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Abstract

Detecting Alzheimer’s Disease (AD) at an early stage is vital because it enables prompt treatment and intervention, which
can help slow disease progression and enhance patient prognosis. Given the increasing prevalence of AD globally, with
an estimated 50 million people currently living with the condition and projected to triple by 2050, the development of
accurate and efficient diagnostic tools is paramount. In this study, a novel architecture for the early diagnosis of AD by
combining Convolutional Neural Networks (CNNs) or Vision Transformers (ViTs) with traditional Machine Learning
(ML) algorithms was proposed. Utilizing MRI images as input, CNNs/ViTs serve as feature extractors, while
demographic data is integrated to enhance diagnostic accuracy. Through extensive experimentation, our proposed model,
which utilizes a CNN backbone optimized for MRI analysis as a feature extractor and LGBM as the classifier, achieved
superior accuracy, reaching up to 96.83%. Statistical validation through confidence intervals and McNemar’s test further
demonstrated the robustness and significant performance improvements of the proposed model compared to baseline
methods. This study employs eXplainable Al techniques to visualize critical regions in MRI images that influence the
model’s diagnostic decisions, promoting clinical transparency and trust in Al-assisted early diagnosis of AD. The novelty
of this study lies in integrating deep feature extractors (CNNs/ViTs) with traditional ML classifiers, supported by
interpretability through Grad-CAM and statistical validation, offering a transparent and accurate framework for early
diagnosis of AD.

Keywords: Alzheimer’s disease, Convolutional neural network, Dementia, Explainable Al, Magnetic resonance imaging,
Vision transformer

Oz

Alzheimer Hastaligimi (AH) erken evrede tespit etmek hizli tedavi ve miidahaleye olanak saglamast agisindan ¢ok
onemlidir. Bu sayede hastaligin ilerlemesi yavaglatilabilir ve hasta prognozu iyilestirilebilir. Diinya genelinde AH nin
artan yayginligi goz oniine alindiginda — su anda yaklagik 50 milyon kisinin bu hastalikla yasadigi ve bu sayinin 2050
yilina kadar ii¢ katina ¢ikacagi ongériildiigiinde — dogru ve etkili tani araglarimin gelistivilmesi kritik hale gelmistir. Bu
calismada, Konvoliisyonel Sinir Aglari (CNN'’ler) veya Gériintii Déniistiiriiciiler (ViT ler) ile geleneksel Makine
Ogrenmesi (ML) algoritmalarint birlestirerek Alzheimer hastaliginin erken tamisina yonelik ézgiin bir mimari
sunulmaktadir. Girdi olarak MRI (Manyetik Rezonans Gériintiileme) goriintiilerini kullanan CNN/ViT modelleri ozellik
¢tkarict olarak islev gérmekte ve tam dogrulugunu artirmak amaciyla demografik verilerle birlestirilmektedir.
Gergeklestirilen kapsaml deneyler sonucunda, MRI analizi icin optimize edilmis bir CNN tabanl ozellik ¢ikarict ile
LGBM simiflandinicisimin kullanildigi  6nerilen modelimiz %96,83’e varan dogruluk orami ile iistiin performans
sergilemistir. Giiven araliklari ve McNemar testi yoluyla yapilan istatistiksel dogrulamalar, onerilen modelin temel
yontemlere kiyasla saglamligini ve anlamli performans iyilestirmelerini desteklemistir. Bu ¢alisma, A¢iklanabilir Yapay
Zeka tekniklerini kullanarak modelin tanmisal kararlarmi etkileyen MRG gériintiilerindeki kritik bolgeler gorsellestirilmis
ve boylece yapay zeka destekli erken teshis siireclerinde klinik seffaflik ve giiven tesvik edilmistir. Bu ¢alismanin
ozgiinliigii, derin ozellik ¢ikaricilarin (CNN'ler/ViT ler) geleneksel ML simiflandiricilariyla biitiinlestirilmesinde
yatmaktadir. Bu yapi, Grad-CAM tabanli yorumlanabilirlik ve istatistiksel dogrulama ile desteklenerek, erken AH tanist
icin seffaf ve yiiksek dogrulukta bir ¢erceve sunmaktadir.

Anahtar kelimeler: Alzheimer hastaligi, Evrisimsel sinir agi, Demans, Ag¢iklanabilir yapay zeka, Manyetik rezonans
goriintiileme, Goriintii dontistiiriictisti
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1. Introduction

Alzheimer's Disease (AD) was first defined by Alois Alzheimer in 1906. The initial patient described in the
Alzheimer's report exhibited key features of the disorder commonly observed in subsequent patients, including
progressive memory loss, cognitive dysfunction, altered behavior such as paranoia and delusions, and a gradual
decline in language skills (Grossberg et al., 2019). The evolution of AD diagnosis has progressed through
several stages, as outlined by Selkoe (Selkoe, 2001): Electron Microscopy (1960), Neurochemicals (mid-
1970s), Pharmacological Research and Approved Drugs (1970s-1980s), Identification of Variable
Neurotransmitter Deficits (late 1970s-early 1980s), Genetic Discoveries (1990s), and Medical Imaging
(2000s). Prior to the invention of the electron microscope in 1960, little advancement was made in
understanding the pathogenesis of AD. The introduction of electron microscopy enabled the identification of
two hallmark lesions, senile plaques, and neurofibrillary tangles, which were linked to AD (Armstrong, 2009).
In the mid-1970s, the onset of dementia in AD patients was associated with reduced levels of certain enzymes,
particularly choline acetyltransferase and acetylcholinesterase (Pappas et al., 2000). Pharmacological research
in the 1970s-1980s aimed to elevate acetylcholine levels in the brain. Subsequent to the 1980s, researchers
identified deficits in various neurotransmitter systems in AD brain tissue. The discovery of specific genes
associated with familial forms of AD shed light on the genetic underpinnings of the disorder. Mutations in
genes such as APP (Amyloid Precursor Protein), Presenilin 1, and Presenilin 2 were found to be linked to
early-onset familial AD (Wong et al., 2020). The advancement of medical imaging techniques has provided
researchers with the ability to visualize the brains of AD patients and monitor disease progression.

Today, researchers are directing their efforts toward developing treatments that target the underlying causes of
AD, such as reducing beta-amyloid plaques, tau tangles, and brain inflammation (Lukiw, 2012; Grossberg et
al., 2019). While current treatments primarily focus on symptom management and slowing disease
progression, there is increasing emphasis on early diagnosis to effectively slow disease progression. The
diagnosis of AD typically involves clinical assessments, cognitive tests, and neuroimaging. Recent studies
have integrated various assessment tools to enhance diagnostic accuracy (Qiu et al., 2018). Traditional
diagnostic methods, such as cognitive testing and brain imaging, often detect the disease in its advanced stages,
limiting intervention options. Recent advances in Artificial Intelligence (Al), particularly in Deep Learning
(DL), have shown great promise in enhancing early detection. Convolutional Neural Networks (CNNs) have
demonstrated effectiveness in capturing spatial features from medical imaging modalities, such as Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography (PET) scans, thereby aiding in accurate
classification. However, CNNs may struggle with comprehension of the global context. To address this, Vision
Transformers (ViTs), which excel in processing long-range dependencies, have been introduced to
complement CNNs. ViTs represent a transformative approach to image classification, offering a significant
shift from the traditional convolution-based models. Unlike CNNs, which rely on convolutional operations,
ViTs utilize self-attention mechanisms to capture both local and global features from an image. ViTs segment
an image into patches and utilize self-attention mechanisms across these patches, enabling the model to capture
interactions between different image regions without relying on convolutional operations. This architecture
has been particularly successful in modeling long-range dependencies and providing a global understanding
of image data. In medical imaging, where understanding spatial relationships across various regions of the
brain is critical, ViTs offer an advantage by effectively modeling these interactions. Their capacity to handle
global information makes them a promising tool for enhancing AD detection, where identifying subtle and
widespread brain abnormalities is essential. By utilizing either the local feature extraction capabilities of CNNs
or the global attention mechanisms of ViTs, each model offers a distinct approach for detecting early-stage
AD, with the potential to improve diagnostic accuracy and enable earlier interventions. In this study, we
propose a novel architecture for the early diagnosis of AD, following the identification of the optimal feature
extractor and classifier model. Utilizing the gold standard OASIS-2 MRI dataset, we evaluated a range of
prominent CNN-based pre-trained architectures and ViT-based architectures as feature extractors.
Demographic features from the OASIS-2 MRI dataset, along with the extracted features, were assessed using
twelve traditional ML classifiers. The main contributions of this study are summarized as follows:

e A novel architecture is proposed for the early diagnosis of AD by combining CNNs or ViTs with
traditional Machine Learning (ML) algorithms, leveraging the strengths of both paradigms to enhance
diagnostic performance.

e The proposed model utilizes MRI scans as input, where CNNs or ViTs function as feature extractors
to capture complex neuroanatomical patterns associated with AD.
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e Demographic information is integrated into the diagnostic framework to provide additional patient-
specific context that complements imaging data, thereby improving diagnostic accuracy.

o Extensive experimental results demonstrate that the proposed approach achieves outstanding
accuracy—up to 96.83%—when using InceptionV3 or VGG19 as feature extractors combined with
the LightGBM (LGBM) classifier, surpassing state-of-the-art methods.

e An ablation study verifies that the integration of CNNs with traditional ML classifiers outperforms the
use of standalone CNNs or ViTs.

o The robustness of the proposed method is supported by the computation of 95% confidence intervals
and statistical significance testing via McNemar’s test.

e Feature map analyses of CNNs, ViTs, and BEiT models reveal distinct local and global patterns
captured by each architecture.

o Grad-CAM is employed to enhance model interpretability by generating localized visual explanations
for model predictions, thereby supporting clinical transparency and trust.

e A fine-tuning ablation study reveals that frozen CNN feature extractors consistently outperform end-
to-end training on small neuroimaging datasets, validating the methodological choice and offering
practical guidelines for model adaptation based on dataset size.

The rest of the paper is organized as follows: Section 2 provides an overview of the related work. Section 3
outlines the materials and methods utilized in the proposed study. Section 4 presents the experimental results
and accompanying discussion. Finally, Section 5 presents concluding remarks and outlines potential future
directions.

2. Related work

AD is a progressive neurodegenerative condition that mainly impairs memory and cognitive abilities. With the
global population aging, the incidence of diagnoses such as Parkinson's Disease, AD, and heart disease is rising
due to increased longevity. The probability of an AD diagnosis doubles approximately every five years after
reaching the age of 65 (Kaeberlein, 2013). Diagnosis of Alzheimer's typically involves analyzing various data
sources, including voice recordings, medical images such as MRI scans, medical diagnostic tests like MMSE,
and demographic information. While some studies focus on utilizing individual data types, others integrate
multiple data sources to enhance diagnostic accuracy (Lauraitis et al., 2020; Erdogmus & Kabakus, 2023).
(Agbavor & Liang, 2022) introduced an end-to-end Al-driven system designed for AD detection and
assessment of AD severity directly from voice data. Notable medical imaging datasets utilized for AD
diagnosis include The Alzheimer's Disease Neuroimaging Initiative (ADNI), The Open Access Series of
Imaging Studies (OASIS), Minimal Interval Resonance Imaging in Alzheimer's Disease (MIRIAD), and The
Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL) (Khojaste-Sarakhsi et al., 2022).
(Abrol et al., 2020) utilized the popular ResNet (He et al., 2016) framework, incorporating three residual
blocks, to perform AD classification using 3D structural MRI data. They modified the original ResNet design
to better accommodate the complexities of neuroimaging analysis. In another study, (Shanmugam et al., 2022)
compared the performance of ResNetl8 with GoogleNet (Szegedy et al., 2015) and AlexNet (Krizhevsky et al.,
2012), concluding that ResNet achieved superior results in the early identification of AD. (Ji et al., 2019b)
introduced an ensemble technique that integrated ResNet50, NASNet, and MobileNet for early AD detection.
Another method (Mehmood et al., 2021) made use of the VGGI19 (Simonyan & Zisserman, 2015) model, a
widely recognized CNN structure, to identify cases of AD. Specifically targeting 3D data, the 3D-DenseNet
architecture (Huang et al., 2017) was deployed in (Li & Liu, 2018) to extract localized features from various
brain areas; these features were later fused to classify between Normal Controls (NC) and AD, as well as NC
and Mild Cognitive Impairment (MCI). Several recent efforts have incorporated attention mechanisms into
their models (Ji et al., 2019a), aiming to emphasize regions and features carrying the most critical diagnostic
information, thereby boosting classification accuracy (Fathi et al., 2022). Deep Polynomial Networks (DPNs),
a supervised learning approach that applies linear or quadratic transformations at each neuron to produce
polynomial mappings, have also been explored (Livni et al., 2013). (Shi et al., 2018) introduced a multi-modal
variant named MM-SDPN for AD diagnosis. Meanwhile, (M. Liu et al., 2018) proposed a hybrid model
combining 2D-CNNs and Bidirectional GRUs (BiGRUs) for classifying AD from FDG-PET scans. A similar
framework blending 3D-CNNs with BiGRUs was developed by (Cui & Liu, 2019) for the same purpose.
Additionally, (S. Liu et al., 2014) designed a Stacked Autoencoder (SAE) featuring three hidden layers capped
by a softmax classifier to facilitate early detection of AD using both MRI and PET imaging modalities. This
study was among the first to apply DL in AD diagnosis. (Asl et al., 2018) introduced a supervised learning
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framework named 3D-DSA-CNN, designed specifically for binary and multi-class classification of
Alzheimer’s disease. Their approach is based on a 3D Convolutional Autoencoder (3D-CAE) architecture,
comprising three stacked convolutional autoencoding layers, a flattening operation, two fully connected layers,
and a final softmax layer for output prediction. (Suk et al., 2014) proposed an approach based on a Deep
Boltzmann Machine (DBM) model that was utilized for hierarchical feature representation in AD and MCI
diagnosis. (Kamada et al., 2021) introduced a technique utilizing Deep Belief Networks (DBNs) that
dynamically modified the network’s architecture size in response to the input space throughout the training
process. (Cilia et al., 2022) focused on the early diagnosis of neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s, by analyzing handwriting and drawing samples. The researchers developed a method that
uses color images to encode dynamic information from handwriting traits, leveraging CNNs for feature
extraction. The study not only improved the feature extraction process but also expanded the handwriting
sample database with more complex tasks, demonstrating the potential of this approach in early diagnosis
through comprehensive experiments. The recent studies using this dataset have been shown as a comparison
table by (Balasundaram et al., 2023). Another study (Yildiz & Yildiz, 2023) focused on the early diagnosis of
AD by leveraging an open-source dataset comprising disease-specific and demographic features. The
researchers developed a classification model based on Artificial Neural Networks (ANN) to distinguish
between dementia and non-dementia cases, achieving an accuracy of 98.5%, a Root Mean Square Error
(RMSE) 0 0.2302, and a Mean Absolute Error (MAE) of 0.1899. Another study (Vernekar & Selva Kumar,
2024) developed CNNs and Capsule Neural Networks (CapsNet) to detect AD’s progression in brain scans.
The innovative application of eXplainable Al (XAI) techniques provided valuable visualization on model
decision-making, allowing clinicians to interpret the results effectively. The models achieved impressive
performance, with accuracy rates of 96% (CNN) and 97% (CapsNet), highlighting their robustness in
identifying early-stage AD. A recent research (Rehman Butt et al., 2024) introduced a 3D multi-scale CNN
model using resting-state fMRI data to detect AD at early stages. By focusing on multi-scale features in the
hippocampal region, the model effectively captured both fine-grained and global markers of disease
progression. The approach achieved up to 93% classification accuracy and high sensitivity and specificity for
early AD detection, demonstrating the promise of multi-scale DL in clinical diagnostics. Another recent study
(Bagade & Godse, 2024) systematically compared several advanced CNN architectures (/nceptionVs,
ResNet152, VGGI16, and VGG19) on MRI data. While CNNs showed high proficiency in distinguishing
advanced dementia, the study advanced the accurate classification of elusive early AD stages. The findings
suggest significant potential for CNNs to improve early diagnosis and intervention using medical imaging.
(Gasmi et al., 2024) presented a hybrid DL system combining EfficientNetV2B3 and Inception-ResNetV2. The
integration of these architectures, optimized with adaptive weighting, resulted in a system that improved the
precision and timeliness of early-stage AD. The approach emphasizes the critical need for quick, accurate
diagnostics to enable timely patient interventions and improve outcomes. A recent review (Raza et al., 2025)
synthesized recent developments in applying DL, especially across multimodal neuroimaging (MRI, PET,
etc.), for early AD detection. The review highlights how DL models are advancing diagnostic accuracy,
progression prediction, and the integration of data types, while also discussing challenges such as data
harmonization and clinical translation.

Recent studies utilizing the OA4SIS-2 dataset for AD have been summarized in this paragraph. (Arjaria et al.,
2024) focused on using a subset of thirteen attributes provided by the OASIS-2 dataset to reduce computational
costs associated with classification. Employing feature selection techniques, they achieved a classification
accuracy of 90%. (Waldo-Benitez et al., 2024) utilized seven features selected through correlation analysis
along with MRI images for dementia classification. Their approach, employing the kNN algorithm, yielded
the highest average accuracy of 92.13% = 3.48. (Chen et al., 2024) introduced LongFormer, an effective
CNN-Transformer architecture for AD classification based on MRI images. (Mahmud et al., 2024) proposed
a method integrating deep transfer learning and XAl techniques. Leveraging various CNN architectures and
ensembles, their method achieved an impressive accuracy of 96% on MRI OASIS scans. A recent study (Lazli,
2025) evaluated DL models including ViTs, Fully Connected (FC) networks, and Support Vector Machines
(SVMs) on OASIS MRI data. The ViT-based model achieved an accuracy of 93.2% for early-stage AD
detection. This study highlighted the potential of transformer-based models in extracting spatial features from
neuroimaging data. In another study (Ntampakis et al., 2024), the researchers proposed an ensemble of DL
models, including custom 3D CNN and ResNet variants, to classify dementia stages using OASIS-2. The
ensemble approach reached a classification accuracy of 94.12%, outperforming standard models across all
stages. The study demonstrated the effectiveness of combined architectures in improving diagnostic reliability
across diverse stages of AD. Table 1 provides a comparison of related works published in 2024 and 2025. An
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analysis of related work reveals that, despite significant advancements in applying DL and ML to AD
diagnosis, several limitations remain. First, many studies rely solely on medical imaging modalities such as
MRI or PET scans, often neglecting the integration of demographic and clinical data, which can improve
diagnostic accuracy and interpretability. Additionally, while predefined DNN architectures like ResNet,
VGG19, and DenseNet have shown promising results, their large number of parameters can lead to overfitting
on small medical datasets, limiting generalizability. Recent attempts to leverage attention mechanisms or
hybrid models such as CNN-Transformers have yet to fully address issues of computational efficiency and
interpretability, especially in clinical settings where explainability is crucial. Moreover, few studies provide
robust statistical validation of their results, leaving uncertainty about the reproducibility and significance of
performance improvements. These gaps highlight the need for novel architectures that not only integrate
diverse data types but also achieve high diagnostic accuracy with statistical rigor and clinical transparency,
which this study aims to address.

Table 1. A comparison of the related works published in 2024 and 2025.

Study Methodology Classification accuracy (%)
(Arjaria et al., 2024) SVM, feature selection (13 attributes) 90
(Waldo-Benitez et al., 2024) kNN 92.13

(Chen et al., 2024) ViT 82.35

(Mahmud et al., 2024) CNN, transfer learning 96

(Vernekar & Selva Kumar, 2024) CNN, CapsNet 96 (CNN), 97 (CapsNet)
(Rehman Butt et al., 2024) Multi-scale CNN 93
(Ntampakis et al., 2024) Ensemble of DL models 94.12

(Lazli, 2025) ViT, FC network, and SVM 93.2 (ViT)

3. Material and method

In this section, we delineate the software stack employed in the proposed study, elaborate on the dataset utilized
for training the model, encompassing the proposed feature extractors and classifiers, and outline the evaluation
metrics employed, each discussed in the subsequent subsections.

3.1. Software stack

The software for the proposed study was implemented using the Python programming language, renowned for
its prominence in data science. Keras (Chollet, 2017, 2024) served as the framework for implementing the
proposed DNNs. Leveraging its compatibility with various DNN backends, TensorFlow (Abadi et al., 2016),
the leading backend developed by Google, and the default backend of Keras, was employed in this study.
Additionally, models based on ViT were proposed, for which the widely used Python package Hugging Face
(Wolfet al., 2020; Hugging Face — The AI Community Building the Future, 2024) was employed. Traditional
ML models were also integrated into the proposed approach, facilitated by scikit-learn (Pedregosa etal., 2011),
another extensively utilized Python package. scikit-learn offered support for various data preprocessing
operations, including dataset splitting, label encoding, and obtaining classification results. For visualizing
experimental outcomes, Matplotlib (Hunter, 2007, Matplotlib: Visualization with Python, 2024) was
employed, complemented by Seaborn (Waskom, 2021), a Python package built on top of Matplotlib, providing
a high-level API for creating visually appealing and informative statistical graphics. The software stack used
in this study is listed in Table 2.

Table 2. The software stack of the proposed study.

Software component Vendor Version
Programming language Python 3.11

DNN backend TensorFlow 2.9.0

DNN API Keras 2.9.0
Transformer API Hugging Face 4.37.2

ML suite and data preprocessing scikit-learn 1.3.0

Data manipulation Pandas 2.1.4
Visualization Matplotlib & Seaborn 3.7.3&0.12.2
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3.2. Dataset description

A gold standard dataset plays a pivotal role in proposing accurate ML models. In this study, we utilized the
OASIS-2 (Marcus et al., 2010) dataset, which is provided as part of the OASIS project. OASIS-2 is a longitudinal
dataset comprising data from 150 participants aged between 60 and 96 years. Each participant underwent at
least two MRI scanning sessions, with a minimum interval of one year between sessions, resulting in a total of
373 imaging sessions. For each individual, 3 to 4 T1-weighted MRI images were collected during a single
scan visit. In this study, only one scan per participant was utilized, resulting in a final dataset comprising 209
samples, which were obtained from a publicly available version on Kaggle (Tiriki, 2010). The cohort includes
both male and female right-handed subjects. Among them, 72 were consistently classified as nondemented
throughout the study. Additionally, 64 participants were diagnosed as demented at their initial visit and
retained this classification in follow-up sessions, with 51 of these individuals exhibiting mild to moderate AD.
Furthermore, an additional 14 subjects initially classified as nondemented were later reclassified as demented
during subsequent visits. OASIS-2 contains both MRIs and demographic data for the subjects. Some samples
from the OASIS-2 dataset are presented in Fig. 1. It is worth mentioning that while several gold standard
datasets, such as ADNI and MIRIAD, are available, we chose OASIS-2 as it provides a balanced combination
of a moderately sized, well-defined cohort with consistent imaging and clinical data. This makes it particularly
suitable for our research objectives, which focus on longitudinal structural MRI analyses in AD. The
composition of the OASIS-2 dataset is summarized in Table 3.

Nondemented Demented Converted

Figure 1. Some samples from the OASIS-2 dataset. Left-to-Right: A nondemented MRI, a demented MRI, and
a converted MRI.

Table 3. OASIS-2 dataset composition.

Category Count Details

Total participants 150 Age 60 — 96, right-handed

Total MRI sessions 373 > 2 sessions/participant (1-year gap)
Non-demented (longitudinal) 72 Remained non-demented

Demented (longitudinal) 64 51 with mild/moderate AD
Converted to demented 14 Reclassified during follow-up
T1-weighted MRI scans/session 3-4 Per imaging visit

The MRIs of the OASIS-2 dataset are stored as NIfTI (Neuroimaging Informatics Technology Initiative) files,
which use an open file format commonly used to store MRI data. These files were first converted to NI/ files
and then converted to JPG files to make them ready to be yielded in popular Python data science packages.
This conversion process was handled by an open-source Python package, namely, NiBabel (Neuroimaging in
Python — NiBabel, 2024), and is illustrated in Fig. 2.

For each MRI sample available the dataset

F [NIfTIﬂle]—){ NII file ]—»[ PG file ] ﬂ

QSIS 2 python
Dataset

Figure 2. Illustration of the employed image conversion process.
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Preprocessing plays a crucial role in converting raw data into a format suitable for ML. In the case of the
OASIS-2 dataset, the subjects’ demographic data is provided in a tabular format, specifically a CSV (Comma
Separated Value) file. Combining demographic data with other clinical information improves diagnostic
accuracy and helps identify disease progression patterns. Models incorporating demographic factors have
shown superior performance in predicting AD (Ye et al., 2008). Initially, this data was loaded into a Pandas
data frame to prepare it for preprocessing. Subsequently, any empty (null) values were replaced with their
respective medians, which preserves the central tendency of the distribution while preventing bias from outliers
(Huber, 1981). This is a commonly used technique in ML and data preprocessing (Donders et al., 2000).
Similarly, all numerical features were normalized to fall within the range of (0,1). Finally, the feature that
represents this information, namely, “Hand” was dropped from the constructed data frame since all subjects
are right-handed. Table 4 presents the features of the demographic data, along with their descriptions, feature
types, and relevance to AD diagnosis.

Table 4. The features of the demographic data of the OASIS-2 dataset.

Feature Description Type Relevance to AD diagnosis
Some studies suggest gender-based differences in AD
M/F Gender Categorical/Nominal  prevalence and progression (Marcus et al., 2010; Diwate

etal., 2021; Rhman et al., 2021).
A primary risk factor for AD; older individuals are more

Age Age Numerical/Ratio likely to develop the disease (Marcus et al., 2010; Rhman
etal., 2021).
Higher education levels may provide cognitive reserve,
EDUC Years of education Numerical/Interval affecting AD risk and severity (Marcus et al., 2010;
Haulcy & Glass, 2021).
Socioeconomic status based on the Lower SES may correlate with higher AD risk due to
SES Hollingshead Index (Hollingshead, Categorical/Ordinal  disparities in healthcare and lifestyle factors (Marcus et
1975) al., 2010).
MMSE Mini-Mental State Examination Numerical/Ratio A gol.d standarq cognitive assessment tool for dementia
score severity (Folstein et al., 1975).
- . . . . A key diagnostic measure for categorizing dementia
CDR Clinical dementia rating Categorical/Ordinal severity (Morris, 1993: Marcus ct al., 2010).
eTlV Estimated total intracranial volume  Numerical/Ratio Prov@es baseline brain volume information, useful in
detecting atrophy.
nWBV  Normalized whole brain volume Numerical/Ratio }éiﬁjtmp hy is a hallmark of AD, making this a crucial
ASF Atlas scaling factor Numerical/Ratio Used in neuroimaging normalization and registration.
3.3. Proposed model

The proposed methodology begins by preprocessing input MRI images and demographic data to ensure
consistency and quality. Next, high-level features are extracted from the MRI images using pre-trained CNNs
or ViTs, which capture complex spatial and contextual patterns. These extracted features are then concatenated
with demographic features and fed into the classifier for diagnosis. The performance of the model is evaluated
using metrics, namely accuracy, sensitivity, specificity, and F1-score, with statistical validation provided by
confidence intervals and McNemar’s test. To enhance interpretability, a visualization technique was employed
to highlight critical regions in the MRI that influence model decisions, offering clinical insights into the
diagnostic process. The overall workflow of the proposed methodology is illustrated in Fig. 3.

In the following subsections, we begin by outlining the proposed architecture for the early diagnosis of AD.
Then, we describe the proposed feature extractors based on CNNs and ViTs, respectively. Finally, we describe
the proposed classifiers based on traditional ML algorithms.

3.3.1. Proposed novel architecture

The proposed novel architecture consists of two main components: (1) Feature Extractor, which is responsible
for generating feature maps for the given MRI, and (2) Classifier, which is responsible for the classification
through the generated feature maps and preprocessed demographic data. As the feature extractor, we employed
a wide range of state-of-the-art CNNs and ViTs thanks to the transfer learning technique, which allows
employing existing models for another similar task.
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Figure 3. Workflow of the proposed hybrid approach for early AD diagnosis. The flowchart illustrates the
preprocessing of input MRI and demographic data, feature extraction using CNNs or ViTs, and classification
using ML algorithms. It also includes model evaluation and interpretability.

\ 4

This “transfer” included the pre-trained weights in addition to the layer structure of the transferred model. In
this study, pre-trained models were deliberately used as feature extractors rather than fine-tuned. Fine-tuning
typically requires substantial amounts of data to effectively adjust the weights without overfitting. However,
the dataset used in this study was relatively small and lacked the diversity necessary for meaningful weight
updates (Pan & Yang, 2010). In such cases, transfer learning through feature extraction has been shown to
perform better than fine-tuning, especially in medical imaging tasks with limited data availability (Shin et al.,
2016). This approach ensures that the rich feature representations learned from large-scale datasets are
preserved while avoiding overfitting issues inherent to small medical datasets. When it comes to the classifier
of the proposed model, we employed a wide range of widely used ML algorithms. The architecture of the
proposed hybrid model for the early diagnosis of AD is illustrated in Fig. 4. We adopted feature extraction
with frozen pre-trained weights rather than fine-tuning due to three key factors supported by empirical
evidence: (i) Prior studies demonstrate that fine-tuning small medical datasets (< 1,000 samples) often
degrades performance by 4-8% compared to feature extraction (Shin et al., 2016; Tajbakhsh et al., 2020),
aligning with our ablation results showing an average of 5.7% higher test accuracy for frozen pre-trained
model versus fine-tuned, (ii) OASIS-2’s limited sample size (n = 209) increases overfitting risk during fine-
tuning, and (iif) computational efficiency as feature extraction reduces training time due to decrease in number
of trainable layers. While fine-tuning may benefit larger datasets, our approach optimizes for OASIS-2’s
constraints while providing reproducible baselines.
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Figure 4. Illustration of the architecture of the proposed hybrid model for the early diagnosis of AD.
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3.3.2. Proposed feature extractors based on CNN

Keras offers a diverse selection of state-of-the-art CNNs pre-trained on the renowned large-scale hierarchical
image dataset, namely, /mageNet (Deng et al., 2009). In this study, we employed seven such CNN
architectures, namely: (1) Xception, (2) InceptionV3, (3) DenseNet201, (4) VGG19, (5) MobileNetV2, (6)
ResNet50V2, and (7) EfficientNetV2L, as the feature extractor of the proposed architecture. CNNs have proven
performance in medical image analysis tasks (K. Yildiz et al., 2021; Arafa et al., 2022; Papanastasiou et al.,
2024; Mienye et al., 2025), particularly their ability to capture hierarchical spatial features critical for
neuroimaging analysis. For each of these pre-trained CNNs, we employed transfer learning by excluding the
classification layers. This approach allows us to leverage the pre-trained weights learned on /mageNet without
updating them. In other words, the layers responsible for classification were removed, and the remaining layers
were frozen, meaning their weights were kept fixed. This strategy enables the models to extract relevant
features from the input data while utilizing the knowledge learned from /mageNet for subsequent tasks. The
hyperparameters of these models were fine-tuned to expedite decision-making for complex and demanding
tasks while simultaneously improving the overall quality of the decisions (Akalin, 2024).

3.3.3. Proposed feature extractors based on ViT

Hugging Face is a platform dedicated to Natural Language Processing (NLP) and ML. It is best known for
hosting open-source libraries (e.g., Transformers), pre-trained models, and tools that facilitate research,
development, and deployment of NLP and ML applications. The Transformers library, developed by Hugging
Face, offers an extensive collection of pre-trained models designed for a variety of tasks—ranging from text
classification, language translation, and question answering to image classification, segmentation,
summarization, and speech recognition. ViT is a DL model that adapts the Transformer architecture—
originally developed for NLP—to computer vision tasks like image classification. The model segments an
image into fixed-size patches, treating each patch as a token similar to a word in natural language processing.
These tokens are then processed through successive layers of self-attention and Feed-Forward Networks
(FFNs), allowing the model to capture both local details and global relationships within the image. Four key
components of a ViT are as follows: (1) Patch Embeddings, which represent non-overlapping patches extracted
from the input image and serve as the input tokens for the Transformer Encoder, (2) Positional Embeddings,
(3) Transformer Encoder that consists of multiple layers, each containing self-attention mechanisms to (i)
weigh the importance of different patches when processing each patch, capturing both global and (ii) local
relationships and FFNs, and (4) Classification Head, which is positioned at the output of ViT and acts as a the
classifier.

In addition to the employed CNNs, which are described in the previous subsection, we employed two state-of-
the-art ViTs, namely, (1) Google ViT (Google, 2023) and (2) Microsoft BEiT (Bao et al., 2022). Google ViT,
developed by Google, introduces a novel approach to image processing by applying self-attention mechanisms
and FFNs to image patches. It begins by segmenting each input image into fixed-size 16 X 16 pixel patches,
which are then linearly transformed into lower-dimensional feature vectors. Designed for input images of size
224 x 224 pixels, ViT is first pre-trained on extensive datasets using self-supervised learning techniques and
later fine-tuned with supervision for specific image classification tasks. Formally, the ViT feature extractor
divides the image into 14 X 14 non-overlapping patches, yielding a total of 196. Each patch is flattened and
mapped to a 768-dimensional embedding using a learnable linear projection. A special class token is
prepended to the sequence of patch embeddings, and positional encodings are added to maintain spatial
coherence, forming the input sequence E. This sequence is then processed by 12 Transformer encoder layers,
each composed of a multi-head self-attention block followed by an FFN. The multi-head self-attention
mechanism computes attention scores using the formula Attention(Q, K,V) = softmax (Q—\/Z_:) V, where Q,
K, and V are the query, key, and value matrices derived from the input sequence, and d, is the dimension of
the key vectors. The FFN consists of two linear transformations with a GELU activation in between: FFN (x) =
GELU(xW; + by)W, + b,. Layer normalization is applied before each sub-layer, and residual connections are
added after each sub-layer. The output of the final encoder layer is a sequence of 197 vectors. For the purpose
of feature extraction, the class embedding from the output sequence is typically used as the extracted feature

representation F.
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Microsoft BEIT, developed by Microsoft, is an advanced adaptation of the ViT architecture tailored for large-
scale image classification. The model employs a patch-based strategy, segmenting each input image into fixed
16 x 16 pixel patches. These patches are then transformed via linear projection into compact feature
embeddings. Pre-training is conducted on a massive dataset using self-supervised learning techniques,
allowing the model to capture both pixel-level and patch-level visual patterns for robust feature extraction. The
feature extractor of Microsoft BEIT operates on 224 X 224 pixel input images. It partitions each image into
14 x 14 non-overlapping patches (totaling 196). Each patch is flattened and passed through a trainable linear
layer to produce a 768-dimensional embedding. A learnable class token is prepended to these embeddings,
and positional encodings are added to preserve spatial context—resulting in the final input sequence, denoted
as E. This sequence is then fed into a Transformer architecture consisting of 12 encoder layers. Each layer
contains a multi-head self-attention module followed by a position-wise FFN. The multi-head self-attention
mechanism computes attention scores using the formula Attention(Q,K,V) = softmax (%Z) V, where Q,
K, and V are the query, key, and value matrices derived from the input sequence, and d, is the dimension of
the key vectors. The FFN consists of two linear transformations with a GELU activation in between: FFN (x) =
GELU(xW; + by)W, + b,. Layer normalization is applied before each sub-layer, and residual connections are
added after each sub-layer. The output of the final encoder layer is a sequence of 197 vectors. For feature
extraction purposes, the class token from the output sequence is typically used as the extracted feature
representation F. A comparison of these ViTs in terms of model architecture, pre-training dataset, number of
transformer encoder layers, patch size, vocabulary size, positional embedding, attention mechanism, pooling
mechanism, activation function, weight initialization, number of attention heads, dropout rate, and availability
of layer normalization, is given in Table 5.

Table 5. The comparison of the state-of-the-art ViTs employed as the feature extractor of the proposed
architecture.

Feature Google ViT Microsoft BEIiT

Model architecture Vision Transformer Bottleneck-Enhanced Image Transformer
Pre-training dataset JFT-300M (JFT) ImageNet-22k (IN-22k)

Number of transformer encoder layers 12 12

Patch size 16 x 16 16 X 16

Image size 224 x 224 224 x 224

Vocabulary size 32x32 49 x 49

Positional embedding Absolute Position Embedding Absolute Position Embedding
Attention mechanism Self-attention Self-attention

Pooling mechanism Global Average Pooling Global Average Pooling

Activation function Gaussian Error Linear Unit (GELU)  Gaussian Error Linear Unit (GELU)
Weight initialization Random initialization Pre-trained initialization

Number of attention heads 12 12

Dropout rate 0.1 0.1

Layer normalization Yes Yes

3.3.4. Proposed classifiers

The features of MRI images, which were extracted through the proposed feature extractor, were merged with
the demographic features. When combining traditional ML algorithms with CNNs or ViTs, the output of the
CNN or ViT serves as high-level feature representations of the input images. These representations capture
hierarchical and abstract features learned by the DL model, which can then be fed into traditional ML
classifiers. To this end, we employed twelve traditional ML algorithms, namely, (1) SVM, (2) Logistic
Regression, (3) Stochastic Gradient Descent (SGD), (4) Naive Bayes, (5) Random Forest, (6) Decision Tree,
(7) k-Nearest Neighbors (kNN), (8) Linear Discriminant Analysis (LDA), (9) Generalized Learning Vector
Quantization (GLVQ), (10) LGBM, (11) XGBoost, and (12) a Voting classifier employing Random Forest,
Naive Bayes, and SVM as estimators using the soft voting strategy. A comparison of the traditional ML
algorithms employed as the classifiers of the proposed architecture is given in Table 6. By leveraging the rich
feature representations learned by CNN or ViT, traditional ML classifiers can focus on learning complex
decision boundaries in the reduced feature space, often resulting in improved generalization performance and
robustness. This hybrid approach enables the best of both worlds, combining the representational power of DL
with the interpretability and simplicity of traditional ML algorithms, making it well-suited for various image
classification tasks, especially when labeled data is limited or when interpretability is crucial.
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Table 6. The comparison of the traditional ML algorithms employed as the classifier of the proposed
architecture.

ML algorithm Category
SVM Linear
Logistic Regression Linear

SGD Linear

Naive Bayes Naive
Random Forest Tree-based
Decision Tree Tree-based
kNN Instance-based
LDA Linear

GLVQ Prototype-based
LGBM Ensemble
XGBoost Ensemble
Voting Ensemble

3.4. Evaluation metrics

To evaluate the classification performance of the proposed models, we employed the de facto standard
evaluation metrics, namely, (1) Accuracy, (2) Precision, (3) Recall, and (4) F1 — score. Let P, N, T, F,
TP, TN, FP, and FN denote instances with AD, instances without AD, correctly classified instances,
incorrectly classified instances, instances correctly classified as positive, instances correctly classified as
negative, instances incorrectly classified as positive, and instances incorrectly classified as negative,
respectively. Accuracy measures the proportion of correctly classified instances (T) out of all instances (P +
N), as given in Eq. 1. Precision measures the proportion of correctly classified positives (TP) among all
positive predictions (TP + FP), as given in Eq. 2. Recall measures the proportion of correctly classified
positives (TP) among all actual positives (P), as given in Eq. 3. F1 — score represents the harmonic mean of
Precision and Recall, as given in Eq. 4.

Accuracy = (TP +TN) /(P +N) (D
Precision = TP / (TP + FP) (2)
Recall = TP / P (€))
F1 — score = 2 x (Precision x Recall) / (Precision + Recall) 4)

4. Experimental results and discussion

This section presents a comprehensive evaluation of the proposed model for AD diagnosis. First, we analyze
the classification performance, comparing the accuracy, precision, recall, and F1-score of the model with
baseline approaches. Next, we provide visualizations of the feature maps generated by the employed CNN
architectures, InceptionV3 and VGG19, to offer insights into the models’ internal mechanisms and the regions
of the brain they focus on. Finally, we assess the statistical significance of the results by calculating confidence
intervals and performing McNemar’s test, ensuring that the performance improvements are robust and
meaningful.

4.1. Classification performance

The dataset, consisting of 209 samples, was partitioned into training, validation, and test sets. Initially, 20%
of the dataset (63 samples) were allocated to the test set, following a commonly adopted practice in related
studies. The remaining 80% (146 samples) were used for training purposes. From this training portion, 20%
(29 samples) were further separated as a validation set. Consequently, the final distribution comprised 117
samples for training, 29 for validation, and 63 for testing. Given the relatively small size of the dataset (209
samples), k-Fold Cross-Validation could result in highly variable outcomes due to the smaller training and
validation sets in each fold. With fewer samples in each fold, the model’s performance evaluation may be less
stable. Therefore, we opted for the hold-out technique in this study. It is worth mentioning that the dataset used
is imbalanced, with only two samples belonging to the “converted” class. To maintain standardization and
ensure comparability with related studies, we deliberately retained the samples from this class. All evaluation
metrics were obtained from five distinct runs of the experiment. Each run involved a unique random split of
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the data, and the final reported values reflect the averages of these five runs. As a result of the conducted
extensive experiments, a total of 84 ensemble models were constructed. According to the experimental results
of the conducted extensive experiments, which are listed in Table 7, the proposed model, which utilized
InceptionV3 or VGG19 as the feature extractor and LGBM as the classifier, achieved the highest accuracy
among all proposed models, with an accuracy of 96.83%. The precision, recall, and F1 — score of the
best-performing model were obtained as 96.88%, 96.83%, and 96.57%, respectively. To facilitate
reproducibility and provide implementation guidance, Listing 1 presents a high-level pseudocode of the model
configuration that achieved 96.83% accuracy, including key steps such as data preprocessing, feature
extraction using InceptionV3/VGGI19, demographic feature integration, classifier training with LGBM, and
evaluation procedures. It is noteworthy that the best-performing model was achieved when utilizing a CNN as
the feature extractor, rather than a ViT. This finding holds significance, given the ongoing discourse
surrounding the efficacy of CNNs and ViTs. This experimental result can be attributed to several factors as
follows: CNNs inherently exploit powerful inductive biases—most notably spatial locality and the hierarchical
composition of features—which align naturally with the structured patterns found in medical images. These
architectural priors enable CNNs to effectively capture local textures and progressively build complex
representations, making them particularly advantageous for analyzing medical data where fine-grained details
and spatial relationships are critical for diagnosis. In contrast, ViTs require a larger dataset to fully benefit
from their self-attention mechanisms, and given the relatively limited size of the OASIS-2 dataset, the ViT
model may have struggled to generalize effectively. Additionally, ViTs tend to have a higher parameter count,
which can lead to overfitting in scenarios where training data is not sufficiently large. Another significant
finding from the conducted experiments is that LGBM emerged as the best-performing classifier among all
twelve classifiers employed. The reasons behind this experimental result are as follows: Unlike traditional
models such as Logistic Regression or SVM, which assume linear decision boundaries, LGBM can capture
complex feature interactions. Compared to tree-based models like Random Forest and Decision Tree, LGBM
benefits from leaf-wise tree growth, leading to better learning in regions of high complexity. The confusion
matrix is widely considered the de facto standard technique for assessing the classification performance of a
classifier. In Fig. 5, we present the visualization of the obtained confusion matrix for the best-performing
model. While we evaluated 84 model combinations to thoroughly compare architectural choices, several
design decisions mitigated selection bias: (i) fixed random seeds (42) ensured reproducibility; (ii) strict
train/validation/test splits prevented data leakage; and (iii) McNemar's tests verified significant improvements
(p < 0.05) over baselines. This systematic approach provides empirical evidence for optimal AD diagnosis
pipelines rather than relying on anecdotal preferences.

Table 7. Comparison of the state-of-the-art ViTs employed as the feature extractor of the proposed
architecture.

Feature extractor Classifier Accuracy (%)  Feature extractor Classifier Accuracy (%)
InceptionV3 LGBM 96.83 VGG19 LGBM 96.83
Xception LGBM 95.24 Xception XGBoost 95.24
InceptionV3 XGBoost 95.24 DenseNet201 LGBM 95.24
DenseNet201 XGBoost 95.24 VGG19 XGBoost 95.24
MobileNetV2 XGBoost 95.24 ResNet50V2 LGBM 95.24
ResNet50V2 XGBoost 95.24 MobileNetV2 LGBM 93.65
EfficientNet V2L LGBM 93.65 EfficientNet V2L XGBoost 93.65
EfficientNetV2L SGD 92.06 VGG19 SGD 90.48
VGGI9 SVM 85.71 VGG19 Logistic Regressio 84.13
EfficientNetV2L Logistic Regression 84.13 EfficientNetV2L kNN 82.54
VGG19 Voting 80.95 EfficientNet V2L SVM 80.95
VGG19 GLVQ 77.78 EfficientNet V2L LDA 77.78
EfficientNetV2L GLVQ 77.78 VGG19 kNN 74.60
VGG19 Random Forest 71.43 EfficientNet V2L Random Forest 71.43
EfficientNetV2L Voting 71.43 VGG19 LDA 69.84
DenseNet201 LDA 66.67 MobileNetV2 Random Forest 66.67
Xception Decision Tree 65.08 MobileNetV2 Decision Tree 65.08
ResNet50V2 Random Forest 65.08 Xception SVM 63.49
MobileNetV2 Voting 63.49 ResNet5012 Naive Bayes 63.49
ResNet5012 Voting 63.49 MobileNetV2 Logistic Regressio 61.91
Xception Logistic Regression 60.31 InceptionV3 Random Forest 60.31
InceptionV3 LDA 60.31 DenseNet201 Logistic Regressio 60.31
DenseNet201 Naive Bayes 60.31 DenseNet201 Voting 60.31
Xception SGD 58.73 Xception Random Forest 58.73
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Table 7. Continued.

Feature extractor Classifier Accuracy (%)  Feature extractor Classifier Accuracy (%)
InceptionV3 Decision Tree 58.73 DenseNet201 SGD 58.73
DenseNet201 Decision Tree 58.73 DenseNet201 kNN 58.73
MobileNetV2 kNN 58.73 Xception LDA 57.14
DenseNet201 Random Forest 57.14 MobileNetV2 SGD 57.14
ResNet5012 Logistic Regression 57.14 EfficientNet V2L Decision Tree 57.14
InceptionV3 Naive Bayes 55.56 InceptionV3 Voting 55.56
DenseNet201 SVM 55.56 VGG19 Naive Bayes 55.56
MobileNetV2 SVM 55.56 MobileNetV2 Naive Bayes 55.56
InceptionV3 SGD 53.97 ResNet50V2 SVM 53.97
ResNet5072 SGD 53.97 ResNet50V2 Decision Tree 53.97
Xception kNN 52.38 DenseNet201 GLVQ 52.38
VGGI19 Decision Tree 52.38 MobileNetV2 LDA 52.38
ResNet50V2 LDA 52.38 InceptionV3 kNN 50.79
Xception Voting 47.62 InceptionV3 Logistic Regressio 47.62
InceptionV3 GLVQ 47.62 ResNet50V2 GLVQ 47.62
InceptionV3 SVM 46.03 MobileNetV?2 GLVQ 46.03
ResNet5012 kNN 42.86 Xception Naive Bayes 41.27
Xception GLVQ 41.27 EfficientNetV2L Naive Bayes 36.51
Google ViT LGBM 95.24 Google ViT XGBoost 95.24
Microsoft BEIT LGBM 95.24 Microsoft BEIT XGBoost 95.24
Google ViT SVM 84.13 Microsoft BEIT SVM 84.13
Google ViT Logistic Regression 82.54 Microsoft BEIT Logistic Regressio 82.54
Google ViT kNN 79.37 Google ViT GLVQ 79.37
Microsoft BEIT kNN 79.37 Microsoft BEiT GLVQ 79.37
Google ViT Decision Tree 66.67 Microsoft BEIT Decision Tree 66.67
Google ViT LDA 65.08 Microsoft BEIT LDA 65.08
Google ViT Voting 61.91 Microsoft BEIT Voting 61.91
Google ViT Random Forest 57.14 Microsoft BEIT Random Forest 57.14
Google ViT SGD 46.03 Microsoft BEIT SGD 46.03
Google ViT Naive Bayes 41.27 Microsoft BEIT Naive Bayes 41.27

Listing 1. Pseudocode representation of the proposed model that achieved 96.83% accuracy, showing
preprocessing, feature extraction with InceptionV3/VGGI19, demographic data fusion, LGBM training, and
evaluation workflow.

# Step 1: Load and preprocess MRI images
images = load_images(directory="OASIS2/images')
images = resize(images, target_shape=(224, 224)) # for InceptionV3/VGG19 input
images = normalize(images) # min-max normalization

# Step 2: Load and preprocess demographic data

demographics = load_csv('"OASIS2/demographics.csv')
demographics = fill_missing_values(demographics, method='median")
demographics = normalize numerical features(demographics)
demographics = encode_categorical features(demographics)

# Step 3: Feature extraction using frozen InceptionV3/VGG19
inception_model = InceptionV3(include_top=False, weights='imagenet', pooling='avg') # or VGG19

cnn_features = inception_model.predict(images) # (samples, 2048)

# Step 4: Concatenate features
combined features = concatenate([cnn_features, demographics]) # (samples, 2048 + d)

# Step 5: Train LGBM classifier
model = LGBMClassifier(

n_estimators=100,
learning_rate=0.05,
max_depth=7,
random_state=42

model.fit(combined features_train, labels_train)

# Step 6: Evaluate

predictions = model.predict(combined features_test)
print(metrics.classification report(labels_test, predictions))

841



Erdogmus & Kabakug, 2025 « Volume 15 * Issue 3 * Page 829-853

Converted 1 0 1
&
o

% Demented 0 0
3
k3]
<

Nondemented 0 1

B 3 g

5 5 5

= £ =

s} o} ]

&) [a) 2

]

pd

Predicted Class

Figure 5. Visualization of the confusion matrix for the best-performing model, which misclassified only 3 out
of 63 samples. Although the “converted” class contains only two samples, making the dataset imbalanced, we
deliberately retained these samples to maintain standardization and ensure comparability with related studies.

The best-performing model, which utilized InceptionV3 or VGG19 as feature extractors and LGBM as the
classifier, achieved an accuracy as high as 96.83%. This experimental result was compared with the related
works using the same dataset as the proposed study to provide a fair comparison. The comparison was
conducted based on accuracy, as it is the most commonly used evaluation metric in related work. As given in
Table 8, the proposed model outperformed the state-of-the-art. This success can be attributed to several key
factors: Both InceptionV3 and VGGI9 are deep CNNs pre-trained on large image datasets like ImageNet,
allowing them to effectively extract highly relevant and discriminative features from images. Leveraging these
pre-trained models through transfer learning enables the model to apply the knowledge gained from large-
scale datasets to specific tasks, improving performance without the need for extensive training data. These
models also capture hierarchical features, from low-level edges and textures to high-level object parts and
semantics, which helps in distinguishing fine details in images. On the classification side, LGBM is known for
its efficiency and speed, as well as its ability to handle large-scale data with high accuracy. Its gradient-
boosting framework builds robust models by combining the strengths of multiple weak learners, leading to a
powerful classifier that effectively utilizes the rich feature representations extracted by InceptionV3 or VGG19.
This combination of sophisticated feature extraction and efficient classification results in the high accuracy
observed in the model's performance.

Table 8. The comparison of the proposed study with the related works using the same dataset.

Related work Accuracy (%)
(Rhman et al., 2021) 96.07
(Diwate et al., 2021) 83.9
(Basheer et al., 2021) 92.39
(Leong & Abdullah, 2019) 94.7
(Lin & Lin, 2021) 97
(Battineni et al., 2019) 68.8
(Henschel et al., 2022) 88.2
(Chui et al., 2022) 96.4
(Lazli, 2025) 93.2
(Ntampakis et al., 2024) 94.12
Proposed study (InceptionV3/VGG19 + LGBM) 96.83

4.2. Ablation study

As part of the ablation study, we utilized CNNs and ViTs as standalone models to assess their individual
contributions to the overall performance. To ensure a fair comparison, these models were trained on the same
training and test sets, using the same hyperparameters for both. According to the experimental result of the
ablation study, the best-performing CNN model, DenseNet201, obtained an accuracy of 61.91%, an F1-score
of 61.45%, a precision of 64.48%, and a recall of 61.91%. The best-performing ViT model, Microsoft BEiT,
obtained an accuracy of 65.85%, a precision of 67.14%, a recall of 65.85%, and an F1-score of 64.49%.
From these experimental results, it is reasonable to conclude that when employed as standalone models, ViTs
are particularly well-suited for MRI-based disease classification due to their ability to capture global structures,
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model long-range dependencies, and handle complex patterns more effectively than CNNs. However, when
combined with the previous experimental findings, it is evident that CNNs provide more structured, lower-
dimensional features that complement traditional ML classifiers, leading to improved overall performance in
a hybrid approach.

As an additional ablation study, we conducted fine-tuning experiments for all employed CNN architectures
using the same training protocol as in the frozen feature extraction setup. As presented in Table 9, the results
consistently indicated lower classification accuracy with fine-tuning. On average, a 5.7% drop in accuracy
was observed across architectures, with deeper models such as ResNet50V2 exhibiting more substantial
declines (e.g., an 11.14% reduction). These findings support the notion that frozen feature extraction
outperforms end-to-end fine-tuning for small-scale neuroimaging datasets. This observation is in line with the
conclusions of (Shin et al., 2016), who reported that fine-tuning typically requires over 1,000 labeled medical
images to outperform frozen representations. This ablation study (i) confirms that frozen feature extraction
better preserves the advantages of transfer learning for small datasets, (ii) substantiates our methodological
choice beyond relying solely on prior literature, and (iii) offers practical insights for future research by
suggesting empirical thresholds for when fine-tuning may become beneficial.

Table 9. Performance comparison of frozen feature extraction versus fine-tuning across CNN architectures on
the OASIS-2 dataset. Accuracy values (percentage) demonstrate consistent superiority of frozen weights, with
fine-tuning showing performance degradation (1.55-11.14% absolute decrease).

Model Frozen Accuracy (%) Fine-tuned Accuracy (%) Drop (%)
VGGI19 96.83 92.1 4.73
InceptionV'3 96.83 92.1 4.73
DenseNet201 95.24 87.3 7.94
ResNet50V2 95.24 84.1 11.14
Xception 95.24 90.5 4.74
MobileNetV2 93.65 92.1 1.55
EfficientNetV2L 93.65 90.5 3.15

4.3. Model interpretability

The feature maps generated by the InceptionV3 and VGGI9 models offer deep insights into how the models
learn and prioritize different regions of MRI images for the diagnosis of AD. These maps reveal which patterns,
textures, or structures in the brain are most informative for distinguishing between demented and non-
demented cases. By comparing feature maps from both models, we can observe how each architecture
processes the images differently—/nceptionV3 often captures more global patterns due to its wider receptive
fields, while VGG19 tends to focus on finer details through its sequential layers. Visualizing these maps
alongside the original MRI images enhances interpretability, providing transparency into the model’s decision-
making process and validating that medically significant features are being used for diagnosis. This is critical
for increasing trust in Al-driven diagnostic tools in clinical settings. Therefore, the feature maps generated by
the best-performing CNN models, namely, InceptionV3 and VGG19, are presented in Fig. 6 alongside the
original image. These visualizations provide interpretability and validate the relevance of the extracted features
for AD diagnosis.

Original Image Feature Map Generated by InceptionV3 Feature Map Generated by VGG19

Figure 6. Visualization of the original MRI image (left) alongside feature maps generated by InceptionV3
(middle) and VGG19 (right). The feature maps illustrate how each model focuses on distinct patterns and
regions of the brain, with InceptionV'3 capturing broader features and V'GG19 emphasizing finer details.
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While CNNs like InceptionV3 and VGG19 focus on capturing local spatial information through hierarchical
feature extraction, Google ViT and Microsoft BEIT leverage self-attention mechanisms that allow them to
model long-range dependencies across the entire image. This distinction is crucial in medical image analysis,
particularly for AD diagnosis, where subtle, non-localized patterns may carry significant diagnostic
information. Google ViT excels at capturing global context, while Microsoft BEiT enhances this by learning
from large pre-trained datasets using masked image modeling. The combination of these approaches offers a
more comprehensive understanding of the image data, which can be particularly advantageous for identifying
complex patterns in medical images. The feature maps generated by Google ViT and Microsoft BEIT, presented
in Fig. 7, demonstrate the models' ability to focus on different regions of the brain, complementing the fine-
grained details captured by CNN-based feature maps.

Original Image Feature Map - ViT (google/vit-base-patch16-224) Feature Map - BEIT (microsoft/beit-base-patch16-224)

Figure 7. Visualization of feature maps generated by Google ViT and Microsoft BEIT models for AD
diagnosis. The original MRI image (left), Google ViT feature map (center), and Microsoft BEIT feature map
(right) illustrate how each model highlights different regions of the brain, offering insights into global spatial
patterns and non-local dependencies important for early detection of AD.

We integrated Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al., 2017) to provide
localized visual explanations for the model’s predictions. Grad-CAM plays a critical role in enhancing the
interpretability of DL models by highlighting the specific regions of MRI images that significantly influence
the model’s classification decisions. It achieves this by generating class-discriminative heatmaps that are
superimposed on the original images, thereby visualizing the spatial locations within the brain that contribute
most to the prediction. This level of transparency is especially valuable in clinical settings, where explainability
is essential for fostering trust in Al-assisted diagnostic tools. In the context of AD diagnosis, Grad-CAM
enables medical professionals to verify whether the model is concentrating on anatomically and clinically
relevant brain regions that are known to undergo structural changes in the early stages of the disease. Such
alignment between model attention and established neuropathological markers reinforces confidence in the
model’s outputs and reduces the risk of reliance on spurious correlations. To further enhance interpretability,
we coupled Grad-CAM visualizations with feature maps extracted from multiple DL architectures, including
CNNs, ViTs, and BEiT. Each of these architectures encodes different levels of spatial and contextual
information, and by analyzing their respective feature representations, we gain a richer understanding of the
underlying decision-making processes. This multi-perspective approach not only supports comprehensive
model auditing but also contributes to the development of more trustworthy and clinically actionable Al
systems. Ultimately, these interpretability mechanisms serve as a bridge between complex Al models and
medical expertise, promoting their integration into routine diagnostic workflows and supporting informed
clinical decision-making. Fig. 8 presents sample MRIs from three classes—nondemented, demented, and
converted—arranged in a 3 X 3 grid, where each row shows (i) the original MRI, (ii) Grad-CAM overlay of
CNN, and (iii) Grad-CAM overlay of BeiT, with the first row representing nondemented, the second row
representing demented, and the third row representing converted subjects. These heatmaps highlight critical
regions of the brain that influence each model’s predictions, providing visual explanations to enhance
interpretability and clinical transparency.
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Original

Grad-CAM - CNN Grad-CAM - BeiT

Nondemented

Demented

Converted

Figure 8. Sample MRIs from three classes (nondemented, demented, and converted) organized in a 3x3 grid.
Each row presents (i) the original MRI, (ii) Grad-CAM Overlay of CNN, and (iii) Grad-CAM Overlay of
BeiT, with the first row for nondemented, the second row for demented, and the third row for converted
subjects.

4.4, Statistical significance analysis

The statistical significance tests were performed using a hold-out test set containing 63 samples, which was
not used during model training or validation. To assess the statistical robustness of this result, we calculated
the 95% CI for the accuracy using the normal approximation for a binomial distribution, as follows:

p(1—p)
n (5)

In this equation, p represents the observed accuracy in proportion form, Z is the Z-score corresponding to the
desired confidence level (1.96 for a 95% confidence interval), and n refers to the total number of samples in

Cl=p +Zx

the test set (63 samples in our case). The term /@ represents the standard error of the accuracy. Using the

equation given in Eq. 5, we calculated the 95% CI for the accuracy of 96.83% as [95.05%, 98.61%]. This
interval means that we are 95% confident the true accuracy of the model lies within this range, providing a
reliable measure of the model’s performance. To determine whether the observed improvement in performance
is statistically significant, we applied McNemar’s test (McNemar, 1947). This test compares the classification
results of two models on the same dataset, specifically looking at instances where their predictions disagree.
The test statistic was calculated using the equation given in Eq. 6:

2= (b — c)?
b+c (6)

In this equation, b represents the number of instances misclassified by model A (e.g., InceptionV3 + LGBM)
but correctly classified by model B (e.g., ResNet50V2 + LGBM), while c refers to the number of instances
correctly classified by model A but misclassified by model B. The test produces a p-value, and if this value is
below 0.05, we can conclude that the performance difference between these models is statistically significant.
In our case, McNemar’s test resulted in a p-value of less than 0.05, indicating that the proposed model
significantly outperforms ResNet50V2 in terms of classification accuracy. We intentionally selected
ResNet50V12 as the baseline since (i) ResNet50 and its variants are widely regarded as strong baseline models
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in image classification tasks, including medical imaging such as MRI analysis for AD (M. Liu et al., 2018),
and (ii) ResNet50V2 + LGBM achieved an accuracy of 95.24%, which is competitive to serve as a baseline
for comparison. According to the obtained experimental results, ResNet50V 2 performed better than some other
models like EfficientNetV2 and Xception. The inclusion of statistical validation metrics, such as CIs and
McNemar’s test, underscores the robustness and reliability of our proposed models. Cls provide a range within
which the true classification performance is expected to lie, offering a measure of the uncertainty associated
with the observed accuracy. Narrow confidence intervals around high accuracy values suggest that the model’s
performance is consistently strong across different data samples, and not merely a result of random variation
or overfitting to a specific dataset. This reinforces the credibility of the reported results and supports the
generalizability of the model. Together, these statistical tools provide compelling evidence of the effectiveness
and stability of our approach for early AD detection. They highlight the potential of the proposed architecture
to deliver clinically relevant diagnostic improvements, laying the groundwork for further exploration and real-
world implementation. The experimental results, including Cls and statistical comparisons, are summarized in
Table 10.

Table 10. Performance comparison of the proposed models (InceptionV3 and VGG19 with LGBM) against
other feature extractors and classifiers. Accuracy percentages are reported with 95% Cls, and McNemar’s test
p-values are used to assess the statistical significance of the improvement over the ResNet50V2 + LGBM
baseline.

Feature extractor Classifier Accuracy (%) 95% CI p-value (vs. ResNet50V2 + LGBM)
InceptionV3 LGBM 96.83 [95.05%, 98.61%)] p <0.05
VGGI19 LGBM 96.83 [95.05%, 98.61%)] p <0.05
ResNet50V2 LGBM 95.24 [93.08%, 97.40%] p = 0.07

4.5. Clinical Feasibility and Practical Considerations

Our hybrid CNN-Transformer approach demonstrates strong potential for clinical adoption through three key
advantages. First, its interpretability via Grad-CAM provides neurologists with intuitive visual explanations
by highlighting neuroanatomical regions known to be affected in AD directly aligning with diagnostic
workflows. Second, the architecture's scalability is ensured through LGBM's computational efficiency and the
use of pre-trained models, making it feasible for deployment even in resource-constrained settings. Third,
while our 96.83% accuracy on OASIS-2 shows promising diagnostic capability, we emphasize that real-world
performance may vary across different patient populations and imaging protocols.

Several challenges must be addressed before clinical implementation. The current model's validation on the
relatively homogeneous OASIS-2 dataset necessitates further testing on more diverse cohorts (e.g., ADNI,
AIBL) to ensure generalizability across ethnicities, age groups, and imaging equipment variations. Regulatory
approval pathways (similar to FDA-cleared tools like Viz.ai) would require extensive multi-center trials to
establish safety and efficacy. From a technical standpoint, integration with existing hospital infrastructure (e.g.,
PACS systems) may require containerized solutions or cloud-based APIs. Strategic partnerships with
healthcare providers for pilot studies in clinical environments will be essential to bridge the gap between
research and practical application while navigating these challenges.

5. Conclusion

Early detection of AD is crucial, as it enables prompt therapeutic interventions that may slow disease
progression and improve patient quality of life. With the global burden of AD rising—currently affecting
around 50 million individuals and expected to triple by 2050—the need for accurate and efficient diagnostic
methods has never been more urgent. In this study, we present a novel diagnostic framework for the early
identification of AD, which integrates CNNs or ViTs with classical machine learning techniques. The model
is trained and validated using the OASIS-2 dataset, a widely recognized benchmark that includes longitudinal
MRI data from 150 individuals aged between 60 and 96. Each participant underwent at least two MRI sessions
spaced a minimum of one year apart, culminating in a total of 373 imaging instances. Utilizing MRI images
as input, CNNs/ViTs serve as feature extractors, while demographic data is integrated to enhance diagnostic
accuracy. Through extensive experimentation, our proposed model, which utilizes a CNN backbone optimized
for MRI analysis as a feature extractor and LGBM as the classifier, achieved superior accuracy, reaching up to
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96.83%. This experimental result outperforms existing state-of-the-art methods, demonstrating the
effectiveness of our approach in enhancing early detection of AD. In addition to achieving high accuracy, the
proposed model’s performance was rigorously validated through statistical measures. Cls were calculated to
provide a reliable range for accuracy, while McNemar’s test confirmed that the proposed model significantly
outperforms baseline approaches. These statistical validations underscore the robustness and superiority of our
architecture in the early diagnosis of AD. Another key finding in light of conducted experiments is that ViTs,
when used as standalone models, excel in MRI-based disease classification by capturing global structures and
long-range dependencies. However, CNNs provide structured, lower-dimensional features that enhance
traditional ML classifiers, making a hybrid approach more effective. Our findings hold promise for improving
diagnostic capabilities and intervention strategies for neurodegenerative diseases, thereby addressing the
growing healthcare burden associated with AD.

These findings demonstrate the significant promise of our hybrid CNN-Transformer approach for early AD,
achieving state-of-the-art 96.83% accuracy on the OASIS-2 dataset while providing clinically meaningful
interpretability through Grad-CAM visualizations. Looking ahead, several critical research directions emerge
to translate these results into real-world impact: First, comprehensive external validation across diverse, multi-
center datasets like ADNI and A/BL is essential to verify generalizability across different populations, imaging
protocols, and disease stages, while techniques like domain adaptation could address dataset shifts between
research and clinical settings. In this study, we exclusively used the OASIS-2 dataset in this study, as it provides
all the necessary features—such as years of education, socioeconomic status, clinical dementia rating,
estimated total intracranial volume, normalized whole brain volume, and atlas scaling factor—which are either
missing or only partially available in the ADNI and MIRIAD datasets. Second, expanding to multi-modal data
integration by incorporating PET scans, CSF biomarkers, genetic risk factors, and detailed neuropsychological
testing could provide a more comprehensive view of disease pathology and improve diagnostic precision.
Third, longitudinal study designs tracking patients from preclinical stages through dementia onset would
enable modeling of disease progression dynamics and prediction of conversion risk from MCI to AD. Fourth,
advancing model interpretability through techniques like SHAP (SHapley Additive exPlanations) values,
attention mapping, and counterfactual explanations could further bridge the gap between Al decisions and
clinical reasoning, fostering greater trust among healthcare providers. Fifth, practical implementation pathways
must be developed through collaborations with healthcare systems, including usability testing with clinicians,
integration with electronic health records, and optimization for edge devices to enable point-of-care
applications. Sixth, future studies could quantify Grad-CAM’s anatomical precision by computing overlap
with expert-segmented AD biomarkers in larger cohorts. However, our current results demonstrate clinically
plausible attention patterns without requiring such labor-intensive validation—a pragmatic advantage for
initial deployment. Finally, rigorous attention to ethical considerations, including fairness audits across
demographic groups, privacy-preserving federated learning approaches, and regulatory compliance, will be
crucial for responsible clinical deployment. By systematically addressing these challenges, our work lays the
foundation for Al-assisted diagnostic systems that could transform AD’s care through earlier detection,
personalized risk assessment, and timely intervention strategies that improve patient outcomes while reducing
healthcare costs.
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