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This study proposes a new hybrid model combining DNA2Vec-based embedded representations with UNK 
character support and a deep neural network (DNN) architecture for the classification of promoter and non-
promoter DNA sequences belonging to the Homo sapiens genome. The model's objective is twofold: first, to 
minimize the loss of contextual information, and second, to enhance the generalization performance by 
representing unknown or low-confidence k-mer sequences with an UNK vector. The model, which was structured 
with a GELU activation function and an AdamW optimization algorithm, achieved strong and balanced results, 
including 85.03% accuracy, 0.9376 ROC-AUC, and 0.8444 F1 score, when evaluated using a stratified 5-fold cross-
validation method. The findings indicate that the proposed structure provides a more straightforward yet 
effective approach in comparison to the more complex models documented in the extant literature. 
Furthermore, this architecture provides pragmatic and comprehensible solutions in bioinformatics applications, 
particularly since it facilitates motif-independent learning. Future work should address the generalization 
capacity be increased across species and that the integration with Transformer-based models be evaluated in 
future studies. 
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DNA2Vec ve UNK Duyarlı Derin Sinir Ağları ile İnsan 
Genomunda Promoter Sınıflandırması 
 
 
ÖZ 
 
Bu çalışma, Homo sapiens genomunda promoter ve non-promoter DNA dizilerinin ayrımını sağlamak amacıyla 
DNA2Vec tabanlı gömülü temsiller ve UNK karakter duyarlılığı ile güçlendirilmiş derin sinir ağı (DNN) mimarisini 
bir araya getiren hibrit bir sınıflandırma yaklaşımı önermektedir. Model, bilinmeyen veya düşük güvenilirlikteki 
k-mer’leri özel olarak başlatılan UNK vektörü ile temsil ederek bağlamsal bilgi kaybını önlemekte ve genelleme 
kapasitesini artırmaktadır. Veri seti, eşit sayıda promoter ve non-promoter diziden oluşturulmuş, 
değerlendirmede stratified 5-fold çapraz doğrulama uygulanmıştır. Optimize edilen model; test setinde %85.03 
doğruluk, 0.8786 kesinlik, 0.8128 duyarlılık, 0.8444 F1 skoru ve 0.9376 ROC-AUC başarısı elde etmiş ve insan 
genomu üzerinde yapılan çalışmalarda literatürdeki pek çok karmaşık modele kıyasla daha iyi veya benzer 
sonuçlar göstermiştir. Sonuçlar, önerilen mimarinin güçlü, yorumlanabilir ve hesaplama açısından verimli bir 
alternatif sunduğunu ve motif-bağımsız öğrenme yeteneğiyle biyoinformatik uygulamalarda pratik olarak 
kullanılabileceğini göstermektedir. Gelecek çalışmalarda türler arası genelleme ve Transformer gibi dikkat tabanlı 
modellerle entegrasyonun araştırılması önerilmektedir. 
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Introduction 

Nowadays, systematic classification of DNA sequences 
plays a fundamental role in a wide range of biomedical 
diagnostic and modeling processes, from understanding 
genetic order to discovering disease biomarkers. In this 
context, accurate identification of gene regulatory 
regions—especially promoter sequences—is critical for 
modeling transcriptional control, epigenetic mechanisms, 
and gene expression profiles. However, the increasing 
volume and biological complexity of genome data 
necessitate the development of new methods with strong 
generalization ability that can go beyond classical analysis 
approaches [1]. 

Promoter regions are distinguished as specific DNA 
segments that function as the initiators of gene expression 
by facilitating the binding of RNA polymerase and various 
transcription factors. These regions are typically situated 
in the vicinity of the transcription start site (TSS), enabling 
genetic adjustments to be responsive to factors such as 
timing, tissue-specific expression, and environmental 
response [2]. Mutations in promoter sequences have 
been associated with numerous genetic diseases, 
particularly cancer, thereby increasing the diagnostic and 
clinical importance of these regions [3]. 

Classical bioinformatics approaches have frequently 
relied on representation methods based on k-mer 
frequencies to transform DNA sequences into fixed-size 
features. However, these methods are inadequate in 
modeling motif locations and long-range dependencies, as 
they do not adequately reflect intra-sequence contextual 
relationships. Convolutional neural networks (CNNs) have 
been demonstrated to offer a partial solution to this 
problem; however, classical vectorization strategies 
predominantly necessitate manual feature engineering 
and exhibit constrained scalability when applied to large-
scale genomic datasets [1], [4]. 

The development of the DNA2Vec model was 
motivated by the necessity to overcome the limitations of 
existing methods. The DNA2Vec model draws inspiration 
from the Word2Vec approach in natural language 
processing and produces dense vectors that represent 
DNA k-mers along with their contextual features [5]. Each 
k-mer is situated within a fixed-dimensional vector space, 
thereby facilitating the modeling of semantic closeness 
between sequence structures. However, limitations such 
as fixed window width and context averaging result in an 
inability to adequately represent flexibility in motif 
positions and long-range sequence relationships [6]. 

In recent years, deep learning-based approaches have 
been developed to model structural motifs and contextual 
relationships in DNA sequences with greater 
effectiveness. CNN-based models have demonstrated 
particular efficacy in the recognition of local motifs [7], [8]. 
However, CNNs are incapable of adequately capturing 
distant dependencies due to their limited filter sizes. 
Consequently, Transformer-based approaches (e.g., 
DNABERT, CyaPromBERT) have emerged as a solution. 
These models have been shown to facilitate the creation 
of more robust contextual representations by leveraging 

DNA sequences within the framework of natural language 
structures [9], [10]. 

As evidenced by the extant literature, a variety of CNN, 
RNN, and transformer-based architectures have been 
proposed for the prediction of promoters and the 
classification of DNA sequences. The PromoterLCNN [11], 
iPromoter-BnCNN [12], and GSCNN [13] models have 
demonstrated noteworthy success. Models such as 
GraphPro have enabled more complex classifications by 
combining DNA2Vec representations with CNN and GNN 
structures [14]. Hybrid models that integrate DNA2Vec 
with deep neural network (DNN) structures have 
exhibited successful classification performance by 
combining contextual representation power with learning 
capacity [15], [16], [17]. However, a notable technical 
challenge arises in the processing of the 'N' character 
(unknown nucleotide) in biological data, which poses a 
distinct problem for embedding models. Therefore, the 
UNK (UNKnown) vector strategy, adapted from natural 
language processing techniques, is employed, and 
unknown k-mers are represented either by specially 
defined fixed vectors or by contextual methods such as 
FastText and LSHvec [18], [19]. In this context, the 
integration of DNA2Vec-based contextual embedding 
models with DNN architectures offers an effective 
approach in both technical and biological aspects in 
complex bioinformatics tasks such as the classification of 
promoter regions. Furthermore, the employment of the 
UNK vector strategy has the capacity to enhance model 
performance by preserving the information-carrying 
capacity of uncertain data samples. This study proposes a 
hybrid approach that integrates DNA2Vec, DNN, and UNK 
structures in the classification of promoter and non-
promoter DNA sequences of the Homo sapiens genome. 
 
Materials and Methods  

Dataset Description 
The DNA sequences employed in this study were 

primarily obtained from the EPDnew (Eukaryotic 
Promoter Database) database, which contains 
experimentally verified eukaryotic promoter sequences 
[20]. The EPDnew database includes 29,598 
experimentally validated promoter sequences 
corresponding to 16,455 human genes. In accordance 
with standard practice in the literature, promoter regions 
for Homo sapiens were extracted as 600-bp sequences 
spanning the −499 to +100 nucleotide range relative to the 
transcription start site (TSS). This window is considered to 
be enriched for transcription factor binding sites (TFBS) 
and core promoter motifs, and is frequently preferred for 
increasing promoter identification success [21]. 

Since EPDnew provides only positive instances (i.e., 
promoters), a systematic approach was adopted to 
generate the negative (non-promoter) class. To achieve 
this, the entire human reference genome (hg38) was 
utilized, and non-promoter sequences were generated by 
randomly sampling segments of equal length (600 bp) 
from genomic regions that do not overlap with any 
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annotated promoter loci. All sampled regions were cross-
checked to ensure no overlap with EPDnew-annotated 
promoters, and segments containing ambiguous bases 
(‘N’) were excluded. The creation of these negative 
samples is in line with widely accepted indirect 
identification strategies in the literature, given the 
absence of direct annotation for non-promoter 
sequences. Typical criteria include (i) intergenic or intronic 
regions distant from TSS, (ii) segments lacking 
transcriptional activity in transcriptome analyses (such as 
RNA-seq), and (iii) epigenetically repressed or 
transcriptionally inactive regions. This approach is widely 
accepted as a standard method, particularly in studies 
that utilize experimentally annotated databases such as 
EPDnew [22]. 

A balanced binary classification dataset was thus 
created by ensuring an equal number of positive 
(promoter) and negative (non-promoter) samples. All 
DNA sequences were converted to uppercase and filtered 
to remove ambiguous nucleotides prior to further 
processing. 

Furthermore, the 'N' character, which is frequently 
observed in DNA sequences, signifies nucleotides with low 
sequencing reliability or those of unknown origin. Given 
the inability of the model to directly process k-mers 
containing these characters, there is a possibility that the 
representativeness of the data may be compromised. In 
the extant literature, this situation is addressed in two 
ways: (i) the application of filters to sequences containing 
'N' [23], or (ii) representing k-mers containing 'N' with 
special vector representations (e.g., UNK vector). In this 
study, the second method was selected to prevent 
information loss. All k-mers that are not present in the 
DNA2Vec dictionary or contain the character 'N' are 
represented by a fixed-defined UNK (unknown) vector 
instead of the zero vector. This strategy aligns with 
approaches proposed in advanced models such as 
DNABERT, which aim to preserve contextual 
representations of out-of-vocabulary (OOV) tokens 
[10],[24]. 

Preprocessing and k-mer Embedding 
Prior to the implementation of deep learning models, 

raw DNA sequences underwent a series of preprocessing 
steps to ensure their integrity and quality. Initially, all 
sequences obtained in FASTA format were converted to 
uppercase and cleared of space characters. This process 
was implemented to ensure the integrity of the sequence 
structure and to prevent character-based separations. 

Subsequently, each DNA sequence was segmented 
into k-mer subsequences of a fixed length with 
overlapping segments. In this study, length k-mers of the 
form k=5 were found to be optimal in accordance with the 
DNA2Vec model. To illustrate, the sequence "ACGTGTC" 
was segmented into consecutive k-mers, such as ACGTG, 
CGTGT, and GTGTC. This process was executed from the 
sequence's inception to its conclusion by employing the 
sliding window method. 

Subsequent to k-mer decomposition, each k-mer 
sequence was represented by vectors that had been pre-

trained by DNA2Vec. The development of the DNA2Vec 
model was motivated by the Word2Vec algorithm, a 
foundational approach in the domain of natural language 
processing. The DNA2Vec model generates contextual 
dense vector representations for DNA sequences, thereby 
facilitating the analysis and interpretation of genetic data 
[8]. In this context, each k-mer is mapped to a fixed-size 
vector, and a DNA sequence is transformed into a fixed-
size input matrix by sequential concatenation of the 
vectors. 

In instances where k-mers are not incorporated within 
the DNA2Vec lexicon or contain the character 'N', the zero 
vector is not employed in lieu of the pertinent k-mer. 
Instead, a fixed-defined UNK (UNKnown) vector is 
employed to minimize information loss. This strategy 
draws from out-of-vocabulary (OOV) token 
representation methods, which have found extensive 
application in representation learning based on natural 
language processing. A similar approach has been 
employed in contextual models such as DNABERT [10, 24]. 
Consequently, the incorporation of all k-mer sequences 
results in each DNA sequence being presented to the 
model as a fixed-size matrix. This structural 
transformation ensures that the sequence context 
information is preserved and that the model can learn this 
information. 

 
Vector Construction and Input Representation 
Following the k-mer-based embedding process, each 

DNA sequence was represented by a fixed-size vector 
array. Consequently, each DNA sequence was generated 
by integrating the DNA2Vec vector equivalents of fixed-
length k-mers, which were arranged in a sequential 
manner. Consequently, each sample was transformed 
into a two-dimensional tensor (matrix) and converted to a 
format compatible with the model's requirements. 

In this study, each DNA sequence belonging to the 
Homo sapiens genome was structured to cover 
nucleotides between −499 and +300, with the TSS as the 
center. Consequently, the length of each sequence was 
fixed at 800 base pairs (bp). These fixed-length sequences 
were separated into k-mers by 5-mer segmentation, and 
each k-mer was represented by vectors pre-trained by 
DNA2Vec [8]. Consequently, the representation of each 
sequence was expressed by a fixed-size matrix consisting 
of the product of the number of k-mers (n) and the 
embedding size (d). 

The model inputs are structured as  
X.shape = (number of samples, number of k-mers, 
vector size). These fixed structures enable the model 
to process all samples of the same size and to learn 
sequence dependencies with stability. Given the fixed 
sequence lengths, the application of additional padding is 
not necessary. Given that all sequences contain an equal 
number of k-mers, there is no variation in the input sizes. 

Furthermore, k-mers that do not have a counterpart in 
the DNA2Vec dictionary or contain the character 'N' are 
represented not by a zero vector, but by a fixed-defined 
UNK vector. This strategy is compatible with methods that 
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are based on the purpose of preserving the contextual 
representations of out-of-vocabulary (OOV) tokens. Such 
methods have been proposed in models such as 
DNABERT. 

In our implementation, the UNK vector is initialized 
randomly and treated as a trainable embedding, meaning 
it is updated during backpropagation along with other 
model parameters. This allows the model to learn an 
optimal contextual representation for ambiguous or rare 
k-mers, rather than relying on a static or zero embedding. 

 
Model Architecture and Mathematical Description 
The classification model developed in this study is 

schematically presented in Figure 1. The model is 
predicated on a multilayer DNN architecture that accepts 
as input fixed-size (100-dimensional) DNA2Vec 
embedding vectors representing DNA sequences 
belonging to Homo sapiens. Each DNA sequence is 
represented in a fixed format of 600 base pairs (bp), and 
these sequences are represented with DNA2Vec vectors 
after being divided into k-mer segments and then reduced 
to the average representation. Consequently, each 
example is presented to the model as a fixed-size vector, 
without preserving the sequential context information. 

 

Figure 1. Schematic representation of the proposed 
DNA2Vec based DNN model architecture. 

The model's architecture comprises three hidden fully 
connected layers, with 256, 128, and 64 neurons, 
respectively. Each layer utilizes the GELU (Gaussian Error 
Linear Unit) activation function, followed by Layer 

Normalization and Dropout (ratios ranging from 0.1 to 
0.5). In comparison to the conventional ReLU function, the 
GELU function facilitates a more seamless and 
differentiable transition, thereby enhancing the stability 
of the learning process in settings with limited data 
samples. The employment of Layer Normalization and 
Dropout in conjunction serves to mitigate the risk of 
overfitting, thereby enhancing the model's 
generalizability.  

The output layer of the model contains a single 
neuron, and it performs the binary classification task with 
a sigmoid activation function. The loss function is 
implemented by binary focal loss, a metric sensitive to the 
imbalance between classes in the sample. This function, 
with the parameters γ=2.0 and α=0.25, serves to reduce 
the impact of easily classified examples and optimize the 
decision surface of the model by focusing on challenging 
examples [25].  

In the training process, the AdamW optimization 
algorithm was used, with weight decay set to 1e-4. Unlike 
the classical Adam optimizer, AdamW decouples weight 
decay from the learning rate update, enabling more 
effective generalization [26]. Hyperparameter 
optimization was performed using random search over 
the learning rate, dropout rate, and number of epochs. 
The model yielding the highest validation accuracy was 
selected, and the final training was performed with these 
optimal parameters. 

Three callback functions are included in the training 
process to monitor the overfitting and learning 
performance of the model: 

• EarlyStopping (validation loss, patience=5), 
• ReduceLROnPlateau (val_loss, patience=3, 

factor=0.5), 
• ModelCheckpoint (saving the best model). 

Accuracy, Precision, Recall, F1-Score and ROC-AUC 
metrics are calculated as a result of each experiment and 
the averages of these metrics are reported comparatively. 
The developed architecture offers a balanced structure in 
terms of both computational efficiency and classification 
performance; despite the elimination of sequential 
context information, it provides high accuracy 
classification thanks to the power of representations. 

The operation in each hidden layer of the model 
consists of linear transformation, GELU activation, layer 
normalization and dropout operations. This structure 
increases the generalizability of the model with both 
nonlinear transformations and regularization mechanisms 
in the learning process. The general mathematical 
expression of this operation can be defined as follows: 

ℎ(𝑙𝑙) = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐷𝐷𝐿𝐿𝐷𝐷𝐷𝐷𝐿𝐿(𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺(𝑊𝑊(𝑙𝑙)ℎ(𝑙𝑙−1) + 𝑏𝑏(𝑙𝑙)))) 

Here ℎ(𝑙𝑙) represents the activation vector in the l-th 
layer; 𝑊𝑊(𝑙𝑙) and 𝑏𝑏(𝑙𝑙) represent the weight and bias 
parameters, respectively. The GELU (Gaussian Error Linear 
Unit) activation function increases the learning capacity of 
the model by providing a smoother activation instead of 
linear ReLU. Binary classification was performed in the 



Journal of Engineering Faculty, 3(1): 92-99, 2025 
 

96 
 

Table 1. Classification performance comparison of different optimization and activation combinations 
Model Configuration Accuracy Precision Recall F1 Score ROC-AUC 
Adam + GELU 0.7842 0.7935 0.7684 0.7807 0.8706 
Adam + LeakyReLU 0.7842 0.7647 0.8211 0.7919 0.8509 
Adam + LeakyReLU + Dropout(0.3) 0.7684 0.7476 0.8105 0.7778 0.8592 
Adam + LeakyReLU (α = 0.01) 0.7737 0.7500 0.8211 0.7839 0.8684 
AdamW + GELU + Dropout(0.2) 0.8000 0.8000 0.8000 0.8000 0.8635 
AdamW + GELU (without dropout layer) 0.8000 0.8065 0.7895 0.7979 0.8577 
AdamW + GELU (stratified sampling) 0.8456 0.8731 0.8088 0.8397 0.9293 
AdamW + GELU (Random search) 0.8503 0.8786 0.8128 0.8444 0.9376 

output layer with a sigmoid activation function. As a loss 
function, Binary Focal Loss, which is sensitive to class 
imbalance, was preferred. This function aims to focus on 
more difficult examples by reducing the effect of easily 
classified examples. The Focal Loss formulation is as 
follows: 

𝐹𝐹𝐿𝐿(𝐷𝐷𝑡𝑡) = −𝛼𝛼𝑡𝑡(1 − 𝐷𝐷𝑡𝑡)𝛾𝛾log (𝐷𝐷𝑡𝑡) 
Here, 𝛼𝛼𝑡𝑡 represents the class weight and γ represents 

the focus parameter. This structure is suggested as an 
effective strategy to improve the classification 
performance, especially in imbalanced datasets. 
 
Results 

Model Optimization Experiments 
Hyperparameter experiments were performed on 

various DNN architectures with different activation 
functions, optimization algorithms and dropout rates to 
improve the overall performance of the model. These 
comparisons were made under fixed input vector 
(DNA2Vec 5-mer, 100-dimensional) and fixed number of 
layers, by only changing optimization strategies and 
activation types.  
Table 1 summarizes the accuracy, precision, recall, F1 
score and ROC-AUC values for each alternative 
configuration. 

The LeakyReLU and GELU activation functions 
implemented under the Adam algorithm produced 
analogous results in terms of overall accuracy and ROC-
AUC. LeakyReLU demonstrated efficacy in achieving high 
scores, particularly in the recall metric. However, this 
approach resulted in a relative decrease in precision 
value. In contrast, the GELU function demonstrated a 
more balanced precision-recall distribution. 

The employment of dropout layers proved beneficial 
in mitigating the over-learning of the model; however, it 
resulted in minor reductions in the F1 score in certain 
configurations. The Dropout (0.3) configuration 
implemented with LeakyReLU exhibited inferior 
performance in terms of accuracy when compared to the 
other models, despite the high recall value. 

The models that demonstrated the highest accuracy 
(85.03%), F1 score (0.8444), and ROC-AUC value (0.9376) 
employed the AdamW optimization algorithm and GELU 
activation with random search optimization. The 
observation that comparable outcomes were attained 
under both constant and variable dropout rates lends 
further credence to the hypothesis that this architectural 
design possesses a notable capacity for generalization. 

Confusion Matrix and Class-Based Metrics 
As a result of the hyperparameter experiments, the 

model that provided the highest overall success achieved 
the following performance metrics on the test set: 

Table 2. Evaluation metrics on the test set (for the best 
model) 

Meric Value 
Accuracy 0.8503 
Precision 0.8786 

Recall 0.8128 
F1 Score 0.8444 
ROC-AUC 0.9376 

In order to analyze the class-based performance of the 
model in more detail, a confusion matrix evaluation was 
performed. The matrix presented in Figure 2 below shows 
the prediction accuracy of the model on positive 
(promoter) and negative (non-promoter) classes. 

 
Figure 2. Confusion matrix output of the best model on 

the test set. Positive class: promoter, Negative class: 
non-promoter. 

When the matrix is examined, it is seen that the model 
can successfully identify the positive class (promoter 
sequences) and provide high sensitivity (recall). However, 
it is observed that it works with a low error rate in the 
negative class. This structure shows that the model can 
make decisions without experiencing the problem of 
unbalanced class learning. 

 
ROC Curve and AUC Analysis 
The overall classification performance of the model 

was evaluated visually with the ROC (Receiver Operating 
Characteristic) curve, which is a threshold-independent 
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metric. The ROC curve seen in the graph in Figure 3 
reflects the balance between the sensitivity (Recall) and 
specificity (1 − False Positive Rate) of the model at 
different decision thresholds. 

 
Figure 3. ROC curve obtained on the test set 

The area under the curve, i.e. the ROC-AUC score, was 
calculated as 0.9376. This value shows that the model has 
a strong ability to distinguish between positive (promoter) 
and negative (non-promoter) classes. The fact that the 
ROC curve is above the ideal performance line, y = x, and 
close to the upper left corner, reveals that the model 
provides high sensitivity while keeping the false positive 
rate low. This analysis, when evaluated together with the 
confusion matrix and accuracy-based metrics, supports 
the general classification ability of the developed model 
both quantitatively and visually. 

Although the source code is not publicly available, it 
has been documented in detail within the manuscript. 
The implementation can be shared with interested 
researchers upon reasonable request for academic and 
non-commercial use. 
 
Discussion 

This study introduces a hybrid classification strategy 
for distinguishing promoter and non-promoter DNA 
sequences within the Homo sapiens genome by 
integrating DNA2Vec-based embedding representations 
with a DNN classifier. The inclusion of a predefined UNK 
vector for handling unknown nucleotides contributed 
significantly to preserving contextual semantics during 
embedding and improved the model’s generalization 
capabilities. As shown in Table 2, the proposed model 
achieved a test accuracy of 0.8503, F1-score of 0.8444, 
and ROC-AUC of 0.9376—indicating a well-balanced and 
acceptable performance level. 

During the model tuning phase, multiple variants were 
tested by changing the activation function (GELU vs. 
LeakyReLU), optimizer (Adam vs. AdamW), and dropout 
ratios. These results, presented in Table 1, demonstrate 
that the best-performing architecture combined GELU 
activation with the AdamW optimizer without dropout 
regularization. This combination led to stable 
convergence and superior generalization compared to 
other configurations and yielded the highest metrics: 
85.03% accuracy, 0.8444 F1-score, and 0.9376 ROC-AUC 
on the test set. 

Importantly, the proposed model offers a simplified 
yet effective architecture that contrasts with the 
increasing trend of complex models such as CNNs, 
BiLSTMs, GNNs, and Transformers. While our model does 
not outperform cutting-edge architectures in absolute 
accuracy (e.g., GraphPro [98.1%], ACNN-BLSTM [97.5%]), 
its lightweight design, interpretability, and training 
efficiency make it a compelling candidate for practical 
deployment in genomic annotation pipelines. 

To provide context for the performance of the 
proposed system, Table 3 summarizes results from 
relevant literature and benchmarking studies. While deep 
architectures trained on bacterial or species-specific 
datasets often report high scores, models trained on 
human genome data (such as ours and [27]) typically yield 
more conservative metrics due to sequence diversity and 
biological complexity. Within this framework, our model 
stands out by offering a favorable trade-off between 
architectural simplicity and classification performance. It 
is important to note that the models listed in Table 3 were 
trained and evaluated on various datasets, including 
bacterial (e.g., E. coli) and human (Homo sapiens) 
genomes. While the proposed model specifically focuses 
on the human genome, some referenced models were 
optimized for bacterial sigma factor classification. 
Therefore, although the presented accuracy values 
provide a broad performance perspective, differences in 
species and dataset characteristics should be taken into 
account when interpreting comparative results. 

Moreover, the confusion matrix and ROC curve 
(Figures 2 and 3) highlight the model's sensitivity and its 
ability to maintain performance even in the presence of 
ambiguous sequence data. This further supports the 
viability of embedding-based, non-sequential modeling 
for DNA classification tasks. 
 
Conclusion 

This work presents a DNN-based classification 
approach enhanced by DNA2Vec embeddings and a 
predefined UNK vector to handle ambiguous bases. The 
model achieves strong and balanced performance in 
promoter prediction tasks on human DNA sequences, 
showing robustness and interpretability without relying 
on complex sequential architectures. 

Compared to more elaborate deep learning models, 
our method emphasizes clarity, efficiency, and ease of 
training, which makes it suitable for applications in 
scalable genomics and real-world deployment. 
Nevertheless, limitations remain—most notably the lack 
of positional encoding and dependence on average-
pooled embeddings, which may hinder the detection of 
long-range dependencies. 

Future directions should explore hybrid architectures 
incorporating attention mechanisms or Transformer-
based embeddings (e.g., DNABERT), and cross-species 
validation on broader datasets to assess generalizability. 
Furthermore, the differentiation of functional promoter 
subtypes could enhance biological insight and refine 
classification capabilities.
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Table 3. Comparative benchmarking of the proposed model against existing literature. 
Study Accuracy F1-Score AUC Notes 
PromoterLCNN  [11] 94.10% 0.94 – Bacterial dataset 
iPromoter-BnCNN [12] 91.5–95.8% 0.91 0.94 E. coli dataset 
GSCNN [13] 97.43% 0.97 0.99 Sigma54-specific 
ML + k-mer + PCA [27] 93.30% 0.93 0.95 H. sapiens 
DNA2Vec + CNN [15] 94.70% 0.94 0.96 Simple hybrid 
DNA2Vec + CNN + BiLSTM [16] 96.20% 0.96 0.97 Protein–DNA binding 
GraphPro [14] 98.10% 0.98 0.99 Multiple promoter types 
Proposed Model 85.03% 0.84 0.94 DNA2Vec + UNK + DNN 
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