplane that maximizes the margin between classes in a high-dimensional space (Cortes & Vapnik, 1995). Naive Bayes 

is a probabilistic classifier based on Bayes’ theorem assuming feature independence (McCallum & Nigam, 1998). ANN is a 

network of interconnected nodes (neurons) that learn complex patterns through backpropagation and weight adjustment 

(Schmidhuber, 2015). MLP is a class of feedforward neural network consisting of multiple layers of neurons with nonlinear 

activation functions (Bishop, 1995). XGBoost is a scalable, gradient-boosted decision tree algorithm designed for speed and 

performance, using regularization to prevent overfitting (Chen & Guestrin, 2016). 

The algorithm’s results were checked using an error matrix, and a detailed review was done using different statistics, such as 

specificity, precision, accuracy, sensitivity, and F1 score. In this process, the effects of each criterion on the classification 

success of the algorithms were analyzed and compared to see which algorithm gave the most effective results. Thus, it has 

been revealed in detail how successful each algorithm is compared to the others and which criteria affect the performance 

more. 

Özen and Çilengiroğlu (2024) tested fewer machine learning models (CT, RFC, LR, KNN, SVM, NB, ANN, MLP) using 

only three features (Angle of Curvature, Roughness, and RR). The ANN model gave the best F1 score of 0.836. 

The main differences between the two studies are that a more challenging data set was used, different highly correlated 

variables were included in the models, and the model richness was increased with two different machine learning algorithms 

(BCT and XGB). 

3. Results 

The LiDAR point cloud data was analyzed with different machine learning methods using the training data. Then, the models 

were tested on separate data to measure their performance. The outcomes of these evaluations are summarized in Table 2. 

Based on the results, while the differences in performance among the algorithms are not statistically significant, the highest 
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accuracy rate of 81.1% was achieved by both the XGB and SVM algorithms. This conclusion is supported by a Kruskal-

Wallis H-test applied to the classification accuracies, which yielded a p-value above 0.05, indicating no statistically 

significant difference among the models. In contrast, the NB algorithm yielded the lowest accuracy at 70.8%. Notably, the 

NB model demonstrated a relatively higher sensitivity of 63.9% compared to the other models. The results of the SVM and 

XGB models show less than 1% difference. XGB has the highest F1 score with 84.1%, followed by RFC, SVM, and ANN 

with 84%. 

Table 2: Performance results of algorithms 

 Accuracy Sensitivity Specificity Precision F1 Score 

CT 0.789 0.877 0.652 0.793 0.832 

BCT 0.800 0.832 0.746 0.833 0.833 

RFC 0.808 0.840 0.762 0.843 0.840 

LR 0.753 0.782 0.705 0.801 0.792 

K-NN 0.769 0.798 0.728 0.817 0.805 

SVM 0.811 0.827 0.785 0.854 0.840 

NB 0.708 0.639 0.818 0.842 0.724 

ANN 0.809 0.842 0.754 0.839 0.840 

MLP 0.807 0.781 0.848 0.886 0.837 

XGB 0.811 0.836 0.777 0.851 0.841 

In Figure 8, contour lines derived using linear interpolation from DTMs generated using ten different machine learning 

algorithms are visually compared with those of the reference (baseline) terrain model by overlaying them. In each 

visualization, black lines represent the reference terrain model, while red lines correspond to the terrain model produced by 

the respective algorithm for the given segment. These visualizations provide insight into how accurately each model captures 

topographic details. As illustrated in the sample figure above, the contour lines produced using XGBoost closely match those 

of the reference model, particularly in areas with significant elevation changes. However, minor deviations are observed in 

some contours, which can be attributed to terrain complexity and local point density variations. 

In the XGB model, the LR model was used as the objective function; the error was used as the evaluation metric, and the 

error threshold was set as 0.01, which was obtained by performing 100 iterations in total. LR was chosen because it is a 

function that gives good results, especially in binary classifications. For each observation, the total score of the trees is 

calculated, and this score is converted into probability by passing it through a sigmoid function; 

𝑃(𝑦 = 1) =
1

1+𝑒−𝑧  (14) 

Here, 𝑃(𝑦 = 1) represents the probability that a given input belongs to class 1. The value 𝑧 is the linear combination of input 

features, and the sigmoid function 
1

1+𝑒−𝑧 maps this value into a probability range between 0 and 1, enabling binary 

classification. The threshold value is set as 0.5, and a positive result is obtained if 𝑃 ≥ 0.5, and a negative result is obtained 

if  𝑃 ≤ 0.5. 

For the XGBoost model, training was conducted on the 70% training subset using the xgboost package in R. The model was 

trained with 100 boosting rounds (nrounds = 100), using the “binary:logistic” objective for binary classification and “error” 

as the evaluation metric. No manual hyperparameter tuning was applied; instead, default settings were used for all other 

parameters: maximum tree depth (max_depth = 6), learning rate (eta = 0.3), subsample ratio (subsample = 1), column 
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sampling ratio (colsample_bytree = 1), and L2 regularization term (lambda = 1). These defaults provided a baseline model 

configuration for performance comparison. 

RF 

 

NB 

 

ANN 

 
(a) (b) (c) 

MLP 

 

LR 

 

SVM 

 
(d) (e) (f) 

KNN 

 

CT 

 

BCT 

 
(g) (h) (i) 

 XGB 

 

 

 (j)  

Figure 8: Comparison of contours (a) RF, (b) NB, (c) ANN, (d) MLP, (e) LR, (f) SVM, (g) KNN, (h) CT, (i) BCT, (j) XGB 

Figure 9 presents the variable importance scores and the model graph associated with the final version of the algorithm. 

Figure 10 presents the simplified structure of the decision trees generated using the XGBoost algorithm with a logistic 

regression objective function, where the error threshold was set at 0.01. To prevent overfitting, the model was limited to 100 

iterations. Examination of the decision structure reveals that the first split occurs on the DeltaH variable, confirming its role 

as the most informative feature. As shown in Figure 9, the variable contributions were determined as 40% for DeltaH, 19% 

for Rratio, 18% for Gratio, 13% for the 3rd Eigenvalue, and 10% for Verticality. While geometric variables accounted for 
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63% of the total contribution, color-based variables contributed 37%. This distribution indicates that the model primarily 

relies on geometric criteria in its decision-making process, with color ratios serving a complementary role. 

 

Figure 9: Variable weight distribution chart 

 

Figure 10: XGB model diagram 

An examination of the confusion matrix (Table 3) reveals that the XGB model achieves higher performance in the “non-

ground” class, whereas its accuracy in the “ground” class remains comparatively lower. This discrepancy can be primarily 

attributed to the tendency of the model to misclassify ground points as non-ground, particularly in areas characterized by 

complex topography and dense vegetation. The model’s heavier reliance on geometric variables (DeltaH, Verticality, and the 

3rd Eigenvalue) may further amplify this effect, as above-ground objects exhibit more distinctive geometric and color features, 

making the non-ground class easier to discriminate. Additionally, the unequal distribution of ground and non-ground points 

in the dataset (with non-ground points being more numerous) likely biases the model toward the majority class, contributing 

to the reduced prediction accuracy for the ground class. These findings indicate that, although the overall performance of the 

model aligns with comparable studies in the literature, improvements such as addressing class imbalance and enhancing the 

contribution of color-based variables may further increase its effectiveness in classifying ground points. 

The model results show that geometric variables (DeltaH, RR, GR, 3rd Eigenvalue, and Verticality) dominate the prediction 

process, contributing 63%. The DeltaH variable has the highest contribution of 40% and is decisive in the model’s accuracy. 

Its selection as the first split point in the decision tree confirms the high information gain of this variable. The total 
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contribution of color-based variables such as RR and GR is 37%, indicating that these variables play an auxiliary role. The 

analysis reveals that the model is more sensitive to geometric features and suggests that these features should be improved. 

Alternatively, methods to increase the contribution of color-based variables should be investigated to improve the model. 

Table 3: Confusion matrix of XGB model results 

 Predicted: Ground Predicted: Non-ground 

Actual: Ground 6992 7048 

Actual: Non-ground 6621 13389 

4. Discussion 

In this study, the LiDAR point cloud was divided into ground and non-ground points using the XGB method, reaching an 

accuracy of 81.1%. This performance level is considered sufficient for professional applications, especially given the inherent 

measurement uncertainties in geospatial sciences. In literature, achieving 100% accuracy is widely acknowledged as 

unrealistic due to the complexities and variabilities in terrain modeling. Thus, the results presented here align with or exceed 

those of similar studies. 

A distinguishing aspect of this research is the inclusion of the DeltaH geometric variable (representing the height differences 

among neighboring points) combined with color-based attributes. This variable contributed 40% to the model’s predictive 

power, surpassing the combined contribution (37%) of red and blue color ratios. The deliberate exclusion of photogrammetric 

modeling steps also resulted in a more efficient workflow by reducing time consumption, which can be advantageous in time-

sensitive projects. 

However, it is essential to recognize that none of the original positional (X, Y, Z) or color (R, G, B) values were directly used 

as input features. Instead, all independent variables were derived through mathematical and geometric transformations. While 

this approach enhances the interpretability and abstraction of features, it also introduces variability in model outcomes 

depending on the choice of algorithm and variable engineering methods. 

5. Conclusion 

This study demonstrates that machine learning algorithms, particularly XGB, can effectively classify LiDAR point cloud data 

when derived geometric and color-based features are supported. The results suggest that, although traditional 

photogrammetric approaches were bypassed, the model still achieved competitive accuracy levels. 

Nonetheless, due to the limitations imposed by the nature of geospatial measurements, perfect modeling remains unattainable. 

Novel geometric features based on shape distributions demonstrate reliable performance across multiple scales and 

outperform covariance-based features in all tested cases (Blomley et al., 2014). Future studies will aim to enhance model 

accuracy by introducing new variables, exploring alternative algorithms, and testing different datasets. Furthermore, the 

research will focus on filling the spatial gaps between ground points and predicting elevation (Z values) using machine 

learning approaches, offering a novel alternative to classical interpolation techniques in DTM production. It is anticipated 

that such efforts will lead to improved precision and broader applicability in geospatial analysis workflows. 
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