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Abstract 

Detecting Alzheimer’s Disease (AD) at an early stage is vital because it enables prompt treatment and intervention, which 

can help slow disease progression and enhance patient prognosis. Given the increasing prevalence of AD globally, with 

an estimated 50 million people currently living with the condition and projected to triple by 2050, the development of 

accurate and efficient diagnostic tools is paramount. In this study, a novel architecture for the early diagnosis of AD by 

combining Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs) with traditional Machine Learning 
(ML) algorithms was proposed. Utilizing MRI images as input, CNNs/ViTs serve as feature extractors, while 

demographic data is integrated to enhance diagnostic accuracy. Through extensive experimentation, our proposed model, 

which utilizes a CNN backbone optimized for MRI analysis as a feature extractor and LGBM as the classifier, achieved 

superior accuracy, reaching up to 96.83%. Statistical validation through confidence intervals and McNemar’s test further 

demonstrated the robustness and significant performance improvements of the proposed model compared to baseline 

methods. This study employs eXplainable AI techniques to visualize critical regions in MRI images that influence the 

model’s diagnostic decisions, promoting clinical transparency and trust in AI-assisted early diagnosis of AD. The novelty 

of this study lies in integrating deep feature extractors (CNNs/ViTs) with traditional ML classifiers, supported by 

interpretability through Grad-CAM and statistical validation, offering a transparent and accurate framework for early 

diagnosis of AD. 
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Öz 

Alzheimer Hastalığını (AH) erken evrede tespit etmek hızlı tedavi ve müdahaleye olanak sağlaması açısından çok 

önemlidir. Bu sayede hastalığın ilerlemesi yavaşlatılabilir ve hasta prognozu iyileştirilebilir. Dünya genelinde AH’nin 

artan yaygınlığı göz önüne alındığında — şu anda yaklaşık 50 milyon kişinin bu hastalıkla yaşadığı ve bu sayının 2050 

yılına kadar üç katına çıkacağı öngörüldüğünde — doğru ve etkili tanı araçlarının geliştirilmesi kritik hale gelmiştir. Bu 

çalışmada, Konvolüsyonel Sinir Ağları (CNN’ler) veya Görüntü Dönüştürücüler (ViT’ler) ile geleneksel Makine 

Öğrenmesi (ML) algoritmalarını birleştirerek Alzheimer hastalığının erken tanısına yönelik özgün bir mimari 

sunulmaktadır. Girdi olarak MRI (Manyetik Rezonans Görüntüleme) görüntülerini kullanan CNN/ViT modelleri özellik 
çıkarıcı olarak işlev görmekte ve tanı doğruluğunu artırmak amacıyla demografik verilerle birleştirilmektedir. 

Gerçekleştirilen kapsamlı deneyler sonucunda, MRI analizi için optimize edilmiş bir CNN tabanlı özellik çıkarıcı ile 

LGBM sınıflandırıcısının kullanıldığı önerilen modelimiz %96,83’e varan doğruluk oranı ile üstün performans 

sergilemiştir. Güven aralıkları ve McNemar testi yoluyla yapılan istatistiksel doğrulamalar, önerilen modelin temel 

yöntemlere kıyasla sağlamlığını ve anlamlı performans iyileştirmelerini desteklemiştir. Bu çalışma, Açıklanabilir Yapay 

Zeka tekniklerini kullanarak modelin tanısal kararlarını etkileyen MRG görüntülerindeki kritik bölgeler görselleştirilmiş 

ve böylece yapay zeka destekli erken teşhis süreçlerinde klinik şeffaflık ve güven teşvik edilmiştir. Bu çalışmanın 

özgünlüğü, derin özellik çıkarıcıların (CNN’ler/ViT’ler) geleneksel ML sınıflandırıcılarıyla bütünleştirilmesinde 

yatmaktadır. Bu yapı, Grad-CAM tabanlı yorumlanabilirlik ve istatistiksel doğrulama ile desteklenerek, erken AH tanısı 

için şeffaf ve yüksek doğrulukta bir çerçeve sunmaktadır. 

 
Anahtar kelimeler: Alzheimer hastalığı, Evrişimsel sinir ağı, Demans, Açıklanabilir yapay zeka, Manyetik rezonans 

görüntüleme, Görüntü dönüştürücüsü 
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1. Introduction 

 
Alzheimer's Disease (AD) was first defined by Alois Alzheimer in 1906. The initial patient described in the 

Alzheimer's report exhibited key features of the disorder commonly observed in subsequent patients, including 

progressive memory loss, cognitive dysfunction, altered behavior such as paranoia and delusions, and a gradual 
decline in language skills (Grossberg et al., 2019). The evolution of AD diagnosis has progressed through 

several stages, as outlined by Selkoe (Selkoe, 2001): Electron Microscopy (1960), Neurochemicals (mid-

1970s), Pharmacological Research and Approved Drugs (1970s-1980s), Identification of Variable 

Neurotransmitter Deficits (late 1970s-early 1980s), Genetic Discoveries (1990s), and Medical Imaging 
(2000s). Prior to the invention of the electron microscope in 1960, little advancement was made in 

understanding the pathogenesis of AD. The introduction of electron microscopy enabled the identification of 

two hallmark lesions, senile plaques, and neurofibrillary tangles, which were linked to AD (Armstrong, 2009). 
In the mid-1970s, the onset of dementia in AD patients was associated with reduced levels of certain enzymes, 

particularly choline acetyltransferase and acetylcholinesterase (Pappas et al., 2000). Pharmacological research 

in the 1970s-1980s aimed to elevate acetylcholine levels in the brain. Subsequent to the 1980s, researchers 

identified deficits in various neurotransmitter systems in AD brain tissue. The discovery of specific genes 
associated with familial forms of AD shed light on the genetic underpinnings of the disorder. Mutations in 

genes such as APP (Amyloid Precursor Protein), Presenilin 1, and Presenilin 2 were found to be linked to 

early-onset familial AD (Wong et al., 2020). The advancement of medical imaging techniques has provided 
researchers with the ability to visualize the brains of AD patients and monitor disease progression. 

 

Today, researchers are directing their efforts toward developing treatments that target the underlying causes of 
AD, such as reducing beta-amyloid plaques, tau tangles, and brain inflammation (Lukiw, 2012; Grossberg et 

al., 2019). While current treatments primarily focus on symptom management and slowing disease 

progression, there is increasing emphasis on early diagnosis to effectively slow disease progression. The 

diagnosis of AD typically involves clinical assessments, cognitive tests, and neuroimaging. Recent studies 
have integrated various assessment tools to enhance diagnostic accuracy (Qiu et al., 2018). Traditional 

diagnostic methods, such as cognitive testing and brain imaging, often detect the disease in its advanced stages, 

limiting intervention options. Recent advances in Artificial Intelligence (AI), particularly in Deep Learning 
(DL), have shown great promise in enhancing early detection. Convolutional Neural Networks (CNNs) have 

demonstrated effectiveness in capturing spatial features from medical imaging modalities, such as Magnetic 

Resonance Imaging (MRI) and Positron Emission Tomography (PET) scans, thereby aiding in accurate 
classification. However, CNNs may struggle with comprehension of the global context. To address this, Vision 

Transformers (ViTs), which excel in processing long-range dependencies, have been introduced to 

complement CNNs. ViTs represent a transformative approach to image classification, offering a significant 

shift from the traditional convolution-based models. Unlike CNNs, which rely on convolutional operations, 
ViTs utilize self-attention mechanisms to capture both local and global features from an image. ViTs segment 

an image into patches and utilize self-attention mechanisms across these patches, enabling the model to capture 

interactions between different image regions without relying on convolutional operations. This architecture 
has been particularly successful in modeling long-range dependencies and providing a global understanding 

of image data. In medical imaging, where understanding spatial relationships across various regions of the 

brain is critical, ViTs offer an advantage by effectively modeling these interactions. Their capacity to handle 

global information makes them a promising tool for enhancing AD detection, where identifying subtle and 
widespread brain abnormalities is essential. By utilizing either the local feature extraction capabilities of CNNs 

or the global attention mechanisms of ViTs, each model offers a distinct approach for detecting early-stage 

AD, with the potential to improve diagnostic accuracy and enable earlier interventions. In this study, we 
propose a novel architecture for the early diagnosis of AD, following the identification of the optimal feature 

extractor and classifier model. Utilizing the gold standard OASIS-2 MRI dataset, we evaluated a range of 

prominent CNN-based pre-trained architectures and ViT-based architectures as feature extractors. 
Demographic features from the OASIS-2 MRI dataset, along with the extracted features, were assessed using 

twelve traditional ML classifiers. The main contributions of this study are summarized as follows: 

 

• A novel architecture is proposed for the early diagnosis of AD by combining CNNs or ViTs with 

traditional Machine Learning (ML) algorithms, leveraging the strengths of both paradigms to enhance 
diagnostic performance. 

• The proposed model utilizes MRI scans as input, where CNNs or ViTs function as feature extractors 

to capture complex neuroanatomical patterns associated with AD. 
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• Demographic information is integrated into the diagnostic framework to provide additional patient-

specific context that complements imaging data, thereby improving diagnostic accuracy. 

• Extensive experimental results demonstrate that the proposed approach achieves outstanding 

accuracy—up to 96.83%—when using InceptionV3 or VGG19 as feature extractors combined with 
the LightGBM (LGBM) classifier, surpassing state-of-the-art methods. 

• An ablation study verifies that the integration of CNNs with traditional ML classifiers outperforms the 

use of standalone CNNs or ViTs. 

• The robustness of the proposed method is supported by the computation of 95% confidence intervals 

and statistical significance testing via McNemar’s test. 

• Feature map analyses of CNNs, ViTs, and BEiT models reveal distinct local and global patterns 

captured by each architecture. 

• Grad-CAM is employed to enhance model interpretability by generating localized visual explanations 
for model predictions, thereby supporting clinical transparency and trust. 

• A fine-tuning ablation study reveals that frozen CNN feature extractors consistently outperform end-

to-end training on small neuroimaging datasets, validating the methodological choice and offering 

practical guidelines for model adaptation based on dataset size. 

 
The rest of the paper is organized as follows: Section 2 provides an overview of the related work. Section 3 

outlines the materials and methods utilized in the proposed study. Section 4 presents the experimental results 

and accompanying discussion. Finally, Section 5 presents concluding remarks and outlines potential future 
directions. 

 

2. Related work 

 

AD is a progressive neurodegenerative condition that mainly impairs memory and cognitive abilities. With the 

global population aging, the incidence of diagnoses such as Parkinson's Disease, AD, and heart disease is rising 

due to increased longevity. The probability of an AD diagnosis doubles approximately every five years after 

reaching the age of 65 (Kaeberlein, 2013). Diagnosis of Alzheimer's typically involves analyzing various data 

sources, including voice recordings, medical images such as MRI scans, medical diagnostic tests like MMSE, 

and demographic information. While some studies focus on utilizing individual data types, others integrate 
multiple data sources to enhance diagnostic accuracy (Lauraitis et al., 2020; Erdogmus & Kabakus, 2023). 

(Agbavor & Liang, 2022) introduced an end-to-end AI-driven system designed for AD detection and 

assessment of AD severity directly from voice data. Notable medical imaging datasets utilized for AD 

diagnosis include The Alzheimer's Disease Neuroimaging Initiative (ADNI), The Open Access Series of 
Imaging Studies (OASIS), Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD), and The 

Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL) (Khojaste-Sarakhsi et al., 2022). 

(Abrol et al., 2020) utilized the popular ResNet (He et al., 2016) framework, incorporating three residual 
blocks, to perform AD classification using 3D structural MRI data. They modified the original ResNet design 

to better accommodate the complexities of neuroimaging analysis. In another study, (Shanmugam et al., 2022) 

compared the performance of ResNet18 with GoogleNet (Szegedy et al., 2015) and AlexNet (Krizhevsky et al., 
2012), concluding that ResNet achieved superior results in the early identification of AD. (Ji et al., 2019b) 

introduced an ensemble technique that integrated ResNet50, NASNet, and MobileNet for early AD detection. 

Another method (Mehmood et al., 2021) made use of the VGG19 (Simonyan & Zisserman, 2015) model, a 

widely recognized CNN structure, to identify cases of AD. Specifically targeting 3D data, the 3D-DenseNet 
architecture (Huang et al., 2017) was deployed in (Li & Liu, 2018) to extract localized features from various 

brain areas; these features were later fused to classify between Normal Controls (NC) and AD, as well as NC 

and Mild Cognitive Impairment (MCI). Several recent efforts have incorporated attention mechanisms into 
their models (Ji et al., 2019a), aiming to emphasize regions and features carrying the most critical diagnostic 

information, thereby boosting classification accuracy (Fathi et al., 2022). Deep Polynomial Networks (DPNs), 

a supervised learning approach that applies linear or quadratic transformations at each neuron to produce 

polynomial mappings, have also been explored (Livni et al., 2013). (Shi et al., 2018) introduced a multi-modal 
variant named MM-SDPN for AD diagnosis. Meanwhile, (M. Liu et al., 2018) proposed a hybrid model 

combining 2D-CNNs and Bidirectional GRUs (BiGRUs) for classifying AD from FDG-PET scans. A similar 

framework blending 3D-CNNs with BiGRUs was developed by (Cui & Liu, 2019) for the same purpose. 
Additionally, (S. Liu et al., 2014) designed a Stacked Autoencoder (SAE) featuring three hidden layers capped 

by a softmax classifier to facilitate early detection of AD using both MRI and PET imaging modalities. This 

study was among the first to apply DL in AD diagnosis. (Asl et al., 2018) introduced a supervised learning 
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framework named 3D-DSA-CNN, designed specifically for binary and multi-class classification of 

Alzheimer’s disease. Their approach is based on a 3D Convolutional Autoencoder (3D-CAE) architecture, 
comprising three stacked convolutional autoencoding layers, a flattening operation, two fully connected layers, 

and a final softmax layer for output prediction. (Suk et al., 2014) proposed an approach based on a Deep 

Boltzmann Machine (DBM) model that was utilized for hierarchical feature representation in AD and MCI 
diagnosis. (Kamada et al., 2021) introduced a technique utilizing Deep Belief Networks (DBNs) that 

dynamically modified the network’s architecture size in response to the input space throughout the training 

process. (Cilia et al., 2022) focused on the early diagnosis of neurodegenerative diseases, such as Alzheimer’s 

and Parkinson’s, by analyzing handwriting and drawing samples. The researchers developed a method that 
uses color images to encode dynamic information from handwriting traits, leveraging CNNs for feature 

extraction. The study not only improved the feature extraction process but also expanded the handwriting 

sample database with more complex tasks, demonstrating the potential of this approach in early diagnosis 
through comprehensive experiments. The recent studies using this dataset have been shown as a comparison 

table by (Balasundaram et al., 2023). Another study (Yildiz & Yildiz, 2023) focused on the early diagnosis of 

AD by leveraging an open-source dataset comprising disease-specific and demographic features. The 

researchers developed a classification model based on Artificial Neural Networks (ANN) to distinguish 

between dementia and non-dementia cases, achieving an accuracy of 98.5%, a Root Mean Square Error 

(RMSE) of 0.2302, and a Mean Absolute Error (MAE) of 0.1899. Another study (Vernekar & Selva Kumar, 

2024) developed CNNs and Capsule Neural Networks (CapsNet) to detect AD’s progression in brain scans. 
The innovative application of eXplainable AI (XAI) techniques provided valuable visualization on model 

decision-making, allowing clinicians to interpret the results effectively. The models achieved impressive 

performance, with accuracy rates of 96% (CNN) and 97% (CapsNet), highlighting their robustness in 

identifying early-stage AD. A recent research (Rehman Butt et al., 2024) introduced a 3D multi-scale CNN 
model using resting-state fMRI data to detect AD at early stages. By focusing on multi-scale features in the 

hippocampal region, the model effectively captured both fine-grained and global markers of disease 

progression. The approach achieved up to 93% classification accuracy and high sensitivity and specificity for 
early AD detection, demonstrating the promise of multi-scale DL in clinical diagnostics. Another recent study 

(Bagade & Godse, 2024) systematically compared several advanced CNN architectures (InceptionV3, 

ResNet152, VGG16, and VGG19) on MRI data. While CNNs showed high proficiency in distinguishing 
advanced dementia, the study advanced the accurate classification of elusive early AD stages. The findings 

suggest significant potential for CNNs to improve early diagnosis and intervention using medical imaging. 

(Gasmi et al., 2024) presented a hybrid DL system combining EfficientNetV2B3 and Inception-ResNetV2. The 

integration of these architectures, optimized with adaptive weighting, resulted in a system that improved the 
precision and timeliness of early-stage AD. The approach emphasizes the critical need for quick, accurate 

diagnostics to enable timely patient interventions and improve outcomes. A recent review (Raza et al., 2025) 

synthesized recent developments in applying DL, especially across multimodal neuroimaging (MRI, PET, 
etc.), for early AD detection. The review highlights how DL models are advancing diagnostic accuracy, 

progression prediction, and the integration of data types, while also discussing challenges such as data 

harmonization and clinical translation. 

 
Recent studies utilizing the OASIS-2 dataset for AD have been summarized in this paragraph. (Arjaria et al., 

2024) focused on using a subset of thirteen attributes provided by the OASIS-2 dataset to reduce computational 

costs associated with classification. Employing feature selection techniques, they achieved a classification 

accuracy of 90%. (Waldo-Benítez et al., 2024) utilized seven features selected through correlation analysis 

along with MRI images for dementia classification. Their approach, employing the kNN algorithm, yielded 

the highest average accuracy of 92.13% ±  3.48. (Chen et al., 2024) introduced LongFormer, an effective 

CNN-Transformer architecture for AD classification based on MRI images. (Mahmud et al., 2024) proposed 
a method integrating deep transfer learning and XAI techniques. Leveraging various CNN architectures and 

ensembles, their method achieved an impressive accuracy of 96% on MRI OASIS scans. A recent study (Lazli, 

2025) evaluated DL models including ViTs, Fully Connected (FC) networks, and Support Vector Machines 

(SVMs) on OASIS MRI data. The ViT-based model achieved an accuracy of 93.2% for early-stage AD 

detection. This study highlighted the potential of transformer-based models in extracting spatial features from 

neuroimaging data. In another study (Ntampakis et al., 2024), the researchers proposed an ensemble of DL 
models, including custom 3D CNN and ResNet variants, to classify dementia stages using OASIS-2. The 

ensemble approach reached a classification accuracy of 94.12%, outperforming standard models across all 

stages. The study demonstrated the effectiveness of combined architectures in improving diagnostic reliability 

across diverse stages of AD. Table 1 provides a comparison of related works published in 2024 and 2025. An 
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analysis of related work reveals that, despite significant advancements in applying DL and ML to AD 

diagnosis, several limitations remain. First, many studies rely solely on medical imaging modalities such as 
MRI or PET scans, often neglecting the integration of demographic and clinical data, which can improve 

diagnostic accuracy and interpretability. Additionally, while predefined DNN architectures like ResNet, 

VGG19, and DenseNet have shown promising results, their large number of parameters can lead to overfitting 
on small medical datasets, limiting generalizability. Recent attempts to leverage attention mechanisms or 

hybrid models such as CNN-Transformers have yet to fully address issues of computational efficiency and 

interpretability, especially in clinical settings where explainability is crucial. Moreover, few studies provide 

robust statistical validation of their results, leaving uncertainty about the reproducibility and significance of 
performance improvements. These gaps highlight the need for novel architectures that not only integrate 

diverse data types but also achieve high diagnostic accuracy with statistical rigor and clinical transparency, 

which this study aims to address. 

 

Table 1. A comparison of the related works published in 2024 and 2025. 

 
Study Methodology Classification accuracy (%) 

(Arjaria et al., 2024) SVM, feature selection (13 attributes) 90 

(Waldo-Benítez et al., 2024) kNN 92.13 

(Chen et al., 2024) ViT 82.35 

(Mahmud et al., 2024) CNN, transfer learning 96 

(Vernekar & Selva Kumar, 2024) CNN, CapsNet 96 (CNN), 97 (CapsNet) 

(Rehman Butt et al., 2024) Multi-scale CNN 93 

(Ntampakis et al., 2024) Ensemble of DL models 94.12 

(Lazli, 2025) ViT, FC network, and SVM 93.2 (ViT) 

 
3. Material and method 

 

In this section, we delineate the software stack employed in the proposed study, elaborate on the dataset utilized 

for training the model, encompassing the proposed feature extractors and classifiers, and outline the evaluation 
metrics employed, each discussed in the subsequent subsections. 

 

3.1. Software stack 
 

The software for the proposed study was implemented using the Python programming language, renowned for 

its prominence in data science. Keras (Chollet, 2017, 2024) served as the framework for implementing the 
proposed DNNs. Leveraging its compatibility with various DNN backends, TensorFlow (Abadi et al., 2016), 

the leading backend developed by Google, and the default backend of Keras, was employed in this study. 

Additionally, models based on ViT were proposed, for which the widely used Python package Hugging Face 

(Wolf et al., 2020; Hugging Face – The AI Community Building the Future, 2024) was employed. Traditional 
ML models were also integrated into the proposed approach, facilitated by scikit-learn (Pedregosa et al., 2011), 

another extensively utilized Python package. scikit-learn offered support for various data preprocessing 

operations, including dataset splitting, label encoding, and obtaining classification results. For visualizing 
experimental outcomes, Matplotlib (Hunter, 2007; Matplotlib: Visualization with Python, 2024) was 

employed, complemented by Seaborn (Waskom, 2021), a Python package built on top of Matplotlib, providing 

a high-level API for creating visually appealing and informative statistical graphics. The software stack used 

in this study is listed in Table 2. 
 

Table 2. The software stack of the proposed study. 

 
Software component Vendor Version 

Programming language Python 3.11 

DNN backend TensorFlow 2.9.0 

DNN API Keras 2.9.0 

Transformer API Hugging Face 4.37.2 

ML suite and data preprocessing scikit-learn 1.3.0 

Data manipulation Pandas 2.1.4 

Visualization Matplotlib & Seaborn 3.7.3 & 0.12.2 

 



Erdoğmuş & Kabakuş, 2025 • Volume 15 • Issue 3 • Page 829-853 

834 

3.2. Dataset description 

 
A gold standard dataset plays a pivotal role in proposing accurate ML models. In this study, we utilized the 

OASIS-2 (Marcus et al., 2010) dataset, which is provided as part of the OASIS project. OASIS-2 is a longitudinal 

dataset comprising data from 150 participants aged between 60 and 96 years. Each participant underwent at 

least two MRI scanning sessions, with a minimum interval of one year between sessions, resulting in a total of 

373 imaging sessions. For each individual, 3 to 4 T1-weighted MRI images were collected during a single 

scan visit. In this study, only one scan per participant was utilized, resulting in a final dataset comprising 209 

samples, which were obtained from a publicly available version on Kaggle (Tiriki, 2010). The cohort includes 

both male and female right-handed subjects. Among them, 72 were consistently classified as nondemented 

throughout the study. Additionally, 64 participants were diagnosed as demented at their initial visit and 

retained this classification in follow-up sessions, with 51 of these individuals exhibiting mild to moderate AD. 

Furthermore, an additional 14 subjects initially classified as nondemented were later reclassified as demented 
during subsequent visits. OASIS-2 contains both MRIs and demographic data for the subjects. Some samples 

from the OASIS-2 dataset are presented in Fig. 1. It is worth mentioning that while several gold standard 

datasets, such as ADNI and MIRIAD, are available, we chose OASIS-2 as it provides a balanced combination 
of a moderately sized, well-defined cohort with consistent imaging and clinical data. This makes it particularly 

suitable for our research objectives, which focus on longitudinal structural MRI analyses in AD. The 

composition of the OASIS-2 dataset is summarized in Table 3. 

 

 
 
Figure 1. Some samples from the OASIS-2 dataset. Left-to-Right: A nondemented MRI, a demented MRI, and 

a converted MRI. 

 
Table 3. OASIS-2 dataset composition. 

 
Category Count Details 

Total participants 150 Age 60 − 96, right-handed 

Total MRI sessions 373 ≥ 2 sessions/participant (1-year gap) 

Non-demented (longitudinal) 72 Remained non-demented 

Demented (longitudinal) 64 51 with mild/moderate AD 

Converted to demented 14 Reclassified during follow-up 

T1-weighted MRI scans/session 3-4 Per imaging visit 

 

The MRIs of the OASIS-2 dataset are stored as NIfTI (Neuroimaging Informatics Technology Initiative) files, 
which use an open file format commonly used to store MRI data. These files were first converted to NII files 

and then converted to JPG files to make them ready to be yielded in popular Python data science packages. 

This conversion process was handled by an open-source Python package, namely, NiBabel (Neuroimaging in 

Python — NiBabel, 2024), and is illustrated in Fig. 2. 
 

 
 

Figure 2. Illustration of the employed image conversion process. 
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Preprocessing plays a crucial role in converting raw data into a format suitable for ML. In the case of the 

OASIS-2 dataset, the subjects’ demographic data is provided in a tabular format, specifically a CSV (Comma 
Separated Value) file. Combining demographic data with other clinical information improves diagnostic 

accuracy and helps identify disease progression patterns. Models incorporating demographic factors have 

shown superior performance in predicting AD (Ye et al., 2008). Initially, this data was loaded into a Pandas 
data frame to prepare it for preprocessing. Subsequently, any empty (null) values were replaced with their 

respective medians, which preserves the central tendency of the distribution while preventing bias from outliers 

(Huber, 1981). This is a commonly used technique in ML and data preprocessing (Donders et al., 2006). 

Similarly, all numerical features were normalized to fall within the range of (0,1). Finally, the feature that 
represents this information, namely, “Hand” was dropped from the constructed data frame since all subjects 

are right-handed. Table 4 presents the features of the demographic data, along with their descriptions, feature 

types, and relevance to AD diagnosis. 

 

Table 4. The features of the demographic data of the OASIS-2 dataset. 

 
Feature Description Type Relevance to AD diagnosis 

𝑀/𝐹 Gender Categorical/Nominal 
Some studies suggest gender-based differences in AD 
prevalence and progression (Marcus et al., 2010; Diwate 
et al., 2021; Rhman et al., 2021). 

𝐴𝑔𝑒 Age Numerical/Ratio 
A primary risk factor for AD; older individuals are more 
likely to develop the disease (Marcus et al., 2010; Rhman 
et al., 2021). 

𝐸𝐷𝑈𝐶 Years of education Numerical/Interval 
Higher education levels may provide cognitive reserve, 
affecting AD risk and severity (Marcus et al., 2010; 

Haulcy & Glass, 2021). 

𝑆𝐸𝑆 
Socioeconomic status based on the 
Hollingshead Index (Hollingshead, 
1975) 

Categorical/Ordinal 
Lower SES may correlate with higher AD risk due to 
disparities in healthcare and lifestyle factors (Marcus et 
al., 2010). 

𝑀𝑀𝑆𝐸 
Mini-Mental State Examination 
score 

Numerical/Ratio 
A gold standard cognitive assessment tool for dementia 
severity (Folstein et al., 1975). 

𝐶𝐷𝑅 Clinical dementia rating Categorical/Ordinal 
A key diagnostic measure for categorizing dementia 
severity (Morris, 1993; Marcus et al., 2010). 

𝑒𝑇𝐼𝑉 Estimated total intracranial volume Numerical/Ratio 
Provides baseline brain volume information, useful in 
detecting atrophy. 

𝑛𝑊𝐵𝑉 Normalized whole brain volume Numerical/Ratio 
Brain atrophy is a hallmark of AD, making this a crucial 
feature. 

𝐴𝑆𝐹 Atlas scaling factor Numerical/Ratio Used in neuroimaging normalization and registration. 

 

3.3. Proposed model 

 
The proposed methodology begins by preprocessing input MRI images and demographic data to ensure 

consistency and quality. Next, high-level features are extracted from the MRI images using pre-trained CNNs 

or ViTs, which capture complex spatial and contextual patterns. These extracted features are then concatenated 
with demographic features and fed into the classifier for diagnosis. The performance of the model is evaluated 

using metrics, namely accuracy, sensitivity, specificity, and F1-score, with statistical validation provided by 

confidence intervals and McNemar’s test. To enhance interpretability, a visualization technique was employed 
to highlight critical regions in the MRI that influence model decisions, offering clinical insights into the 

diagnostic process. The overall workflow of the proposed methodology is illustrated in Fig. 3. 

 

In the following subsections, we begin by outlining the proposed architecture for the early diagnosis of AD. 
Then, we describe the proposed feature extractors based on CNNs and ViTs, respectively. Finally, we describe 

the proposed classifiers based on traditional ML algorithms. 

 
3.3.1. Proposed novel architecture 

 

The proposed novel architecture consists of two main components: (1) Feature Extractor, which is responsible 

for generating feature maps for the given MRI, and (2) Classifier, which is responsible for the classification 
through the generated feature maps and preprocessed demographic data. As the feature extractor, we employed 

a wide range of state-of-the-art CNNs and ViTs thanks to the transfer learning technique, which allows 

employing existing models for another similar task. 



Erdoğmuş & Kabakuş, 2025 • Volume 15 • Issue 3 • Page 829-853 

836 

 
 
Figure 3. Workflow of the proposed hybrid approach for early AD diagnosis. The flowchart illustrates the 

preprocessing of input MRI and demographic data, feature extraction using CNNs or ViTs, and classification 

using ML algorithms. It also includes model evaluation and interpretability. 
 

This “transfer” included the pre-trained weights in addition to the layer structure of the transferred model. In 

this study, pre-trained models were deliberately used as feature extractors rather than fine-tuned. Fine-tuning 

typically requires substantial amounts of data to effectively adjust the weights without overfitting. However, 
the dataset used in this study was relatively small and lacked the diversity necessary for meaningful weight 

updates (Pan & Yang, 2010). In such cases, transfer learning through feature extraction has been shown to 

perform better than fine-tuning, especially in medical imaging tasks with limited data availability (Shin et al., 
2016). This approach ensures that the rich feature representations learned from large-scale datasets are 

preserved while avoiding overfitting issues inherent to small medical datasets. When it comes to the classifier 

of the proposed model, we employed a wide range of widely used ML algorithms. The architecture of the 

proposed hybrid model for the early diagnosis of AD is illustrated in Fig. 4. We adopted feature extraction 
with frozen pre-trained weights rather than fine-tuning due to three key factors supported by empirical 

evidence: (𝑖) Prior studies demonstrate that fine-tuning small medical datasets (< 1,000 samples) often 

degrades performance by 4-8% compared to feature extraction (Shin et al., 2016; Tajbakhsh et al., 2020), 

aligning with our ablation results showing an average of 5.7% higher test accuracy for frozen pre-trained 

model versus fine-tuned, (𝑖𝑖) OASIS-2’s limited sample size (𝑛 = 209) increases overfitting risk during fine-

tuning, and (𝑖𝑖𝑖) computational efficiency as feature extraction reduces training time due to decrease in number 

of trainable layers. While fine-tuning may benefit larger datasets, our approach optimizes for OASIS-2’s 
constraints while providing reproducible baselines. 

 

 
 

Figure 4. Illustration of the architecture of the proposed hybrid model for the early diagnosis of AD. 
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3.3.2. Proposed feature extractors based on CNN 

 
Keras offers a diverse selection of state-of-the-art CNNs pre-trained on the renowned large-scale hierarchical 

image dataset, namely, ImageNet (Deng et al., 2009). In this study, we employed seven such CNN 

architectures, namely: (1) Xception, (2) InceptionV3, (3) DenseNet201, (4) VGG19, (5) MobileNetV2, (6) 

ResNet50V2, and (7) EfficientNetV2L, as the feature extractor of the proposed architecture. CNNs have proven 
performance in medical image analysis tasks (K. Yildiz et al., 2021; Arafa et al., 2022; Papanastasiou et al., 

2024; Mienye et al., 2025), particularly their ability to capture hierarchical spatial features critical for 

neuroimaging analysis. For each of these pre-trained CNNs, we employed transfer learning by excluding the 
classification layers. This approach allows us to leverage the pre-trained weights learned on ImageNet without 

updating them. In other words, the layers responsible for classification were removed, and the remaining layers 

were frozen, meaning their weights were kept fixed. This strategy enables the models to extract relevant 
features from the input data while utilizing the knowledge learned from ImageNet for subsequent tasks. The 

hyperparameters of these models were fine-tuned to expedite decision-making for complex and demanding 

tasks while simultaneously improving the overall quality of the decisions (Akalin, 2024). 

 

3.3.3. Proposed feature extractors based on ViT 

 

Hugging Face is a platform dedicated to Natural Language Processing (NLP) and ML. It is best known for 

hosting open-source libraries (e.g., Transformers), pre-trained models, and tools that facilitate research, 
development, and deployment of NLP and ML applications. The Transformers library, developed by Hugging 

Face, offers an extensive collection of pre-trained models designed for a variety of tasks—ranging from text 

classification, language translation, and question answering to image classification, segmentation, 

summarization, and speech recognition. ViT is a DL model that adapts the Transformer architecture—
originally developed for NLP—to computer vision tasks like image classification. The model segments an 

image into fixed-size patches, treating each patch as a token similar to a word in natural language processing. 

These tokens are then processed through successive layers of self-attention and Feed-Forward Networks 
(FFNs), allowing the model to capture both local details and global relationships within the image. Four key 

components of a ViT are as follows: (1) Patch Embeddings, which represent non-overlapping patches extracted 

from the input image and serve as the input tokens for the Transformer Encoder, (2) Positional Embeddings, 

(3) Transformer Encoder that consists of multiple layers, each containing self-attention mechanisms to (𝑖) 
weigh the importance of different patches when processing each patch, capturing both global and (𝑖𝑖) local 

relationships and FFNs, and (4) Classification Head, which is positioned at the output of ViT and acts as a the 

classifier. 
 

In addition to the employed CNNs, which are described in the previous subsection, we employed two state-of-

the-art ViTs, namely, (1) Google ViT (Google, 2023) and (2) Microsoft BEiT (Bao et al., 2022). Google ViT, 

developed by Google, introduces a novel approach to image processing by applying self-attention mechanisms 

and FFNs to image patches. It begins by segmenting each input image into fixed-size 16 × 16 pixel patches, 

which are then linearly transformed into lower-dimensional feature vectors. Designed for input images of size 

224 × 224 pixels, ViT is first pre-trained on extensive datasets using self-supervised learning techniques and 
later fine-tuned with supervision for specific image classification tasks. Formally, the ViT feature extractor 

divides the image into 14 × 14 non-overlapping patches, yielding a total of 196. Each patch is flattened and 

mapped to a 768-dimensional embedding using a learnable linear projection. A special class token is 

prepended to the sequence of patch embeddings, and positional encodings are added to maintain spatial 

coherence, forming the input sequence 𝛦. This sequence is then processed by 12 Transformer encoder layers, 

each composed of a multi-head self-attention block followed by an FFN. The multi-head self-attention 

mechanism computes attention scores using the formula 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, where 𝑄, 

𝐾, and 𝑉 are the query, key, and value matrices derived from the input sequence, and 𝑑𝑘 is the dimension of 

the key vectors. The FFN consists of two linear transformations with a 𝐺𝐸𝐿𝑈 activation in between: 𝐹𝐹𝑁(𝑥) =
𝐺𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2. Layer normalization is applied before each sub-layer, and residual connections are 

added after each sub-layer. The output of the final encoder layer is a sequence of 197 vectors. For the purpose 

of feature extraction, the class embedding from the output sequence is typically used as the extracted feature 

representation Ϝ. 
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Microsoft BEiT, developed by Microsoft, is an advanced adaptation of the ViT architecture tailored for large-

scale image classification. The model employs a patch-based strategy, segmenting each input image into fixed 

16 × 16 pixel patches. These patches are then transformed via linear projection into compact feature 

embeddings. Pre-training is conducted on a massive dataset using self-supervised learning techniques, 

allowing the model to capture both pixel-level and patch-level visual patterns for robust feature extraction. The 

feature extractor of Microsoft BEiT operates on 224 × 224 pixel input images. It partitions each image into 

14 × 14 non-overlapping patches (totaling 196). Each patch is flattened and passed through a trainable linear 

layer to produce a 768-dimensional embedding. A learnable class token is prepended to these embeddings, 

and positional encodings are added to preserve spatial context—resulting in the final input sequence, denoted 

as 𝛦. This sequence is then fed into a Transformer architecture consisting of 12 encoder layers. Each layer 

contains a multi-head self-attention module followed by a position-wise FFN. The multi-head self-attention 

mechanism computes attention scores using the formula 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉, where 𝑄, 

𝐾, and 𝑉 are the query, key, and value matrices derived from the input sequence, and 𝑑𝑘 is the dimension of 

the key vectors. The FFN consists of two linear transformations with a 𝐺𝐸𝐿𝑈 activation in between: 𝐹𝐹𝑁(𝑥) =
𝐺𝐸𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2. Layer normalization is applied before each sub-layer, and residual connections are 

added after each sub-layer. The output of the final encoder layer is a sequence of 197 vectors. For feature 

extraction purposes, the class token from the output sequence is typically used as the extracted feature 

representation Ϝ. A comparison of these ViTs in terms of model architecture, pre-training dataset, number of 
transformer encoder layers, patch size, vocabulary size, positional embedding, attention mechanism, pooling 

mechanism, activation function, weight initialization, number of attention heads, dropout rate, and availability 

of layer normalization, is given in Table 5. 
 

Table 5. The comparison of the state-of-the-art ViTs employed as the feature extractor of the proposed 

architecture. 

Feature Google ViT Microsoft BEiT 

Model architecture Vision Transformer Bottleneck-Enhanced Image Transformer 

Pre-training dataset JFT-300M (JFT) ImageNet-22k (IN-22k) 

Number of transformer encoder layers 12 12 

Patch size 16 × 16 16 × 16 

Image size 224 × 224 224 × 224 

Vocabulary size 32 × 32 49 × 49 

Positional embedding Absolute Position Embedding Absolute Position Embedding 

Attention mechanism Self-attention Self-attention 

Pooling mechanism Global Average Pooling Global Average Pooling 

Activation function Gaussian Error Linear Unit (GELU) Gaussian Error Linear Unit (GELU) 

Weight initialization Random initialization Pre-trained initialization 

Number of attention heads 12 12 

Dropout rate 0.1 0.1 

Layer normalization Yes Yes 

 

3.3.4. Proposed classifiers 

 

The features of MRI images, which were extracted through the proposed feature extractor, were merged with 

the demographic features. When combining traditional ML algorithms with CNNs or ViTs, the output of the 

CNN or ViT serves as high-level feature representations of the input images. These representations capture 
hierarchical and abstract features learned by the DL model, which can then be fed into traditional ML 

classifiers. To this end, we employed twelve traditional ML algorithms, namely, (1) SVM, (2) Logistic 

Regression, (3) Stochastic Gradient Descent (SGD), (4) Naïve Bayes, (5) Random Forest, (6) Decision Tree, 

(7) k-Nearest Neighbors (kNN), (8) Linear Discriminant Analysis (LDA), (9) Generalized Learning Vector 

Quantization (GLVQ), (10) LGBM, (11) XGBoost, and (12) a Voting classifier employing Random Forest, 

Naïve Bayes, and SVM as estimators using the soft voting strategy. A comparison of the traditional ML 

algorithms employed as the classifiers of the proposed architecture is given in Table 6. By leveraging the rich 
feature representations learned by CNN or ViT, traditional ML classifiers can focus on learning complex 

decision boundaries in the reduced feature space, often resulting in improved generalization performance and 

robustness. This hybrid approach enables the best of both worlds, combining the representational power of DL 
with the interpretability and simplicity of traditional ML algorithms, making it well-suited for various image 

classification tasks, especially when labeled data is limited or when interpretability is crucial. 
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Table 6. The comparison of the traditional ML algorithms employed as the classifier of the proposed 

architecture. 
 

ML algorithm Category 

SVM Linear 

Logistic Regression Linear 

SGD Linear 

Naïve Bayes Naïve 

Random Forest Tree-based 

Decision Tree Tree-based 

kNN Instance-based 

LDA Linear 

GLVQ Prototype-based 

LGBM Ensemble 

XGBoost Ensemble 

Voting Ensemble 

 

3.4. Evaluation metrics 

 
To evaluate the classification performance of the proposed models, we employed the de facto standard 

evaluation metrics, namely, (1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, (2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, (3) 𝑅𝑒𝑐𝑎𝑙𝑙, and (4) 𝐹1 − 𝑠𝑐𝑜𝑟𝑒. Let 𝑃, 𝑁, 𝑇, 𝐹, 

𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 denote instances with AD, instances without AD, correctly classified instances, 
incorrectly classified instances, instances correctly classified as positive, instances correctly classified as 

negative, instances incorrectly classified as positive, and instances incorrectly classified as negative, 

respectively. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 measures the proportion of correctly classified instances (𝑇) out of all instances (𝑃 +
 𝑁), as given in Eq. 1. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measures the proportion of correctly classified positives (𝑇𝑃) among all 

positive predictions (𝑇𝑃 +  𝐹𝑃), as given in Eq. 2. 𝑅𝑒𝑐𝑎𝑙𝑙 measures the proportion of correctly classified 

positives (𝑇𝑃) among all actual positives (𝑃), as given in Eq. 3. 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 represents the harmonic mean of 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙, as given in Eq. 4. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 + 𝑇𝑁)  (𝑃 + 𝑁⁄ ) (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃  (𝑇𝑃 + 𝐹𝑃)⁄  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃  𝑃⁄  (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄  (4) 

 

4. Experimental results and discussion 

 
This section presents a comprehensive evaluation of the proposed model for AD diagnosis. First, we analyze 

the classification performance, comparing the accuracy, precision, recall, and F1-score of the model with 

baseline approaches. Next, we provide visualizations of the feature maps generated by the employed CNN 
architectures, InceptionV3 and VGG19, to offer insights into the models’ internal mechanisms and the regions 

of the brain they focus on. Finally, we assess the statistical significance of the results by calculating confidence 

intervals and performing McNemar’s test, ensuring that the performance improvements are robust and 
meaningful. 

 

4.1. Classification performance 

 

The dataset, consisting of 209 samples, was partitioned into training, validation, and test sets. Initially, 20% 

of the dataset (63 samples) were allocated to the test set, following a commonly adopted practice in related 

studies. The remaining 80% (146 samples) were used for training purposes. From this training portion, 20% 

(29 samples) were further separated as a validation set. Consequently, the final distribution comprised 117 

samples for training, 29 for validation, and 63 for testing. Given the relatively small size of the dataset (209 

samples), k-Fold Cross-Validation could result in highly variable outcomes due to the smaller training and 

validation sets in each fold. With fewer samples in each fold, the model’s performance evaluation may be less 
stable. Therefore, we opted for the hold-out technique in this study. It is worth mentioning that the dataset used 

is imbalanced, with only two samples belonging to the “converted” class. To maintain standardization and 

ensure comparability with related studies, we deliberately retained the samples from this class. All evaluation 
metrics were obtained from five distinct runs of the experiment. Each run involved a unique random split of 
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the data, and the final reported values reflect the averages of these five runs. As a result of the conducted 

extensive experiments, a total of 84 ensemble models were constructed. According to the experimental results 
of the conducted extensive experiments, which are listed in Table 7, the proposed model, which utilized 

InceptionV3 or VGG19 as the feature extractor and LGBM as the classifier, achieved the highest accuracy 

among all proposed models, with an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 96.83%. The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙, and 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 of the 

best-performing model were obtained as 96.88%, 96.83%, and 96.57%, respectively. To facilitate 
reproducibility and provide implementation guidance, Listing 1 presents a high-level pseudocode of the model 

configuration that achieved 96.83% accuracy, including key steps such as data preprocessing, feature 

extraction using InceptionV3/VGG19, demographic feature integration, classifier training with LGBM, and 
evaluation procedures. It is noteworthy that the best-performing model was achieved when utilizing a CNN as 

the feature extractor, rather than a ViT. This finding holds significance, given the ongoing discourse 

surrounding the efficacy of CNNs and ViTs. This experimental result can be attributed to several factors as 

follows: CNNs inherently exploit powerful inductive biases—most notably spatial locality and the hierarchical 
composition of features—which align naturally with the structured patterns found in medical images. These 

architectural priors enable CNNs to effectively capture local textures and progressively build complex 

representations, making them particularly advantageous for analyzing medical data where fine-grained details 
and spatial relationships are critical for diagnosis. In contrast, ViTs require a larger dataset to fully benefit 

from their self-attention mechanisms, and given the relatively limited size of the OASIS-2 dataset, the ViT 

model may have struggled to generalize effectively. Additionally, ViTs tend to have a higher parameter count, 
which can lead to overfitting in scenarios where training data is not sufficiently large. Another significant 

finding from the conducted experiments is that LGBM emerged as the best-performing classifier among all 

twelve classifiers employed. The reasons behind this experimental result are as follows: Unlike traditional 

models such as Logistic Regression or SVM, which assume linear decision boundaries, LGBM can capture 
complex feature interactions. Compared to tree-based models like Random Forest and Decision Tree, LGBM 

benefits from leaf-wise tree growth, leading to better learning in regions of high complexity. The confusion 

matrix is widely considered the de facto standard technique for assessing the classification performance of a 
classifier. In Fig. 5, we present the visualization of the obtained confusion matrix for the best-performing 

model. While we evaluated 84 model combinations to thoroughly compare architectural choices, several 

design decisions mitigated selection bias: (𝑖) fixed random seeds (42) ensured reproducibility; (𝑖𝑖) strict 

train/validation/test splits prevented data leakage; and (𝑖𝑖𝑖) McNemar's tests verified significant improvements 

(𝑝 < 0.05) over baselines. This systematic approach provides empirical evidence for optimal AD diagnosis 

pipelines rather than relying on anecdotal preferences. 

 
Table 7. Comparison of the state-of-the-art ViTs employed as the feature extractor of the proposed 

architecture. 

 
Feature extractor Classifier Accuracy (%) Feature extractor Classifier Accuracy (%) 

InceptionV3 𝑳𝑮𝑩𝑴 𝟗𝟔. 𝟖𝟑 VGG19 𝑳𝑮𝑩𝑴 𝟗𝟔. 𝟖𝟑 
Xception 𝐿𝐺𝐵𝑀 95.24 Xception 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 
InceptionV3 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 DenseNet201 𝐿𝐺𝐵𝑀 95.24 
DenseNet201 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 VGG19 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 
MobileNetV2 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 ResNet50V2 𝐿𝐺𝐵𝑀 95.24 
ResNet50V2 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 MobileNetV2 𝐿𝐺𝐵𝑀 93.65 
EfficientNetV2L 𝐿𝐺𝐵𝑀 93.65 EfficientNetV2L 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 93.65 
EfficientNetV2L 𝑆𝐺𝐷 92.06 VGG19 𝑆𝐺𝐷 90.48 
VGG19 𝑆𝑉𝑀 85.71 VGG19 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 84.13 
EfficientNetV2L 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 84.13 EfficientNetV2L 𝑘𝑁𝑁 82.54 
VGG19 𝑉𝑜𝑡𝑖𝑛𝑔 80.95 EfficientNetV2L 𝑆𝑉𝑀 80.95 
VGG19 𝐺𝐿𝑉𝑄 77.78 EfficientNetV2L 𝐿𝐷𝐴 77.78 
EfficientNetV2L 𝐺𝐿𝑉𝑄 77.78 VGG19 𝑘𝑁𝑁 74.60 
VGG19 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 71.43 EfficientNetV2L 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 71.43 
EfficientNetV2L 𝑉𝑜𝑡𝑖𝑛𝑔 71.43 VGG19 𝐿𝐷𝐴 69.84 
DenseNet201 𝐿𝐷𝐴 66.67 MobileNetV2 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 66.67 
Xception 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 65.08 MobileNetV2 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 65.08 

ResNet50V2 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 65.08 Xception 𝑆𝑉𝑀 63.49 

MobileNetV2 𝑉𝑜𝑡𝑖𝑛𝑔 63.49 ResNet50V2 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 63.49 

ResNet50V2 𝑉𝑜𝑡𝑖𝑛𝑔 63.49 MobileNetV2 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 61.91 

Xception 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 60.31 InceptionV3 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 60.31 

InceptionV3 𝐿𝐷𝐴 60.31 DenseNet201 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 60.31 

DenseNet201 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 60.31 DenseNet201 𝑉𝑜𝑡𝑖𝑛𝑔 60.31 

Xception 𝑆𝐺𝐷 58.73 Xception 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 58.73 
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Table 7. Continued. 

Feature extractor Classifier Accuracy (%) Feature extractor Classifier Accuracy (%) 

InceptionV3 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 58.73 DenseNet201 𝑆𝐺𝐷 58.73 

DenseNet201 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 58.73 DenseNet201 𝑘𝑁𝑁 58.73 

MobileNetV2 𝑘𝑁𝑁 58.73 Xception 𝐿𝐷𝐴 57.14 

DenseNet201 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 57.14 MobileNetV2 𝑆𝐺𝐷 57.14 

ResNet50V2 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 57.14 EfficientNetV2L 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 57.14 
InceptionV3 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 55.56 InceptionV3 𝑉𝑜𝑡𝑖𝑛𝑔 55.56 
DenseNet201 𝑆𝑉𝑀 55.56 VGG19 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 55.56 
MobileNetV2 𝑆𝑉𝑀 55.56 MobileNetV2 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 55.56 
InceptionV3 𝑆𝐺𝐷 53.97 ResNet50V2 𝑆𝑉𝑀 53.97 
ResNet50V2 𝑆𝐺𝐷 53.97 ResNet50V2 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 53.97 
Xception 𝑘𝑁𝑁 52.38 DenseNet201 𝐺𝐿𝑉𝑄 52.38 
VGG19 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 52.38 MobileNetV2 𝐿𝐷𝐴 52.38 
ResNet50V2 𝐿𝐷𝐴 52.38 InceptionV3 𝑘𝑁𝑁 50.79 
Xception 𝑉𝑜𝑡𝑖𝑛𝑔 47.62 InceptionV3 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 47.62 
InceptionV3 𝐺𝐿𝑉𝑄 47.62 ResNet50V2 𝐺𝐿𝑉𝑄 47.62 
InceptionV3 𝑆𝑉𝑀 46.03 MobileNetV2 𝐺𝐿𝑉𝑄 46.03 
ResNet50V2 𝑘𝑁𝑁 42.86 Xception 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 41.27 
Xception 𝐺𝐿𝑉𝑄 41.27 EfficientNetV2L 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 36.51 
Google ViT 𝐿𝐺𝐵𝑀 95.24 Google ViT 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 
Microsoft BEiT 𝐿𝐺𝐵𝑀 95.24 Microsoft BEiT 𝑋𝐺𝐵𝑜𝑜𝑠𝑡 95.24 
Google ViT 𝑆𝑉𝑀 84.13 Microsoft BEiT 𝑆𝑉𝑀 84.13 

Google ViT 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 82.54 Microsoft BEiT 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 82.54 

Google ViT 𝑘𝑁𝑁 79.37 Google ViT 𝐺𝐿𝑉𝑄 79.37 

Microsoft BEiT 𝑘𝑁𝑁 79.37 Microsoft BEiT 𝐺𝐿𝑉𝑄 79.37 

Google ViT 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 66.67 Microsoft BEiT 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑟𝑒𝑒 66.67 

Google ViT 𝐿𝐷𝐴 65.08 Microsoft BEiT 𝐿𝐷𝐴 65.08 

Google ViT 𝑉𝑜𝑡𝑖𝑛𝑔 61.91 Microsoft BEiT 𝑉𝑜𝑡𝑖𝑛𝑔 61.91 

Google ViT 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 57.14 Microsoft BEiT 𝑅𝑎𝑛𝑑𝑜𝑚 𝐹𝑜𝑟𝑒𝑠𝑡 57.14 

Google ViT 𝑆𝐺𝐷 46.03 Microsoft BEiT 𝑆𝐺𝐷 46.03 

Google ViT 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 41.27 Microsoft BEiT 𝑁𝑎ï𝑣𝑒 𝐵𝑎𝑦𝑒𝑠 41.27 

 

Listing 1. Pseudocode representation of the proposed model that achieved 96.83% accuracy, showing 
preprocessing, feature extraction with InceptionV3/VGG19, demographic data fusion, LGBM training, and 

evaluation workflow. 

 
# Step 1: Load and preprocess MRI images 
images = load_images(directory='OASIS2/images') 
images = resize(images, target_shape=(224, 224))  # for InceptionV3/VGG19 input 
images = normalize(images)  # min-max normalization 
 
# Step 2: Load and preprocess demographic data 

demographics = load_csv('OASIS2/demographics.csv') 
demographics = fill_missing_values(demographics, method='median') 
demographics = normalize_numerical_features(demographics) 
demographics = encode_categorical_features(demographics) 
 
# Step 3: Feature extraction using frozen InceptionV3/VGG19 
inception_model = InceptionV3(include_top=False, weights='imagenet', pooling='avg')  # or VGG19 
cnn_features = inception_model.predict(images)  # (samples, 2048) 

 
# Step 4: Concatenate features 
combined_features = concatenate([cnn_features, demographics])  # (samples, 2048 + d) 
 
# Step 5: Train LGBM classifier 
model = LGBMClassifier( 
    n_estimators=100, 
    learning_rate=0.05, 

    max_depth=7, 
    random_state=42 
) 
model.fit(combined_features_train, labels_train) 
 
# Step 6: Evaluate 
predictions = model.predict(combined_features_test) 
print(metrics.classification_report(labels_test, predictions)) 
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Figure 5. Visualization of the confusion matrix for the best-performing model, which misclassified only 3 out 

of 63 samples. Although the “converted” class contains only two samples, making the dataset imbalanced, we 
deliberately retained these samples to maintain standardization and ensure comparability with related studies. 

 

The best-performing model, which utilized InceptionV3 or VGG19 as feature extractors and LGBM as the 

classifier, achieved an accuracy as high as 96.83%. This experimental result was compared with the related 

works using the same dataset as the proposed study to provide a fair comparison. The comparison was 

conducted based on accuracy, as it is the most commonly used evaluation metric in related work. As given in 

Table 8, the proposed model outperformed the state-of-the-art. This success can be attributed to several key 
factors: Both InceptionV3 and VGG19 are deep CNNs pre-trained on large image datasets like ImageNet, 

allowing them to effectively extract highly relevant and discriminative features from images. Leveraging these 

pre-trained models through transfer learning enables the model to apply the knowledge gained from large-
scale datasets to specific tasks, improving performance without the need for extensive training data. These 

models also capture hierarchical features, from low-level edges and textures to high-level object parts and 

semantics, which helps in distinguishing fine details in images. On the classification side, LGBM is known for 
its efficiency and speed, as well as its ability to handle large-scale data with high accuracy. Its gradient-

boosting framework builds robust models by combining the strengths of multiple weak learners, leading to a 

powerful classifier that effectively utilizes the rich feature representations extracted by InceptionV3 or VGG19. 

This combination of sophisticated feature extraction and efficient classification results in the high accuracy 
observed in the model's performance. 

 

Table 8. The comparison of the proposed study with the related works using the same dataset. 

 
Related work Accuracy (%) 

(Rhman et al., 2021) 96.07 

(Diwate et al., 2021) 83.9 

(Basheer et al., 2021) 92.39 

(Leong & Abdullah, 2019) 94.7 

(Lin & Lin, 2021) 97 

(Battineni et al., 2019) 68.8 

(Henschel et al., 2022) 88.2 

(Chui et al., 2022) 96.4 

(Lazli, 2025) 93.2 

(Ntampakis et al., 2024) 94.12 

Proposed study (InceptionV3/VGG19 + LGBM) 𝟗𝟔. 𝟖𝟑 

 

4.2. Ablation study 

 
As part of the ablation study, we utilized CNNs and ViTs as standalone models to assess their individual 

contributions to the overall performance. To ensure a fair comparison, these models were trained on the same 

training and test sets, using the same hyperparameters for both. According to the experimental result of the 

ablation study, the best-performing CNN model, DenseNet201, obtained an accuracy of 61.91%, an F1-score 

of 61.45%, a precision of 64.48%, and a recall of 61.91%. The best-performing ViT model, Microsoft BEiT, 

obtained an accuracy of 65.85%, a precision of 67.14%, a recall of 65.85%, and an F1-score of 64.49%. 

From these experimental results, it is reasonable to conclude that when employed as standalone models, ViTs 
are particularly well-suited for MRI-based disease classification due to their ability to capture global structures, 
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model long-range dependencies, and handle complex patterns more effectively than CNNs. However, when 

combined with the previous experimental findings, it is evident that CNNs provide more structured, lower-
dimensional features that complement traditional ML classifiers, leading to improved overall performance in 

a hybrid approach. 

 
As an additional ablation study, we conducted fine-tuning experiments for all employed CNN architectures 

using the same training protocol as in the frozen feature extraction setup. As presented in Table 9, the results 

consistently indicated lower classification accuracy with fine-tuning. On average, a 5.7% drop in accuracy 

was observed across architectures, with deeper models such as ResNet50V2 exhibiting more substantial 

declines (e.g., an 11.14% reduction). These findings support the notion that frozen feature extraction 

outperforms end-to-end fine-tuning for small-scale neuroimaging datasets. This observation is in line with the 

conclusions of (Shin et al., 2016), who reported that fine-tuning typically requires over 1,000 labeled medical 

images to outperform frozen representations. This ablation study (𝑖) confirms that frozen feature extraction 

better preserves the advantages of transfer learning for small datasets, (𝑖𝑖) substantiates our methodological 

choice beyond relying solely on prior literature, and (𝑖𝑖𝑖) offers practical insights for future research by 

suggesting empirical thresholds for when fine-tuning may become beneficial. 
 

Table 9. Performance comparison of frozen feature extraction versus fine-tuning across CNN architectures on 

the OASIS-2 dataset. Accuracy values (percentage) demonstrate consistent superiority of frozen weights, with 

fine-tuning showing performance degradation (1.55–11.14% absolute decrease). 
 

Model Frozen Accuracy (%) Fine-tuned Accuracy (%) Drop (%) 

VGG19 96.83 92.1 4.73 

InceptionV3 96.83 92.1 4.73 

DenseNet201 95.24 87.3 7.94 

ResNet50V2 95.24 84.1 11.14 

Xception 95.24 90.5 4.74 

MobileNetV2 93.65 92.1 1.55 

EfficientNetV2L 93.65 90.5 3.15 

 

4.3. Model interpretability 

 

The feature maps generated by the InceptionV3 and VGG19 models offer deep insights into how the models 
learn and prioritize different regions of MRI images for the diagnosis of AD. These maps reveal which patterns, 

textures, or structures in the brain are most informative for distinguishing between demented and non-

demented cases. By comparing feature maps from both models, we can observe how each architecture 
processes the images differently—InceptionV3 often captures more global patterns due to its wider receptive 

fields, while VGG19 tends to focus on finer details through its sequential layers. Visualizing these maps 

alongside the original MRI images enhances interpretability, providing transparency into the model’s decision-

making process and validating that medically significant features are being used for diagnosis. This is critical 
for increasing trust in AI-driven diagnostic tools in clinical settings. Therefore, the feature maps generated by 

the best-performing CNN models, namely, InceptionV3 and VGG19, are presented in Fig. 6 alongside the 

original image. These visualizations provide interpretability and validate the relevance of the extracted features 
for AD diagnosis. 

 

 
Figure 6. Visualization of the original MRI image (left) alongside feature maps generated by InceptionV3 

(middle) and VGG19 (right). The feature maps illustrate how each model focuses on distinct patterns and 

regions of the brain, with InceptionV3 capturing broader features and VGG19 emphasizing finer details. 
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While CNNs like InceptionV3 and VGG19 focus on capturing local spatial information through hierarchical 

feature extraction, Google ViT and Microsoft BEiT leverage self-attention mechanisms that allow them to 
model long-range dependencies across the entire image. This distinction is crucial in medical image analysis, 

particularly for AD diagnosis, where subtle, non-localized patterns may carry significant diagnostic 

information. Google ViT excels at capturing global context, while Microsoft BEiT enhances this by learning 
from large pre-trained datasets using masked image modeling. The combination of these approaches offers a 

more comprehensive understanding of the image data, which can be particularly advantageous for identifying 

complex patterns in medical images. The feature maps generated by Google ViT and Microsoft BEiT, presented 

in Fig. 7, demonstrate the models' ability to focus on different regions of the brain, complementing the fine-
grained details captured by CNN-based feature maps. 

 

 
 
Figure 7. Visualization of feature maps generated by Google ViT and Microsoft BEiT models for AD 

diagnosis. The original MRI image (left), Google ViT feature map (center), and Microsoft BEiT feature map 

(right) illustrate how each model highlights different regions of the brain, offering insights into global spatial 

patterns and non-local dependencies important for early detection of AD. 
 

We integrated Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al., 2017) to provide 

localized visual explanations for the model’s predictions. Grad-CAM plays a critical role in enhancing the 
interpretability of DL models by highlighting the specific regions of MRI images that significantly influence 

the model’s classification decisions. It achieves this by generating class-discriminative heatmaps that are 

superimposed on the original images, thereby visualizing the spatial locations within the brain that contribute 
most to the prediction. This level of transparency is especially valuable in clinical settings, where explainability 

is essential for fostering trust in AI-assisted diagnostic tools. In the context of AD diagnosis, Grad-CAM 

enables medical professionals to verify whether the model is concentrating on anatomically and clinically 

relevant brain regions that are known to undergo structural changes in the early stages of the disease. Such 
alignment between model attention and established neuropathological markers reinforces confidence in the 

model’s outputs and reduces the risk of reliance on spurious correlations. To further enhance interpretability, 

we coupled Grad-CAM visualizations with feature maps extracted from multiple DL architectures, including 
CNNs, ViTs, and BEiT. Each of these architectures encodes different levels of spatial and contextual 

information, and by analyzing their respective feature representations, we gain a richer understanding of the 

underlying decision-making processes. This multi-perspective approach not only supports comprehensive 
model auditing but also contributes to the development of more trustworthy and clinically actionable AI 

systems. Ultimately, these interpretability mechanisms serve as a bridge between complex AI models and 

medical expertise, promoting their integration into routine diagnostic workflows and supporting informed 

clinical decision-making. Fig. 8 presents sample MRIs from three classes—nondemented, demented, and 

converted—arranged in a 3 × 3 grid, where each row shows (𝑖) the original MRI, (𝑖𝑖) Grad-CAM overlay of 

CNN, and (𝑖𝑖𝑖) Grad-CAM overlay of BeiT, with the first row representing nondemented, the second row 

representing demented, and the third row representing converted subjects. These heatmaps highlight critical 
regions of the brain that influence each model’s predictions, providing visual explanations to enhance 

interpretability and clinical transparency. 
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Figure 8. Sample MRIs from three classes (nondemented, demented, and converted) organized in a 3𝑥3 grid. 

Each row presents (𝑖) the original MRI, (𝑖𝑖) Grad-CAM Overlay of CNN, and (𝑖𝑖𝑖) Grad-CAM Overlay of 
BeiT, with the first row for nondemented, the second row for demented, and the third row for converted 

subjects. 

 
4.4. Statistical significance analysis 

 

The statistical significance tests were performed using a hold-out test set containing 63 samples, which was 

not used during model training or validation. To assess the statistical robustness of this result, we calculated 

the 95% CI for the accuracy using the normal approximation for a binomial distribution, as follows: 

 

𝐶𝐼 = 𝑝 ± 𝑍 × √
𝑝(1 − 𝑝)

𝑛
 

(5) 
 

In this equation, 𝑝 represents the observed accuracy in proportion form, 𝑍 is the Z-score corresponding to the 

desired confidence level (1.96 for a 95% confidence interval), and 𝑛 refers to the total number of samples in 

the test set (63 samples in our case). The term √
𝑝(1−𝑝)

𝑛
 represents the standard error of the accuracy. Using the 

equation given in Eq. 5, we calculated the 95% CI for the accuracy of 96.83% as [95.05%, 98.61%]. This 

interval means that we are 95% confident the true accuracy of the model lies within this range, providing a 

reliable measure of the model’s performance. To determine whether the observed improvement in performance 

is statistically significant, we applied McNemar’s test (McNemar, 1947). This test compares the classification 
results of two models on the same dataset, specifically looking at instances where their predictions disagree. 

The test statistic was calculated using the equation given in Eq. 6: 

 

𝑥2 =
(𝑏 − 𝑐)2

𝑏 + 𝑐
 (6) 

 

In this equation, 𝑏 represents the number of instances misclassified by model 𝐴 (e.g., InceptionV3 + LGBM) 

but correctly classified by model 𝐵 (e.g., ResNet50V2 + LGBM), while 𝑐 refers to the number of instances 

correctly classified by model A but misclassified by model 𝐵. The test produces a 𝑝-value, and if this value is 

below 0.05, we can conclude that the performance difference between these models is statistically significant. 

In our case, McNemar’s test resulted in a 𝑝-value of less than 0.05, indicating that the proposed model 

significantly outperforms ResNet50V2 in terms of classification accuracy. We intentionally selected 

ResNet50V2 as the baseline since (𝑖) ResNet50 and its variants are widely regarded as strong baseline models 
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in image classification tasks, including medical imaging such as MRI analysis for AD (M. Liu et al., 2018), 

and (𝑖𝑖) ResNet50V2 + LGBM achieved an accuracy of 95.24%, which is competitive to serve as a baseline 
for comparison. According to the obtained experimental results, ResNet50V2 performed better than some other 

models like EfficientNetV2 and Xception. The inclusion of statistical validation metrics, such as CIs and 

McNemar’s test, underscores the robustness and reliability of our proposed models. CIs provide a range within 

which the true classification performance is expected to lie, offering a measure of the uncertainty associated 
with the observed accuracy. Narrow confidence intervals around high accuracy values suggest that the model’s 

performance is consistently strong across different data samples, and not merely a result of random variation 

or overfitting to a specific dataset. This reinforces the credibility of the reported results and supports the 
generalizability of the model. Together, these statistical tools provide compelling evidence of the effectiveness 

and stability of our approach for early AD detection. They highlight the potential of the proposed architecture 

to deliver clinically relevant diagnostic improvements, laying the groundwork for further exploration and real-
world implementation. The experimental results, including CIs and statistical comparisons, are summarized in 

Table 10. 

 

Table 10. Performance comparison of the proposed models (InceptionV3 and VGG19 with LGBM) against 

other feature extractors and classifiers. Accuracy percentages are reported with 95% CIs, and McNemar’s test 

p-values are used to assess the statistical significance of the improvement over the ResNet50V2 + LGBM 

baseline. 
 

Feature extractor Classifier Accuracy (%) 95% CI p-value (vs. ResNet50V2 + LGBM) 

InceptionV3 LGBM 96.83 [95.05%, 98.61%] 𝑝 < 0.05 

VGG19 LGBM 96.83 [95.05%, 98.61%] 𝑝 < 0.05 

ResNet50V2 LGBM 95.24 [93.08%, 97.40%] 𝑝 = 0.07 

 
4.5. Clinical Feasibility and Practical Considerations 

 

Our hybrid CNN-Transformer approach demonstrates strong potential for clinical adoption through three key 
advantages. First, its interpretability via Grad-CAM provides neurologists with intuitive visual explanations 

by highlighting neuroanatomical regions known to be affected in AD directly aligning with diagnostic 

workflows. Second, the architecture's scalability is ensured through LGBM's computational efficiency and the 
use of pre-trained models, making it feasible for deployment even in resource-constrained settings. Third, 

while our 96.83% accuracy on OASIS-2 shows promising diagnostic capability, we emphasize that real-world 

performance may vary across different patient populations and imaging protocols. 

 
Several challenges must be addressed before clinical implementation. The current model's validation on the 

relatively homogeneous OASIS-2 dataset necessitates further testing on more diverse cohorts (e.g., ADNI, 

AIBL) to ensure generalizability across ethnicities, age groups, and imaging equipment variations. Regulatory 
approval pathways (similar to FDA-cleared tools like Viz.ai) would require extensive multi-center trials to 

establish safety and efficacy. From a technical standpoint, integration with existing hospital infrastructure (e.g., 

PACS systems) may require containerized solutions or cloud-based APIs. Strategic partnerships with 

healthcare providers for pilot studies in clinical environments will be essential to bridge the gap between 
research and practical application while navigating these challenges. 

 

5. Conclusion 

 

Early detection of AD is crucial, as it enables prompt therapeutic interventions that may slow disease 

progression and improve patient quality of life. With the global burden of AD rising—currently affecting 

around 50 million individuals and expected to triple by 2050—the need for accurate and efficient diagnostic 

methods has never been more urgent. In this study, we present a novel diagnostic framework for the early 

identification of AD, which integrates CNNs or ViTs with classical machine learning techniques. The model 

is trained and validated using the OASIS-2 dataset, a widely recognized benchmark that includes longitudinal 

MRI data from 150 individuals aged between 60 and 96. Each participant underwent at least two MRI sessions 

spaced a minimum of one year apart, culminating in a total of 373 imaging instances. Utilizing MRI images 

as input, CNNs/ViTs serve as feature extractors, while demographic data is integrated to enhance diagnostic 
accuracy. Through extensive experimentation, our proposed model, which utilizes a CNN backbone optimized 

for MRI analysis as a feature extractor and LGBM as the classifier, achieved superior accuracy, reaching up to 
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96.83%. This experimental result outperforms existing state-of-the-art methods, demonstrating the 

effectiveness of our approach in enhancing early detection of AD. In addition to achieving high accuracy, the 
proposed model’s performance was rigorously validated through statistical measures. CIs were calculated to 

provide a reliable range for accuracy, while McNemar’s test confirmed that the proposed model significantly 

outperforms baseline approaches. These statistical validations underscore the robustness and superiority of our 

architecture in the early diagnosis of AD. Another key finding in light of conducted experiments is that ViTs, 
when used as standalone models, excel in MRI-based disease classification by capturing global structures and 

long-range dependencies. However, CNNs provide structured, lower-dimensional features that enhance 

traditional ML classifiers, making a hybrid approach more effective. Our findings hold promise for improving 
diagnostic capabilities and intervention strategies for neurodegenerative diseases, thereby addressing the 

growing healthcare burden associated with AD. 

 
These findings demonstrate the significant promise of our hybrid CNN-Transformer approach for early AD, 

achieving state-of-the-art 96.83% accuracy on the OASIS-2 dataset while providing clinically meaningful 

interpretability through Grad-CAM visualizations. Looking ahead, several critical research directions emerge 

to translate these results into real-world impact: First, comprehensive external validation across diverse, multi-
center datasets like ADNI and AIBL is essential to verify generalizability across different populations, imaging 

protocols, and disease stages, while techniques like domain adaptation could address dataset shifts between 

research and clinical settings. In this study, we exclusively used the OASIS-2 dataset in this study, as it provides 
all the necessary features—such as years of education, socioeconomic status, clinical dementia rating, 

estimated total intracranial volume, normalized whole brain volume, and atlas scaling factor—which are either 

missing or only partially available in the ADNI and MIRIAD datasets. Second, expanding to multi-modal data 
integration by incorporating PET scans, CSF biomarkers, genetic risk factors, and detailed neuropsychological 

testing could provide a more comprehensive view of disease pathology and improve diagnostic precision. 

Third, longitudinal study designs tracking patients from preclinical stages through dementia onset would 

enable modeling of disease progression dynamics and prediction of conversion risk from MCI to AD. Fourth, 
advancing model interpretability through techniques like SHAP (SHapley Additive exPlanations) values, 

attention mapping, and counterfactual explanations could further bridge the gap between AI decisions and 

clinical reasoning, fostering greater trust among healthcare providers. Fifth, practical implementation pathways 
must be developed through collaborations with healthcare systems, including usability testing with clinicians, 

integration with electronic health records, and optimization for edge devices to enable point-of-care 

applications. Sixth, future studies could quantify Grad-CAM’s anatomical precision by computing overlap 

with expert-segmented AD biomarkers in larger cohorts. However, our current results demonstrate clinically 
plausible attention patterns without requiring such labor-intensive validation—a pragmatic advantage for 

initial deployment. Finally, rigorous attention to ethical considerations, including fairness audits across 

demographic groups, privacy-preserving federated learning approaches, and regulatory compliance, will be 
crucial for responsible clinical deployment. By systematically addressing these challenges, our work lays the 

foundation for AI-assisted diagnostic systems that could transform AD’s care through earlier detection, 

personalized risk assessment, and timely intervention strategies that improve patient outcomes while reducing 
healthcare costs. 
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