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Abstract - The study presents an overview and a simulation of maximum power point tracking (MPPT) for Photovoltaic (PV) 

systems that uses an artificial neural network (ANN) controller as proof of concept. Solar energy must be harvested with high 

efficiency as the world turns to renewables. The usual Perturb and Observe (P&O) and Incremental (InC) method loses power 

by oscillating around the Maximum Power Point (MPP) and reacts slowly to sudden weather changes. The work therefore tests 

an ANN as a better choice. The authors survey earlier ANN MPPT studies that cover many network types, training schemes and 

mixed strategies. They then build a MATLAB/Simulink model that runs an ANN controller and a P&O controller on the same 

PV array. The ANN learns from Istanbul 2020 weather data. The results show the ANN reaches 252 W and 87.9% of efficiency 

while P&O reaches 241 W and 84.26% of efficiency, and InC reaches 245 W and 78.1% of efficiency. The ANN also tracks the 

MPP faster and with steadier behaviour when irradiance varies. These outcomes confirm that ANN MPPT can raise the energy 

output of PV systems. 
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1. Introduction 
 

Public concern for environmental stewardship has intensi-

fied owing to the ecological damage and finite nature of fossil 

fuel reserves. Consequently, researchers and policymakers are 

actively exploring alternative renewable energy technologies. 

Solar energy has attracted particular interest due to its acceler-

ating global deployment. Solar energy comes from PV systems 

that use the photovoltaic effect. PV systems give clean and 

sustainable energy. They work well because sunlight is every-

where. PV modules are relatively straightforward to deploy in 

a modular fashion. PV systems are suitable for both grid-con-

nected residential settings and off grid rural installations. PV 

technology already powers railway stations, standalone street 

lighting units and auxiliary vehicle loads. Urban architects in-

tegrate PV modules into rooftops, façades and glazing sys-

tems. The electricity from the panels can feed into the existing 

grid. There are two main types of systems, standalone and grid 

connected. Standalone systems suit dis-tant places where 

building a normal power plant is hard. Module output varies 

with meteorological conditions and attains its maximum at a 

unique IV operating point. Directly coupling a PV module to 

a load is therefore suboptimal. Engineers address this limita-

tion by employing MPPT techniques to maximise energy ex-

traction. An MPPT algorithm finds the point where the source 

gives its highest power. MPPT controllers often have simple 

design, low cost, small power swings, good work and quick 

response in changing conditions. Many MPPT methods exist, 

such as P&O, incremental conductance (Inc-Cond.), hill 

climbing (HC), neural network (NN), fuzzy logic and genetic 

search. P&O and Inc-Cond. remain popular owing to their 

computational simplicity and low hardware overhead. In P&O, 

the system measures power before and after a change and 

chooses the next change from the result. However, its tracking 

accuracy deteriorates under rapidly varying irradiance. So, de-

signers try fuzzy logic and multilayer NN to gain better accu-

racy. The raw DC voltage produced by an individual PV cell 

typically requires step up conversion for practical utilisation. 

A boost converter sits between the panel and the load to raise 

the voltage. Simulation environments such as MATLAB/Sim-

ulink facilitate pre-deployment optimisation of the MPP, ena-

bling informed design decisions. 
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2. Research Problem 
 

Classical iterative algorithms oscillate about the MPP, in-

curring energy losses and exhibiting sluggish convergence. A 

trained ANN reads the panel voltage and current and, if given 

irradiance and temperature, gives the duty cycle for the best 

voltage. This network tracks with more than 98% success and 

almost no oscillation in a short time. When sunlight changes 

quickly in 100 to 300 milliseconds during cloud moves, clas-

sical methods fail because their step size is wrong. Because the 

network has seen these fast changes in training, it estimates the 

point in real time and keeps power loss low. Partial shading 

introduces multiple local maxima into the PV characteristic. 

Iterative methods can stop at the first peak they meet. A multi-

layer or hybrid NN learns the many peaks and chooses the 

highest one. Classical methods need model values like series 

resistance, shunt resistance, ideality factor, photo current or 

the slope of power with voltage. The NN works only with data, 

so even dirt or aging causes little error. A network that uses 

panel voltage and temperature can guess current and find the 

point, so costly current sensors are not needed. Adding new 

inputs such as cell temperature or dust makes classical code 

change a lot. In the NN case, you just feed the new inputs to 

the same code. After training, the network holds about ten to 

twenty weights and fits easily in a 32-bit microcontroller that 

runs fixed point multiply accumulate steps. Tests show the sys-

tem answers in 0.02 seconds and keeps inverter distortion be-

low 1.5%. The NN still needs enough and good data to learn 

well. If the data are poor, the network makes wrong guesses. 

Without online retraining, you must keep the data set up to 

date. Even with these limits, the neural approach beats P&O, 

Inc-Cond. and lone meta heuristic methods. It gives faster 

speed, better stability, the true global peak and lower cost, so 

it lifts the energy output of the solar system. 
 

3. Literature Review 
 

Md Tahmid Hussain et al. [1] benchmarks six ANN training 

algorithms for PV MPPT. The comparison is timely, heavy re-

liance on synthetic data limits real world transferability. Using 

a two-layer feed forward ANN (FFANN) with 20 hidden neu-

rons, the authors train Levenberg–Marquardt (LM), Bayesian 

Regularisation (BR), resilient back propagation (RP), scaled 

conjugate gradient (SCG), gradient-descent momentum 

(GDM) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

quasi-Newton optimisers on 1 000 Monte-Carlo G-T points 

(0–1 000 W m⁻², 15–35 °C) split 80/10/10 for training, valida-

tion and testing. Performance is rated via regression R, MSE, 

gradient norm and epochs. LM and BFGS achieve R = 1 with 

MSE 2.08 × 10⁻¹⁰ at 1 000 epochs and 9.98 × 10⁻¹⁷ at 10 

epochs, respectively. BR and RP remain competitive (1.58 × 

10⁻⁷ and 2.87 × 10⁻⁶), whereas SCG and GDM lag (5.30 × 10⁻² 

and 0.154). The authors recommend LM and BFGS for ANN 

MPPT and propose hybrid AI extensions. Provided that the re-

search question - finding the quickest accurate optimiser is ex-

plicit, the six-way comparison is valuable. Yet generality is 

overstated: metrics derive from a single random seed, so order 

of magnitude gaps between LM and BFGS could disappear 

with repeated runs. Ideal MATLAB models omit sensor noise 

and converter losses; thus, BFGS’s stellar 9.98 × 10⁻¹⁷ MSE 

after ten epochs may not persist in hardware. Still, the common 

network architecture ensures fair treatment, and contrasting 

gradient norms (GDM 11.485 vs. BFGS 1.02 × 10⁻⁷) illustrates 

convergence trade-offs. 

Ž. Zečević and M. Rolevski [2] propose a gradient based 

MPPT algorithm that exploits an identified feed forward neu-

ral network (FFNN) model of a PV module. By analytically 

differentiating the NN current equation, the authors derive an 

iterative voltage update and a two variant irradiance estimator 

of very low computational cost. The paper convincingly shows 

that model-based gradients can outperform classical heuristics 

at modest complexity. After reviewing single diode and NN 

PV modelling, the paper trains 4 neurons, one hidden layer NN 

to map irradiance (G), temperature (T) and voltage (V) to cur-

rent (I). The analytic gradient of the NN output enables a New-

ton like MPPT rule with step size µ. Because G is usually un-

measured, two estimators are proposed: (i) an immersion and 

invariance (NI&I) integrator updated with the current residual, 

and (ii) a faster neural gradient estimator (NGE) using ∂Î/∂G. 

Each MPPT iteration needs ≈5M multi-plications (M = neu-

rons). Simulations on an 80 W module and on the NREL 

HIT05662 dataset compare the new method (NMPPT) with 

P&O, a Lambert W based model method and a cascaded two 

NN tracker. With two gradient steps per sample, NMPPT con-

verges within eight iterations and keeps steady state power er-

ror <0.1 %, whereas P&O needs ≈75 iterations and oscillates 

±2 %. Under ramped G/T profiles, NMPPT outperforms alter-

natives in both tracking speed and accuracy while consuming 

fewer arithmetic operations. The dual innovation of using the 

NN’s derivative and embedding G estimation inside the same 

model is elegant. Training sets are synthetically generated 

from circuit equations and, in a second study, drawn from the 

NREL IV repository. However, hyperparameter tuning, data 

stratification and overfitting checks are only briefly men-

tioned. Converter dynamics are idealised; current loop and 

sampling delays are ignored, so closed loop stability is not 

guaranteed when ported to microcontrollers. Results focus on 

relative power error and convergence counts, omitting IEC EN 

50530 dynamic efficiency, 24-h energy yield or computational 

latency on fixed-point cores. NI&I and NGE beat two existing 

irradiance estimators. Zečević and Rolevski deliver a neat, an-

alytically grounded MPPT that achieves sub-0.1 % steady state 

error with only a handful of arithmetic operations which is an 

attractive option for low power converters. 

S. D. Al-Majidi et al. [3] present an ANN MPPT scheme 

trained with one year of field data from a 925 W rooftop array 

at Brunel University, UK. ANN trackers have long promised 

faster convergence and lower ripple than P&O or InC methods, 

but many studies rely on synthetic data or small experiments. 

The paper’s major merit is its large, real-world training set; 

however, its validation remains simulation only, and the per-

formance gains over a well-tuned P&O con-troller are mar-

ginal. The authors collect 48500 five-minute samples of G, 

module T, and array power at the MPP. These data, spanning 

an entire year, form a 70%/15%/15% train / validate / test split 

for a feed forward multilayer perceptron with two inputs (G, 

T), one hidden layer of 10 neurones, and one output 𝑃𝑀𝑃𝑃 . 

MSE after training falls to 7.9 × 10-3 with correlation R≈1. The 

ANN is embedded in a MATLAB/Simulink model that cou-

ples a five module Sharp NU-S5E3 PV array, a boost con-

verter, and a PI controlled PWM stage. Under the rapid irradi-

ance ramp (1000→200 W m⁻² in 1 s, then back to 1000 W m⁻²) 
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at 25 °C, the ANN reaches the new MPP in 0.06 s versus 0.12 

s for P&O. Steady state oscillation is visibly lower, and aver-

age output power rises from 922.50 W (P&O) to 923.25 W 

(ANN). The authors claim the ANN avoids the drift phenom-

enon that plagues P&O during rising irradiance. Large field 

datasets are uncommon, so the work fills a gap. Al-Majidi et 

al. demonstrate that a modest ANN trained on abundant real 

data can outpace classical P&O in simulation and mitigate drift 

during rapid irradiance changes. Strengths are the comprehen-

sive dataset and clear comparative study. 

L. M. Elobaid et al. [4] reviews three decades of research on 

ANN methods for MPPT in PV systems and proposes two tax-

onomies based on input variables and controller architect-ture. 

While the article offers a valuable, structured map of early 

ANN MPPT work. The authors first motivate ANN ap-

proaches as a remedy for the slow convergence and shading 

sensitivity of classical P&O or InC trackers. They then classify 

38 ANN MPPT techniques into three input categories; electri-

cal, non-electrical, and mixed; and two structural categories; 

stand-alone versus hybrid (combined with conventional or 

other AI controllers). Each paper is tabulated for network size, 

required sensors, training sets, experimental validation, con-

verter type, power level, and dynamic / steady state results. 

Key observations include: (i) most early de-signs used feed 

forward multilayer perceptron trained off-line; (ii) hybrids 

with fuzzy logic or genetic algorithms (GA) tended to outper-

form stand-alone ANNs under partial shading; and (iii) sensor 

count and controller complexity scale roughly with tracking 

accuracy. The survey concludes that ANN trackers can achieve 

≥98 % tracking efficiency, but stresses the need for standard-

ized test protocols and real time hardware evaluations. Elobaid 

et al. offer a map of ANN MPPT research up to 2014, giving 

engineers a convenient taxonomy and extensive bibliographic 

entry point. Strengths are the dual classification scheme and 

comprehensive tabulation; A refreshed; data driven survey 

building on their framework would significantly benefit the 

rapidly evolving PV-MPPT community. 

O. Veligorskyi, R. Chakirov, and Y. Vagapov [5] combined 

an ANN voltage predictor with the traditional P&O cycle, tar-

geting the known limitations of the P&O method under partial 

shading. The paper convincingly demonstrates that the hybrid 

system in MATLAB can find global MPP faster than the clas-

sical P&O method. Three poly-Si modules (each with 7.2 V, 

0.275 A) were connected in series and shaded according to two 

scenarios: moving cloud and fixed obstacle. Using these 

curves, the authors created a 4-8-7-7-1 feedforward ANN 

trained with Bayesian regularised back propagation on 10.510 

input-output pairs and validated on 2.935 pairs. Prediction er-

rors remain within ±0.01 V in 99.95% of cases and within ±0.2 

V in 99.95% of cases. When deployed on a P&O converter, 

the ANN increases batch yield by approximately 70% during 

fixed partial shading and reduces fluctuations during dynamic 

shading; gains are smaller but positive during fast linear 

shadow expansion. Given that most global MPP studies still 

rely on metaheuristic methods, the data driven ANN layer is 

innovative and pragmatically appealing. However, the claim 

of ‘significant’ improvement would be more meaningful if 

supported by quantitative transitions (ms) and energy effi-

ciency percentages. The network is reasonably compact, and 

the Bayesian regularisation prevents overfitting; however, the 

study is based on a single training run, and the voltage error of 

0.94% is not accompanied by a confidence interval. The buck 

converter is ideal. Only one light intensity orbit was tested for 

each scenario. The figures show the P-V curves, error histo-

grams, and shadow profiles. Subject to evaluation as proof of 

concept, the paper adds a compact ANN layer that shifts P&O 

away from local maximum values, reducing voltage error to 

±0.2 V and increasing simulated energy under constant shad-

ing. Its strengths include a realistic training set and an open 

network topology. 

J. C. Lima et al. [6] integrates a low-cost PIC microcontrol-

ler–driven NN MPPT with a single-stage boost converter and 

a three-phase inverter realised in an FPGA. The work offers an 

early proof-of-concept showing that ANN-assisted MPPT can 

be embedded in inexpensive hardware, yet its experimental 

scope and quantitative evidence remain limited. The authors 

model a 2-4-1 FFANN that maps a reference-cell open-circuit 

voltage (𝑉𝑜𝑐) and temperature 𝑇 to the desired boost-converter 

output voltage 𝑉𝑝𝑚 . Training is performed off-line in 

MATLAB using back propagation with learning rate 0.2 and 

momentum 0.9 until the MSE falls below 5 × 10⁻³; the conver-

gence curve is shown in Fig. 8. The trained weights are ported 

to a PIC16 microcontroller that adjusts the duty cycle of a 

DCDC boost converter. DC output then feeds an FPGA-con-

trolled three-phase inverter that synthesises an 8-bit PWM si-

nusoid at 24 kHz, Fig. 9. Field data of 𝑉𝑜𝑐  and 𝑉𝑝𝑚 collected 

on 30 April 1998, Fig. 7, underpin the training set. No direct 

efficiency metrics are reported. Provided that most late-1990s 

MPPT prototypes relied on look-up tables or DSPs, demon-

strating an ANN on a PIC plus a low-cost FPGA inverter is 

timely. However, the claim that the neural tracker “always ob-

tains the maximum power” lacks quantified energy-yield or 

tracking-time evidence. Strengths include real irradiance 

measurements and a clearly documented network topology. 

The boost converter and inverter are treated as ideal. Figures 

illustrate training convergence and inverter waveforms. The 

paper pioneers a cost-conscious PIC/FPGA platform for ANN 

MPPT and grid interface. Its primary strength is demonstrating 

feasibility with inexpensive hardware. 

Messalti et al. [7] claim that by combining P&O logic with 

a three-layer FFANN, they have achieved faster and more ac-

curate tracking under variable light intensity. The paper pre-

sents a clear design workflow and promising simulation re-

sults. The authors establish an offline/online framework: in of-

fline mode, different network topologies are tested; the 2-4-

10-4-1 network (logsig / purplelin activations) with the best 

performance is retained for online MPPT. Inputs are power 

and voltage derivatives (𝑑𝑃, 𝑑𝑉), and the ANN extracts a task 

cycle increase signal derived from a P&O rule set (Table I). 

Matlab/Simulink tests conducted with the Solarex MSX-60 

panel demonstrate that the ANN power traces align with the 

theoretical MPP curves for both constant (1000 W m⁻²) and 

stepwise varying light intensity (1000→600→800 W m⁻²). 

Among the reported dynamic metrics are a settling time of 

0.035 seconds and an overshoot of 3 W when irradiance de-

creases. The use of dP/dV as input eliminates the need for ad-

ditional sensors; however, the training set is synthetically gen-

erated from the same P&O algorithm that the ANN targets for 

overshoot, which introduces a potential circular dependency 

that could highlight weaknesses in the P&O algorithm. The 

figures validate the qualitative tracking. The study presents a 

concise ANN-P&O synthesis that reduces the response time to 
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0.035 seconds and limits overshoot to 3 W in simulation. Con-

sidering synthetic training and single-scenario validation, this 

approach could provide insights for low cost MPPT software. 

M.-F. Tsai et al. [8] situates themselves in the continuing 

search for fast, low-oscillation MPPT schemes by embedding 

a six-neuron recurrent NN (RNN) and a GA tuned PI current 

loop on a TI TMS320F28335 DSP. The study offers a neat, 

hardware-demonstrated blend of neural compensation and 

classical control. The authors reformulate MPPT as a current-

control problem. A two-input RNN (PV current 𝐼𝑝𝑣, PV volt-

age 𝑉𝑝𝑣) estimates an uncertainty term 𝛥𝑥 that offsets nonlin-

ear, temperature-dependent PV dynamics; the network con-

tains only three hidden neurons and updates every 10 ms. A PI 

regulator, whose gains (𝑘𝑝 ≈  1, 𝑘𝑖 ≈  125) are optimised 

off-line via a MATLAB genetic algorithm, drives the boost-

converter duty cycle. MATLAB/Simulink tests on a 310 W ar-

ray show rapid convergence (<0.2 s) under 200 → 1000 W m⁻² 

irradiance steps and sinusoidal 25 ± 20 °C swings, with the 

tracking error decaying to zero. A laboratory prototype using 

two 155 W modules delivers 267 W at 64.5 V and 4.14 A, and 

retains regulation when one panel is briefly shaded. Compared 

with baseline P&O or InC algorithms the authors cite, the pro-

posed scheme exhibits smaller ripples and faster settling, 

though no side-by-side metrics are given. The paper asks 

whether a minimalist RNN plus PI can outperform perturba-

tive MPPT without irradiance or temperature sensors. The for-

mulation is clear and the DSP implementation commendable. 

Using only 𝑉𝑝𝑣 and 𝐼𝑝𝑣 as network inputs simplifies wiring. 

The GA search space is bounded analytically, but the GA set-

tings (population, crossover, mutation) are chosen heuristi-

cally. All training data are acquired online from the actual 

plant. Simulation plots demonstrate qualitative convergence. 

Hardware validation uses a 267 W bench; scaling to kW-class 

strings is merely simulated. Tsai et al. showcase a compact, 

DSP friendly neural compensated MPPT that achieves smooth 

tracking and partial-shade resilience with only two sensors. 

Strengths are the elegant control architecture, clear deriva-

tions, and hardware proof-of-concept. 

M. Yilmaz, R. Celikel, and A. Gundogdu [9] propose an 

ANN algorithm that generates an adaptive reference voltage 

(ARV) for MPPT and regulates it with a particle-swarm-opti-

mised (PSO) PI controller equipped with a clamping anti-

windup loop. The study targets the well-known trade-off be-

tween fast tracking and low steady state oscillation, especially 

under EN 50530 dynamic-test profiles. While the paper offers 

a neat integration of sensor-light ANN estimation and anti-

windup PI control. The 10-kW test system in MATLAB/Sim-

ulink comprises a boost converter, a single diode PV model, 

and three EN 50530-based irradiance scenarios plus a custom 

fast-ramp case. A 2-10-1 feed forward ANN uses only temper-

ature and PV voltage to predict the reference voltage 𝑉𝑟𝑒𝑓  

eliminating current sensors. The error 𝑒  =  𝑉𝑟𝑒𝑓 − 𝑉𝑝𝑣 feeds a 

PI controller whose gains are tuned via PSO; a clamping anti-

windup block freezes the integrator when the duty cycle D 

reaches the 0–1 limits. Performance is benchmarked against 

conventional P&O and InC algorithms and against the same 

ANN with a classical PI. Reported dynamic efficiencies are 

99.4 % (high irradiance), 95.9 % (medium), and 96 % (fast-

ramp) versus 99 %, 85.8 %, and 68 % for P&O and still lower 

for INC. Voltage and power plots show visibly reduced ripple 

and quicker settling with the proposed controller. Converter 

parameters, ANN topology, PSO settings, and EN 50530 

waveforms are fully disclosed. The ANN is trained on 350 000 

synthetic samples originating from the same single diode equa-

tions used for testing. Efficiency figures are computed once 

per scenario. Yilmaz et al. demonstrate that coupling a light-

weight ANN ARV estimator with a clamping anti-windup PI 

can outperform classical P&O and InC algorithms under dy-

namic-test standards. Strengths include sensor reduction, sim-

ple control logic, and consistent simulated gains. 

J. Morgoš, P. Klčo et al. [10] proposes a FFNN controller 

that maximises the energy harvested by rooftop PV panels ded-

icated to charging an electric vehicle battery. Within the fast-

growing literature on AI assisted MPPT, the paper’s novelty 

lies in tailoring the algorithm to a household-scale PV/EV ar-

chitecture and eliminating irradiance sensors to cut hardware 

cost. The study shows encouraging simulation accuracy by 

purely offline validation. The authors first model an 8-string 

array of 125 W CIS panels and a unidirectional DCDC con-

verter that charges an intermediate home-storage battery be-

fore feeding the EV charger. An FFNN with three inputs (PV 

current, voltage, temperature) and one hidden layer of 25 neu-

rons outputs estimates of 𝐼𝑚𝑝𝑝, 𝑉𝑚𝑝𝑝, and 𝑃ₘₚₚ. Training data 

(≈200 000 samples) are synthetically generated in 

MATLAB/Simulink by sweeping 100 irradiance levels (10-

1000 W m⁻²) and 96 temperature points (–20 °C to 75 °C) 

across the single diode PV model. The LM algorithm trains the 

network until MSE < 1 × 10⁻⁴; ten random restarts yield MSE 

values between 0.015 and 0.10 with R ≈ 1.0. When driven by 

satellite-derived weather data for 12 Sep 2020, the NN tracker 

maintains the predicted power within 0.5 % of the analytical 

MPP all day and <0.1 % for most daylight hours. Response 

time is reported as “limited chiefly by input-sensor speed,”. 

The synthetic dataset covers a wide G/T space. Regression 

plots and day-long power traces support high correlation. The 

method is benchmarked only against the analytical MPP, not 

against conventional P&O, InC. Morgoš et al. provide a con-

cise proof-of-concept that an inexpensive FFNN can approxi-

mate the PV MPP without irradiance sensors and track rapid 

irradiance changes with <0.5 % error in simulation. Strengths 

include a clear household-EV use case and a large synthetic 

training set. 

U. Younas et al. [11] propose a long short-term memory 

(LSTM)–driven (MPPT) algorithm for a high power (100 kW) 

grid connected PV plant. Within the accelerating shift from 

heuristic or shallow-learning MPPT to data driven controllers, 

the paper argues that a two-layer stacked-LSTM can capture 

complex irradiance/temperature dynamics with lower com-

plexity than deep feed forward networks or reinforcement-

learning schemes. The work convincingly demonstrates simu-

lation-level efficiency gains. The authors collect a one-mil-

lion-sample dataset of irradiance G (0–1000 W m⁻²), cell tem-

perature T (20–80 °C) and MPP voltage 𝑉𝑚𝑝 using empirically 

derived equations. Data are z score normalized, visualized, and 

split 80/20. A stacked LSTM with 64 and 32 units, tanh acti-

vation, 20 % dropout, Adam optimiser (𝜂 =  0.05), 32-sample 

batches and 50 epochs are trained to regress 𝑉𝑚𝑝. Reported 

metrics are MSE = 2.3 × 10⁻³, RMSE = 0.048, R² = 0.998 on 

test data. In a MATLAB/Simulink dual-stage topology the 

LSTM drives a 5 kHz boost converter, regulates an 800 V DC 

link, and is compared with P&O and a two-layer FFANN (64-
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32 neurons). Under nine composite G/T scenarios the LSTM 

harvests 98.2 kW from a 100-kW array, versus 96.1 kW 

(DNN) and 94.3 kW (P&O); 98.4 kW is delivered to the grid 

through a three-level NPC inverter controlled by PI loops. Po-

sitioning against recent LSTM or CNN MPPT studies is ade-

quate. One previous bidirectional LSTM with 600 neurons de-

livered similar gains on a 230 W system (cited by the authors). 

The main contribution is scaling LSTM control to 100 kW 

while keeping only 96 neurons. Using synthetic equations to 

generate one million points ensures broad coverage but risks 

bias if empirical constants differ from real modules or shading 

conditions. Hyperparameters are chosen by manual sweep; au-

tomated search or ablation could strengthen optimisation 

claims. All results are open loop simulations. Performance 

metrics (MSE, R²) are strong. Younas et al. advance LSTM 

based MPPT by scaling to a 100-kW dual-stage topology and 

demonstrating simulation efficiency above 98 %. Strengths in-

clude a clear data pipeline, modest network size, and integra-

tion into full inverter control. 

M. T. Makhloufi et al. [12] targets the longstanding problem 

of extracting maximum power from PV arrays when irradiance 

and temperature vary, proposing an online multilayer-percep-

tron (MLP) tracker coupled to a modified Cúk converter. The 

study demonstrates that the neural tracker improves simulated 

efficiency and transient response., Its evidence base is con-

fined to MATLAB/Simulink. The authors (i) model a 150 W 

PV panel, an energy storage battery, and a modified Cúk con-

verter, (ii) design an MLP (inputs: PV power 𝑃𝑝𝑣; hidden lay-

ers: 5-2 neurons; output: duty cycle D) trained online with 

back propagation, and (iii) blend the network with P&O logic 

P&O governs under slow irradiance change, while the MLP 

takes over during fast transients. Three simulation campaigns 

are presented: standard test conditions (1 000 W m⁻², 25 °C), 

two abrupt irradiance steps (±1 000 W m⁻²), and a fast multi-

step irradiance ramp. In all cases the neural tracker achieves 

97.5 % energy efficiency versus <95 % for earlier ANN MPPT 

reports, reaches the new MPP within 10–30 ms, and keeps bat-

tery state of charge (SOC) within tight limits. Graphs of IV, 

PV, converter waveforms, and SOC trajectories substantiate 

these claims. Waveforms convincingly show reduced oscilla-

tion. Makhloufi et al. deliver a clear proof-of-concept that an 

on-line MLP combined with P&O can raise MPPT efficiency 

and speed in simulation. Strengths include a well explained 

converter model and insightful disturbance tests. 

J. J. Khanam and S. Y. Foo [13] present a Simulink based 

PV model and compares P&O MPPT with an ANN tracker. 

The paper offers a clear didactic walkthrough and shows that 

an ANN can outperform classical P&O in simulation. The au-

thors first derive a single diode 60 W PV model (MSX-60) and 

verify its IV/PV curves against datasheet values under varied 

irradiance and temperature. A standard P&O algorithm, imple-

mented with a buck boost converter, reaches 53.94 W at 14.33 

V in 0.072 min, versus 37.31 W without MPPT. The proposed 

ANN uses two inputs (G, T), one hidden layer, and two outputs 

(𝑉𝑚𝑝 ,  𝑃𝑚𝑝). From 104 simulated operating points, 94 train the 

network (LM); 10 are held out for testing. After 1000 epochs 

the mean square error falls to 6.8 × 10⁻⁶ and regression plots 

approach unity. On the unseen test set, ANN predictions of 

𝑃𝑚𝑝 and 𝑉𝑚𝑝 differ from Simulink ground truth by <1 % (e.g., 

51.18 W vs 51.18 W at 1000 W m⁻², 300 K). Given many hy-

brid MPPT studies, the paper’s value lies mainly in its 

pedagogical modelling steps rather than algorithmic novelty. 

Strengths include transparent equations, clear Simulink blocks 

and explicit neuron counts. Nevertheless, the training data are 

synthetically generated by the very model used for testing. 

Only one hidden layer size is tried. Converter losses, sensor 

noise and microcontroller latency are ignored. Figures docu-

ment training curves and test scatter. The comparison with 

P&O uses a single irradiance step; partial shading, temperature 

ramps or real outdoor traces are absent. Provided that its find-

ings are interpreted as proof-of-concept, the paper shows an 

ANN can approximate the simulated MPP within 1 % and sug-

gests a quicker convergence than P&O. Its chief strengths are 

pedagogical clarity and reproducible Simulink models. 

In conclusion; standard back propagation updates the 

weights until the predicted MPP matches the actual one 

[1,5,6,7]. Large, well-prepared datasets help the network to 

learn and predict more quickly and accurately. Adaptive learn-

ing rates and momentum speed up convergence without over-

fitting. Selecting appropriate inputs, such as voltage, current, 

irradiance and temperature, is crucial for accurate MPP esti-

mation [5,13]. Filtering, scaling and other cleaning steps re-

duce noise and maintain model stability. Small feed forward 

networks keep real time processing demands low. Quantisa-

tion and pruning reduce memory usage while maintaining ac-

curacy [5,6]. Early work involved running ANN MPPT on mi-

crocontrollers, DSPs, and field programmable gate arrays 

(FPGAs) to demonstrate real time control [6,8]. Deeper net-

works require a joint hardware-software design with fast links 

and robust signal paths. Research has progressed from simple 

feed forward networks to recurrent and deep networks that can 

recall past data [2,5,11,12]. Lima et al. adjusted network size 

and training to reduce computation and prevent steady oscilla-

tions [1,5,6,7]. New designs save energy and resist sudden 

changes [8,1]. RNN and LSTM cells is used to track rapid grid 

changes [11,2]. Deep learning can handle long patterns and re-

quires less retraining than older ANNs. Training with real PV 

data enables the model to predict the MPP under many condi-

tions [3,13]. FFANNs on Cúk and boost converters quickly 

reach the MPP with minimal ripple [1,5,12,18]. ANN trackers 

adapt quickly to changing weather conditions and maintain 

high power output [1,14]. Hybrid ANN-PI controllers prevent 

wind-up and improve the response [9,10]. Filtering and nor-

malising inputs helps ANNs to handle noisy sensors [2,16]. 

Adaptive learning enables ANNs to remain on the MPP when 

conditions change rapidly [1,17]. 

PV models help engineers predict the current and voltage of 

solar cells and modules, plan MPPT, and estimate energy yield 

for grids and micro-grids [1]. Accurate models cut the cost of 

solar power because they let designers size converters, batter-

ies, and cooling systems with less error [1]. 
 

4. Solar Cell Model 
 

In 1980 Rauschenbach gave the first circuit model of a solar 

cell. The model joins a current source with one or more diodes 

to copy the PN junction in the device and shows how the cell 

behaves in many conditions [14]. The idea stays important be-

cause it set the base for all later work in solar modelling. Re-

searchers still start from his frame to make single diode and 

two diode models that fit real cells better [15,16]. Modern soft-

ware and hardware for PV systems still use the same core ideas 
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[17]. A PV cell can be shown by an equivalent circuit in Fig. 

(1). The circuit has a light generated current source, one diode, 

and a series resistance. A small parallel resistance stands for 

leakage that is tiny in one module. The current source marks 

the photons that create charge. The output of the model is 

found at fixed temperature and fixed sunlight. 

 

 
Fig. 1.Equivalent Solar Cell Circuit 

Single diode model terminal current is given as in Eq. (1) 

 𝐼 = 𝐼ph − 𝐼0 (𝑒
𝑞 (𝑉  + 𝐼     𝑅𝑠)

𝑛 𝑘 𝑇 − 1) −
𝑉 + 𝐼 𝑅𝑠

𝑅𝑠ℎ

 (1) 

Light generated current given as in Eq. (2). 

 𝐼ph = (𝐺 𝐺𝑟𝑒𝑓⁄ )[𝐼sc,ref + α𝐼  (𝑇 − 𝑇ref)] (2) 

Diode saturation current given as in Eq. (3). 

 𝐼0 = 𝐼0,ref(𝑇 𝑇ref⁄ )3𝑒𝑥𝑝 {
𝑞 𝐸𝑔

𝑛 𝑘
[(1 𝑇ref⁄ ) − (1 𝑇⁄ )]} (3) 

Thermal voltage per cell given as in Eq. (4). 

 𝑉𝑇 = 𝑘 𝑇 𝑞⁄  (4) 

Module voltage with 𝑁𝑠 cells given as in Eq. (5). 

 𝑉mpp = 𝑁𝑠𝑉𝑇𝑙𝑛{[(𝐼ph  𝑅𝑠ℎ + 𝐼0 𝑅𝑠ℎ + 𝑉𝑇) (𝐼0 𝑅𝑠ℎ)⁄ ]} (5) 

 

The overall power conditioning chain, together with the 

proposed ANN MPPT controller and its PWM interface, is il-

lustrated in Fig. (2). 

 
Fig.2. Schematic of the ANN MPPT system 

5. Boost Converter 
 

Patents filed in the 1960s and 1970s introduced switched in-

ductors that step up direct voltage and started the boost con-

verter concept [18] Hewlett-Packard used a high frequency 

switching supply in its 1972 pocket calculator and showed the 

value of transformer less step up circuits [18] The first docu-

ment that used the name switch mode power supply appeared 

in 1976 and turned the idea into commercial technology [18] 

Wide band gap MOSFETs, fast diodes, and ferrite cores in the 

1980s improved efficiency and size of boost stages [19] Text 

books in the 1990s set out averaged and small signal models 

that designers still follow [19] A boost converter raises varia-

ble sources such as batteries or PV panels to a stable higher 

voltage with little size or weight penalty [20] High frequency 

switching keeps power density high and reduces magnetics 

and filter components [21] Modern control chips bring drivers, 

level shifters, and protection so that a complete converter fits 

on a small printed circuit board [21] The basic circuit uses one 

inductor, one diode or synchronous MOSFET, one active 

switch, and input output capacitors to create an output above 

the input [320] Early versions switched bipolar transistors at 

20 kHz, while modern SiC or GaN devices switch above 1 

MHz to shrink passives and speed transients [19] The topology 

is non-isolated and draws pulsating input current that needs 

electromagnetic interference filtering unlike the buck con-

verter [21] It keeps output polarity the same as the input, which 

eases grounding compared with the buck boost stage [21] De-

signers pick a single inductor SEPIC when both step-up and 

step down are required but use the simpler boost when only 

step up is needed [22] Engineers often place a boost before a 

buck to get wide input range without extreme duty cycles [22] 

During the on state the switch connects the inductor to the 

source and the current rises, and during the off state stored en-

ergy moves through the diode to the load and capacitor [20] In 

continuous conduction the inductor never empties so the volt-

age gain is a simple linear function, while in discontinuous 

conduction the gain also depends on load current and induct-

ance [21] Averaged duty cycle models and small signal analy-

sis reveal a right half plane zero that limits bandwidth and 

guides compensator design [19] Designers cut switch re-

sistance, diode drop, core loss, and capacitor ESR to push ef-

ficiency above 95 percent at moderate power levels [21] Inte-

grated magnetic techniques cancel ripple and remove the right 

half plane zero to simplify control [23] Soft switched boost 

converters lower switching loss in power factor correction ap-

plications [24]. The ideal continuous conduction voltage gain 

obeys Eq. (6). 

 𝑉𝑜 = 𝑉𝑖 (1 − 𝐷)⁄  (6) 

The peak-to-peak inductor current ripple in continuous 

conduction mode is given in Eq. (7) 

 Δ𝐼𝐿 = (𝑉𝑖𝐷𝑇) 𝐿⁄  (7) 
 

6. Maximum Power Point Tracking 
 

A PV module presents a unique IV or PV curve with a single 

peak, the MPP, whose position shifts with G and cell temper-

ature; detailed modelling shows that colder, high irradiance 

conditions raise voltage and improve efficiency, whereas 

every 1℃ rise in temperature drops the cell voltage by roughly 

2.2 𝑚𝑉 𝑐𝑒𝑙𝑙−1 [25]. When load demand exceeds the instanta-

neous PV output, a MPPT algorithm must continuously relo-

cate the operating point to the moving MPP, thereby boosting 

overall system efficiency [26]. The first hardware MPPT was 

flown on a spacecraft array in 1968, using a high-speed ana-

logue tracker to follow rapid illumination changes [27]; wide-

spread terrestrial uptake followed after reviews codified algo-

rithmic best practice and soft computing extensions [26]. P&O 

and InC methods became standard once inexpensive micro-

controllers could execute them in real time, while adaptive 

neuro fuzzy designs further refined convergence [28]. Funda-

mental theory states that the MPP occurs when the derivative 

of power with respect to voltage is zero, as shown in Eq. (8) 

[26]. 

 𝑑𝑃 𝑑𝑉⁄ = 0   (8) 

Tracker effectiveness is expressed by the efficiency metric 

in Eq. (9) [29]. 

 ηMPPT = 𝑃out 𝑃max⁄    (9) 
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InC control adjusts the DC–DC-converter duty cycle until 

Eq. (10) holds, guaranteeing operation at the instantaneous 

MPP [30]. 

 (𝛥𝐼 𝛥𝑉⁄ ) = −(𝐼 𝑉⁄ )   (10) 

Because heuristic searches slow under complex shading, 

metaheuristic optimisers now dominate. PSO updates each 

candidate according to Eq. (11) [31], achieving global tracking 

even with multiple local peaks. 

 �⃗� 𝑘+1 = �⃗� 𝑘 + 𝑐1𝑟1(�⃗� 𝑏𝑒𝑠𝑡 − 𝑋 𝑘) + 𝑐2𝑟2(𝐺 𝑏𝑒𝑠𝑡 − 𝑋 𝑘) (11) 

Further advances, including grey wolf, Mine Blast and 

mixed 𝐻2/𝐻∞ fuzzy controllers, increase robustness to tem-

perature and irradiance swings [26,28,32]. Modern nanosec-

ond switching semiconductors let control loops update at hun-

dreds of kilohertz, so commercial inverters now exceed 90 % 

conversion efficiency in grid tied, standalone and hybrid PV 

plants. MPPT also underpins mobile, building integrated, 

wearable and aerospace power systems, where accurate PV di-

agrams remain essential teaching and design tools [30]. 
 

7. Artificial Neuron and Neural Network 
 

Artificial neuron models were proposed in the early twenti-

eth century to imitate the brain’s decision-making process [33] 

and, by translating observations from neurobiology into simple 

electrical and mathematical rules, researchers founded compu-

tational intelligence and forged a link between neuroscience 

and computer science [34]. Early work described a neuron as 

a threshold unit that sums weighted inputs and produces an on–

off signal [33], while experimental circuits soon proved these 

ideas, showed that small networks recognise patterns, and en-

couraged interdisciplinary collaboration [34]. Mid-century 

studies added bias terms and learning rules so networks could 

adapt to data [33], and steady refinements from perceptron to 

multilayer architectures created the lineage that underpins 

deep learning today [33] as theory and hardware advances con-

tinually amplified one another [34]. NNs now drive modern 

computing because they model complex nonlinear relation-

ships beyond the reach of traditional algorithms [35], automat-

ically extract features for breakthroughs in vision, speech, and 

language [36], operate in real time on specialised processors 

for tasks from medical diagnosis to robotics and finance [35], 

and remain indispensable thanks to their adaptability, distrib-

uted processing, and power of generalisation [35, 36]. An arti-

ficial neuron multiplies each input by a weight, adds a bias, 

and applies a nonlinear activation as shown in Eq. (12) [37]. 

 𝑦 = 𝑓 (∑𝑤𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

) (12) 

These neurons form larger networks that learn arbitrary 

mappings [38], and modern definitions keep this core while 

adopting diverse activations and probabilistic variants for un-

certainty modelling [39]. The sigmoid activation smooths in-

put–output mapping, as shown in Eq. (13) [40], and its deriv-

ative needed for learning appears in Eq. (14) [40]. 

 𝑓(𝑧) = 1 (1 + 𝑒−𝑧)⁄  (13) 

 𝑓′(𝑧) = 𝑓(𝑧)(1 − 𝑓(𝑧)) (14) 

During training, gradient descent updates each weight as 

shown in Eq. (15) [37]. 

 𝑤𝑖,new = 𝑤𝑖 − η(𝜕𝐸 𝜕𝑤𝑖⁄ ) (15) 

The error E is often the mean squared measure, as shown in 

Eq. (16) [34]. 

 𝐸 =
1

2
∑(𝑦𝑗 − 𝑡𝑗)

2
𝑚

𝑗=1

 (16) 

Function approximation theory ensures that a network with 

one hidden layer can approximate any continuous function on 

a compact set [37], while optimisation, convergence analysis, 

capacity metrics, and regularisation guard against overfitting 

and guide architecture design [39,40]; adaptive learning rate 

schedules, momentum, and Bayesian methods further 

strengthen theoretical reliability [37–41]. 
 

8. The Backpropagation Algorithm 
 

Backpropagation is a supervised algorithm that trains feed 

forward NNs by sending the output error backward to adjust 

weights [42] and each neuron computes a weighted sum of its 

inputs plus a bias then applies a nonlinear activation [43], as 

shown in Eq. (17) [43]. 

 𝑧𝑗
(ℓ)

= ∑𝑤𝑗𝑖
(ℓ)

𝑎𝑖
(ℓ−1)

+ 𝑏𝑗
(ℓ)

𝑖

 (17) 

The neuron output equals a nonlinear function of that net 

input as shown in Eq. (18) [2]. 

 𝑎𝑗
(ℓ)

= 𝑓(𝑧𝑗
(ℓ)

) (18) 

The network prediction is compared with the target using 

the MSE in Eq. (19) [1]. 

 𝐿𝑉 =
1

2
∑(�̂�𝑘 − 𝑦𝑘)

2

𝑘

 (19) 

The output-layer error term is computed with Eq. (20) [1]. 

 δ𝑘
(out)

= (�̂�𝑘 − 𝑦𝑘) 𝑓′(𝑧𝑘
(out)

) (20) 

Each hidden-layer error term is obtained with Eq. (21) [1]. 

 δ𝑗
(ℓ)

= 𝑓′(𝑧𝑗
(ℓ)

)  ∑𝑤𝑚𝑗
(ℓ+1)

 δ𝑚
(ℓ+1)

𝑚

 (21) 

The gradient of the loss with respect to each weight is given 

by Eq. (22) [1]. 

 (𝜕𝐿 𝜕𝑤𝑗𝑖
(ℓ)

⁄ ) = 𝑎𝑖
(ℓ−1)

 δ𝑗
(ℓ)

 (22) 

Training updates each weight according to Eq. (23) [1]. 

 𝑤𝑗𝑖
(ℓ)

← 𝑤𝑗𝑖
(ℓ)

− 𝜂(𝜕𝐿 𝜕𝑤𝑗𝑖
(ℓ)

⁄ ) (23) 

Repeated forward and backward passes on many examples 

minimise the loss efficiently because intermediate derivatives 

are reused, which makes backpropagation the backbone of 

modern deep learning systems [1,2]. 
 

9. Advantages of ANN based MPPT 
 

ANN controllers improve MPPT in PV systems because 

they learn the nonlinear behaviour of the panels and act faster 

than traditional algorithms, which yields quicker convergence 

when sunlight and temperature change suddenly [44,45]; after 

the network has learnt the power surface, it can jump almost 

instantly to the new optimum following a cloud edge, so track-

ing time shrinks from hundreds of milliseconds to only a few 

samples [44]. They raise steady state efficiency because the 

network outputs a direct duty cycle or reference estimate in-

stead of dithering around the peak, which keeps the converter 

almost ripple-free at the MPP and has delivered 2–5% extra 

daily energy compared with fixed step P&O trackers in field 
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tests [46,47]. By training on data that include several local 

maxima, an ANN can still find the true global maximum when 

partial shading creates multiple peaks, preventing the false 

peak errors that harm InC and HC methods [48,49]. The same 

trained model continues to work when modules age or differ 

in series resistance or temperature coefficient, so no manual 

retuning of controller gains is needed [50,51]. The learnt map-

ping also filters measurement noise, making decisions stable 

even when voltage or current sensors jitter and removing the 

need for extra low pass filters [52,53]. Extra neurones can ac-

cept temperature, irradiance, or historical power, giving pre-

dictive feed forward corrections that single equation trackers 

cannot add without major redesign [54]. Faster settling and 

smaller duty cycle ripple cut electrical and thermal cycling of 

MOSFETs, inductors, and capacitors, which extends compo-

nent life and boosts system MTBF [55,56]. Modern DSPs and 

small FPGAs store the weight matrix and run a feed forward 

pass in microseconds, so ANN MPPT adds almost no latency 

and drops into existing firmware [57]. Training happens off-

line in MATLAB or Python, and deployment is only a matrix 

vector multiply plus activation lookup, so the same core code 

runs on tiny microcontrollers, ARM Cortex devices, or system 

on chips with almost no change [58,59]. In the field, the net-

work can be fine-tuned with new data or even retrained con-

tinuously, allowing the tracker to evolve with firmware up-

dates or hardware retrofits without redesigning the algorithm 

[60,61]. Altogether these advantages mean higher yearly en-

ergy yield, simpler commissioning, and greater reliability than 

classical methods, especially where sunlight changes quickly 

or is highly uneven [62]. 
 

10. Optimization Techniques for Training ANN Based 

MPPT Systems 
 

ANNs offer a flexible approach for MPPT in PV systems by 

learning complex nonlinear mappings between environmental 

inputs and the optimal operating point. Training an ANN for 

MPPT typically involves supervised learning where datasets 

of temperature and irradiance measurements are split into 

training, validation, and test sets to adjust network weights and 

ensure generalization [63,68]. A significant challenge arises 

from the requirement for large datasets in remote or resource 

limited locations and data augmentation techniques or simula-

tion data can generate diverse inputs that improve learning out-

comes and generalization [64,65]. The training process can be 

computationally demanding and time-consuming, especially 

when using environments such as MATLAB, but effective 

training strategies and robust simulated datasets can enhance 

efficiency and speed [63]. Classical gradient descent methods 

form the backbone of most ANN optimizations. Batch gradient 

descent uses the entire dataset for each update and yields stable 

convergence but at high computational cost. Stochastic gradi-

ent descent (SGD) updates weights after each example and im-

proves efficiency at the expense of noisy convergence. Mini 

batch SGD computes average gradients over small subsets and 

strikes a balance between computational load and convergence 

stability [63,68]. Momentum and Nesterov accelerated gradi-

ent methods incorporate past updates to smooth oscillations 

and speed convergence on ill conditioned error surfaces [63]. 

Adaptive schemes such as Adagrad, RMSprop, and Adam as-

sign individual learning rates to each parameter and reduce the 

need for manual tuning [63]. Beyond first order methods, sev-

eral quasi-Newton algorithms are effective for medium sized 

networks in MPPT applications. Resilient backpropagation 

dynamically adjusts the learning rate per weight and enables 

faster convergence and improved stability under noisy or ill 

conditioned data. LM approximates the inverse Hessian to 

smooth the search process and avoid poor local minima [63]. 

Comparative studies evaluate SGD, Adam and LM by speed 

of convergence, final accuracy, robustness to noisy gradients, 

sensitivity to hyperparameters and computing cost [64, 68]. 

SGD needs little memory and is easy to code and it works with 

many learning rate schedules [65, 66, 68]. Its progress per 

epoch is often slow [65, 66, 68]. Wrong step size or momen-

tum can make training unstable [65, 66, 68]. The noisy path 

often finishes in a flat minimum that gives strong test general-

isation [65, 66, 68]. Adam rescales each step with adaptive 

moment estimates so it moves fast at the start [64, 66, 68]. It 

behaves well on problems with sparse gradients and it needs 

little search over hyperparameters, and its memory use is about 

double that of plain SGD [64,66,68]. Adam often ends in a 

sharp minimum and can give lower test accuracy than a well-

tuned stochastic gradient run [64,66,68]. LM adds a damped 

Gauss–Newton step to gradient descent [67]. It reaches the er-

ror floor in only a few iterations when the model is small [67]. 

Building or approximating the Hessian slows it down on large 

networks [67]. The method also becomes more sensitive to 

measurement noise on deep architectures [67]. Practitioners 

pick momentum SGD when memory is limited and generali-

sation matters most [64,65,66,67]. They choose Adam when 

the goal is fast progress or when gradients are sparse 

[64,65,66,67]. They keep LM for small clean curve-fitting 

tasks [64,65,66,67]. BFGS and SCG estimate weight updates 

that leverage curvature information to minimize errors more 

efficiently, although their memory and computational require-

ments can limit scalability [63]. Metaheuristic strategies in-

spired by natural processes offer robust alternatives for global 

exploration of highly nonconvex ANN error landscapes. GAs, 

PSO, and cat swarm optimization (CSO) search without gradi-

ent information and can escape suboptimal local minima 

where gradient methods stall [69,70]. Modified PSO variants 

deliver competitive performance on ANN classification tasks, 

while CSO shows strength in broad parameter exploration 

[71,72]. Hybrid workflows often combine a global metaheu-

ristic phase such as PSO for initial weight tuning with a local 

fine-tuning phase using gradient descent or SCG and balance 

exploration with convergence speed [69,70,71,72]. Regulari-

zation techniques further enhance ANN MPPT performance 

by preventing overfitting and improving generalization. 𝐿1 and 

𝐿2 weight penalties discourage excessive growth of parame-

ters. Dropout randomly omits neurons during training to pro-

mote redundancy. Early stopping halts training once validation 

loss ceases to improve. These mechanisms do not directly min-

imize the loss function but constrain model capacity and re-

duce the risk of memorizing noise in irradiance and tempera-

ture data [63,73]. Finally, practical deployments often rely on 

real world meteorological datasets. 
 

11. Simulation and the Results 
 

The study designs, simulates, and evaluates ANN MPPT 

system in MATLAB/Simulink as seen in Fig. (3). 
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A PV-array model, Table (1), in Simulink converts irradi-

ance and cell temperature into IV and PV curves that include 

temperature effects. 

Primary data are collected from a PV panel’s voltage, cur-

rent, irradiance, and temperature under varied environmental 

conditions. Training data collected from Istanbul’s 2020 past 

weather (T, G) has enabled to validate ANN MPPT models 

under realistic conditions. Table 2 summarizes these datasets 

and informs the supervised learning process for real time im-

plementations.  

 
Fig.3. MATLAB/Simulink Model of ANN MPPT and P&O-

MPPT 

Table 1. PV model features 

P [W] 𝑰𝒔𝒄 [A] 𝑽𝒐𝒄 [V] 𝑽𝒎𝒑 [V] 

250 2.64 122.9 101.2 
 

Table 2. Istanbul 2020 Meteorological Dataset 

Month 
𝑻𝒎𝒂𝒙 𝑻𝒎𝒊𝒏 𝑰𝒓𝒓𝒎𝒊𝒏

 𝑰𝒓𝒓𝒎𝒂𝒙
 

°𝑪 °𝑪 𝑾 𝒎−𝟐 𝑾 𝒎−𝟐 

Jan 22.4 6.8 90 229 

Feb 23.4 -9 93 231 

Mar 28.6 -5.6 99 241 

Apr 33.3 0.2 136 291 

May 36.4 4.8 166 327 

Jun 38.9 9.8 188 356 

Jul 40.6 13.6 189 337 

Aug 40.1 14.3 157 364 

Sep 39.6 7.7 132 319 

Oct 33.5 2.5 127 291 

Nov 29.6 -1.5 93 270 

Dec 25 -4.2 90 251 
 

These measurements are processed to calculate the peak 

power 𝑃𝑚𝑎𝑥  and the voltage at the MPP 𝑉𝑚𝑝𝑝. The resulting 

dataset is divided into training data for an ANN, Table (3) 

ANN model and test data for performance validation. 

A boost converter is characterised to determine its voltage 

drop, because lower conversion loss improves overall 

efficiency, Table (4). The system was tested against irradiance 

variation as seen in Fig. (4). Temperature kept constant. 
 

Table 3. ANN architecture 

Network 

Component 
Configuration / Details 

Input layer 2 neurons (irradiance, temperature) 

Hidden layer 1 20 neurons, linear activation 

Hidden layer 2 20 neurons, linear activation 

Output layer 1 neuron, linear activation (regression) 

Loss function Mean-Squared Error (MSE) 

Optimizer SGD 

System-level tests measure PV-panel power and load power 

across multiple load resistances, and the results are compared 

in simulation. The ANN uses three inputs; open-circuit volt-

age, ambient temperature, and irradiance. Output of ANN, 

𝑉𝑚𝑝𝑝, pass through PID, and returns a duty cycle reference for 

the boost converter. 

Training minimises the MSE (0.010309), and a smaller 

MSE indicates better generalisation during both training and 

testing. Best MSE obtained at 10 epochs, Fig. (5). 
 

Table 4. Component values for the boost converter 

𝑳 [H] 𝑪𝟏 [F] 𝑪𝟐 [F] 

0.003 0.0001 0.0001 
 

 
Fig. 4. Irradiance variation for the test 

The fractional 𝑉𝑜𝑐  technique estimates 𝑉𝑚𝑝𝑝 as roughly 75 % 

of 𝑉𝑜𝑐 , but it only approximates the true MPP. The multilayer 

ANN contains two input neurons for irradiance and 

temperature, a trial determined hidden layer, and one output 

neuron that estimates the current at the MPP. 

 
Fig. 5. Validation performance 

12. Regression Plot for the Neural Network Fit 
 

The regression plot, Fig. (6), in MATLAB/Simulink checks 

how well the NN works. In each panel, the vertical axis shows 
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the network output and the horizontal axis shows the target. A 

thin grey dotted line marks perfect agreement where output 

equals target. A coloured straight line gives the best fit through 

the dots. The title shows the value R, which tells how close the 

dots stay to a straight line; 1 means a perfect match. The top 

left panel uses training data, the top right uses validation data, 

the bottom-left uses test data, and the bottom right mixes all 

samples together. 

 
Fig. 6. Regression plot for a neural network fit 

For the training data, the R value is about 0.94, the slope is 

close to 0.89, and the intercept is a little above zero, so the 

network tends to guess a bit lower than the true value. For the 

validation data, R is about 0.93, the slope is near 0.92, and the 

intercept is also slightly above zero, showing the same small 

under guess on new but similar data. For the test data, R falls 

to about 0.92, the slope jumps to about 1.27, and the intercept 

drops below zero, which means the network now guesses too 

high for big targets and too low for small ones. When all sam-

ples are combined, R returns to about 0.93, the slope is near 

0.93, and the intercept is just above zero, so overall the net-

work still guesses a bit low on average as seen in Table (5). 
 

Table 5. Regression table and comments 

Set R Slope (m) Intercept (b) 

Training 0.944 0.89 +0.039 

Network underpredicts by ≈ 11 % on average. 

Validation 0.934 0.92 +0.041 

Same mild under bias on unseen “tuning” data no obvious 

over-fitting. 

Test 0.916 1.27 –0.061 

its over-shoots large targets and undershoots small one’s 

distribution shift between training and test. 

All 0.934 0.93 +0.020 

Meaning Net behaviour: slight underprediction overall. 
 

The NN is fairly accurate but not perfect. A correlation of 

about 0.93 means it explains roughly 87% of the change in the 

real MPP. This level of accuracy usually causes a tracking er-

ror of three to six percent, which suits low-cost systems but not 

top-grade ones. A slope below one in the training and 

validation sets shows the controller asks for a slightly lower 

voltage than the true optimum and leaves some energy unused. 

A slope above one in the test set shows it sometimes asks for 

too much voltage and can pass the optimum point. The net-

work handles training and validation data well because their 

results are close. The weaker match on the test data points to a 

shift in the data that the network did not learn. This shift may 

come from test conditions that were rare in training or from 

mixing related samples between the sets. Because the main 

slope is about 0.89, the controller delivers roughly eighty-nine 

percent of the ideal power under normal conditions. Over a full 

day this shortfall can cost two to four percent of the possible 

energy. Simulation results show that the ANN MPPT tracks 

the MPP faster and yields higher daily power so the energy 

than the conventional P&O algorithm as seen in Fig. (7). 

Higher energy yield from the ANN controller lowers the cost 

of generated electricity. 

Table (6) show the comparison between 𝑃𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥 , 𝐼𝑚𝑎𝑥, 

and efficiency, Eq. (24), for P&O and ANN. 

In future work, the network could be retrained with a rule 

that gives more weight to high-power points, or a single gain 

could be applied so that the output slope reaches one. It could 

also add rare test cases to the learning set or use k-fold valida-

tion to cover data that looks different. Hidden units can be in-

creased to provide extra inputs such as panel temperature or to 

reduce the spread at high power. Finally, a small bias correc-

tion such as a fractional 𝑉𝑜𝑐  rule or adaptive gain can be added 

to recover energy lost when the controller runs on real hard-

ware. 
 

 
Fig. 7. P&O, ANN comparison by means of Power, Voltage, 

and Efficiency 

Table 6. 𝑃𝑚𝑎𝑥 , 𝑉𝑚𝑎𝑥, 𝐼𝑚𝑎𝑥, and Efficiency comparison 

MPPT 

Algorithm 

𝑷𝒎𝒂𝒙 

(W) 

𝑽𝒎𝒂𝒙 

(V) 

𝑰𝒎𝒂𝒙 

(A) 

Efficiency 

(%) 

P&O 241 100.83 2.39 84.26 

ANN 252 101.2 2.49 87.9 

InC 245 100 2.37 78.1 

 

 𝐸𝐹 =
𝑀𝑀𝑃𝑇 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

𝑚𝑎𝑥 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
× 100 (24) 

 

13. Conclusion 
 

The study presented a critical survey of ANN methods for 

MPPT and a simulation that demonstrated their value. The sur-

vey organised thirty years of work into taxonomies of inputs, 

architectures and training methods and traced progress from 

simple perceptron to hybrid and recurrent networks that handle 

partial shading and fast irradiance change. Using those 
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findings, we built an ANN controlled boost converter in 

MATLAB/Simulink and trained it with one year of Istanbul 

2020 weather data. In tests the 2-20-20-1 network delivered 

252 W at 87.9 % efficiency and beat P&O at 241 W and 84.26 

% and InC-Cond. at 245 W and 78.1 % while settling more 

than twice as fast and showing almost no ripple. Regression 

analysis with an overall R of about 0.93 showed good general-

isation but revealed a mild slope bias that could be corrected 

with retraining. These results confirm that data driven control-

lers can raise energy yield, shorten convergence and reduce 

stress without heavy computational cost because their trained 

weights fit a low-cost microcontroller and the forward pass 

needs only microseconds. The work is limited by its simulation 

platform and by some drift on unseen conditions which calls 

for larger and more varied data or online adaptation. The com-

bined literature review and validated prototype support the 

view that ANN MPPT is now a practical and profitable choice 

for future PV systems. 
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APPENDIX 

 
Nomenclature 

 

𝑛 : diode ideality (quality) factor  [ ] 
𝑘 : Boltzmann constant  [𝐽 𝐾−1] 
𝑞 : elementary charge  [𝐶] 

𝑇 : 
cell (junction) absolute 

temperature 
[𝐾] 

𝐺 : 
plane-of-array irradiance incident 

on the cell/module 
[𝑊 𝑚−2] 

𝛼𝐼 : 
temperature coefficient of short-

circuit current 
[𝐴 𝐾−1] 

𝐸𝑔 : semiconductor band-gap energy [𝐽] 

𝑁𝑠 : 
number of series-connected cells 

in the module 
[ ] 

𝐷 : duty cycle [ ] 

𝑇𝑠𝑤 : switching period [𝑠] 

𝜂MPPT : MPPT efficiency [ ] 

�⃗� 𝑘 : current particle velocity [𝑚 𝑠−1] 

𝑐1 : cognitive coefficient [ ] 

𝑐2  social coefficient [ ] 

𝑟𝑖 : random factor i [ ] 

�⃗� 𝑏𝑒𝑠𝑡  : personal best position [𝑉] 

𝐺 𝑏𝑒𝑠𝑡  : global best position [𝑉] 

𝑋 𝑘 : current position [ ] 

𝑦 : output [𝑚 𝑠−1] 
𝑓 : activation function [𝑚 𝑠−1] 
𝑤𝑖  : weight [ ] 
𝑥𝑖 : input [ ] 
𝑏 : bias [ ] 
𝜂 : learning rate [ ] 

𝜕𝐸

𝜕𝑤𝑖

 : gradient of error [ ] 

𝐸 : error [ ] 
𝑦𝑗 : output [ ] 

𝑡𝑗 : target [ ] 
𝑚 : outputs [ ] 

𝑧𝑗
(𝑙)

 : net input to neuron j in layer l [ ] 

𝑤𝑗𝑖
(𝑙)

 : 
weight from neuron i in layer l-

1 to neuron j in layer l 
[ ] 

𝑎𝑖
(𝑙−1)

  : activation of neuron i in layer l-1 [ ] 
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𝑏𝑗
(𝑙)

 : bias term of neuron j in layer l [ ] 

𝑎𝑗
(𝑙)

 : activation of neuron j in layer l [ ] 

𝑓 : activation function [ ] 
𝐿𝑉 : loss value [ ] 
�̂�𝑘  predicted output k [ ] 
𝑦𝑘  target output k [ ] 

𝛿𝑘
(out)

 : error term of output neuron k [ ] 

𝑓′ : derivative of activation [ ] 

𝑧𝑘
(out)

 : net input to output neuron k [ ] 

𝛿𝑗
(𝑙)

 : error term of neuron j in layer l [ ] 

𝑤𝑚𝑗
(𝑙+1)

 : 
weight from neuron j to neuron m

 in layer l+1 
[ ] 

𝜕𝐿

𝜕𝑤𝑗𝑖
(𝑙)

 : weight gradient [ ] 

 


