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Introduction 

Energy efficiency and indoor comfort are pivotal and 

continuously evolving research areas that form the 

foundation of sustainability-focused work in buildings [1], 

[2]. Achieving thermal comfort conditions often requires 

substantial energy consumption, primarily driven by 

heating, ventilation, and air conditioning (HVAC) systems 

[3]. These systems demand considerable energy to maintain 

indoor comfort parameters within ideal ranges, posing a 

significant challenge for energy efficiency, especially in 

buildings with high occupancy densities. In this context, 

reducing energy consumption while optimizing thermal 

comfort conditions is a fundamental objective in sustainable 

building design and operation [4]. 

Thermal comfort is a key determinant of occupant 

satisfaction in indoor environments [5]. It is influenced by 

environmental factors such as indoor temperature, relative 

humidity, air velocity, and mean radiant temperature, as 

well as personal factors like clothing insulation and 

metabolic rate (MR) [6]–[8]. Among these, MR refers to the 

amount of heat generated by the body in proportion to an 

individual’s physical activity level [9]. Variations in 

metabolic activity can lead to differing thermal comfort 

perceptions under the same environmental conditions [10]. 

Numerous studies in the literature have addressed the 

consideration of MR to assess individual comfort [11]–[13]. 

Zhang et al. [14] examined the role of MR in thermal 

comfort evaluation, emphasizing the importance of accurate 

MR measurement for enhancing thermal index models. The 

study highlighted that dynamic MR changes are key human 

factors affecting thermal regulation and underscored the 

need for portable, affordable, and precise MR monitoring 

devices. Nomoto et al. [15] investigated MR values among 

Japanese individuals performing typical office activities, 

reporting significantly lower MR values (0.8–2.6 met) 

compared to international standards (1.0–3.0 met). This 

discrepancy, particularly pronounced among female 

participants, suggested potential inaccuracies in thermal 

comfort assessments and CO2 generation estimations when 

applying global standards to specific populations. Jia et al. 

[16] evaluated the effectiveness of the standard effective 

temperature in thermal comfort studies across different MR 

levels. They found that the traditional model failed to 

maintain consistent thermal sensation across MR variations. 

Consequently, they proposed a new standard environment 

incorporating clothing insulation and convective heat 

transfer coefficients based on actual activity levels, 

ensuring a linear relationship between standard effective 
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This study investigated the effects of varying metabolic rate (MR) and occupancy levels on indoor air 

temperature, interior surface temperatures, and internal thermal gains within a non-ventilated building 
model. The goal was to evaluate how these parameters influence thermal dynamics and determine which 

plays a more dominant role. Ventilation was intentionally excluded to isolate the thermal effects of 

occupants and eliminate external influences. The relative humidity generated by occupants accumulated, 
causing relative humidity to reach saturation in all scenarios. Since relative humidity showed no variation 

between cases, it was not included in the analysis. The results demonstrated that both MR and occupancy 

significantly impacted indoor thermal responses. Higher values of either parameter led to increased 
temperatures, though their relative influence varied. MR had a stronger effect under low-occupancy 

conditions, while its impact diminished as occupancy increased. For instance, in scenarios with 50 

occupants, the indoor air temperature difference between MR values of 50 and 200 W/person reached 
6.7oC. Conversely, increasing occupancy led to more uniform total thermal gains due to expanded heat 

transfer surface area, especially with 200 occupants. The study concluded that both MR and occupancy 

need to be considered when modeling indoor thermal comfort and energy efficiency. Additionally, the 
results indicated that occupancy had a more significant influence on indoor temperature dynamics, 

particularly due to its role in heat transfer surface area expansion. These findings underscored the critical 

role of occupancy density in shaping indoor temperature profiles and highlighted the need to account for 

metabolic activity levels when designing energy-efficient and thermally comfortable building 

environments. 
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temperature and thermal sensation votes from 1.0 to 3.8 

met.  

International standards such as ASHRAE Standard 55-2020 

[17] have been updated to better reflect the impact of 

occupant-related variables on indoor environmental quality. 

These standards emphasize the importance of accounting 

for dynamic human factors, such as activity level and 

occupant density, in the design and operation of HVAC 

systems. Accordingly, recent studies have begun integrating 

personalized inputs like MR and real-time occupancy levels 

into performance assessments, aiming to enhance comfort 

while optimizing energy use. Čulić et al. [18] reviewed 

advancements in monitoring technologies for personal 

thermal comfort and their implications for building energy 

performance. The review highlighted the significance of 

both environmental parameters (e.g., room temperature, 

humidity, mean radiant temperature) and personal factors 

(e.g., MR, skin temperature), with emerging technologies 

like wearable devices and connected sensors offering 

promising solutions for accurate data collection. Choi et al. 

[19] proposed a vision-based approach to estimate 

individual thermal comfort parameters, such as metabolic 

rate and clothing insulation, using indoor images in real 

time. Their intelligent model was designed to function in 

both single and multi-occupant spaces and achieved high 

accuracy through advanced computer vision techniques. 

The estimated parameters were integrated into a predicted 

mean vote (PMV) based control algorithm, which 

significantly improved thermal comfort compared to 

conventional methods. The study emphasized that using 

representative values for group scenarios offered a practical 

solution for real-time thermal regulation while maintaining 

energy efficiency. Yun et al. [20] developed an occupant-

centric control strategy that utilizes real-time MR 

estimation to enhance thermal comfort and reduce energy 

use. Their approach combined pose classification and object 

interaction detection from indoor images to predict MR 

values, which were then integrated into a novel indoor 

thermal environment control algorithm. Experimental 

validation in real building settings demonstrated that this 

method significantly improved comfort levels, by up to 

59% compared to fixed temperature control, and reduced 

energy consumption by as much as 88%. Jung et al. [21] 

introduced a semi-supervised multi-task learning model 

designed to estimate key occupant-specific parameters, 

namely MR and clothing insulation, for enhanced thermal 

comfort control. Leveraging both labeled and unlabeled 

image data, the proposed convolutional neural network 

model employed a dual-phase training method with pseudo 

labels to improve activity and clothing detection. Validation 

against existing models showed substantial accuracy gains, 

with a 15.8% increase in activity detection and a 25% 

improvement in clothing recognition. Zhang et al. [22] 

introduced a novel wearable sensor system designed to 

accurately estimate human MR, addressing the limitations 

of conventional bulky and intrusive measurement tools. 

Their model integrates physiological indicators such as 

heart rate, skin resistance, heat loss, and muscle 

composition to predict MR through a linear regression 

framework. Experimental validation involving various 

activity intensities and environmental conditions 

demonstrated strong agreement with reference equipment 

(R2 ≈ 0.90), achieving high accuracy and low uncertainty. 

Na et al. [23] proposed a deep learning-based approach to 

estimate individual MR for improved thermal comfort 

assessment. The study measured metabolic equivalents for 

eight common indoor activities in a diverse group of 

participants, analyzing the impact of gender and body mass 

index (BMI) on MR values. Their self-evaluation model 

achieved a low coefficient of variation, indicating reliable 

performance, while the third-party model demonstrated 

promising generalization across individuals. Notably, the 

results showed that MR values varied with both activity 

intensity and individual characteristics, highlighting the 

need for personalized comfort models in indoor 

environments. Yıldırım and Pekel [24] conducted a 

systematic review to explore how wearable sensors 

integrated with artificial intelligence (AI) can objectively 

assess physical activity levels, particularly among sedentary 

individuals. By screening 582 studies published between 

2015 and 2024, they identified 17 relevant articles that 

examined AI-supported activity tracking using wearable 

technologies. Their findings highlighted the growing 

potential of such systems to monitor daily movement 

patterns, estimate MR, and support personalized 

interventions. The study emphasized that AI-enhanced 

wearable tools not only enable accurate and continuous 

activity assessment but also offer promising applications for 

promoting healthier behaviors in school-aged populations. 

Choi et al. [25] proposed a real-time MR and clothing 

insulation estimation method using deep learning and 

computer vision, alongside a comfort-focused temperature 

control strategy. Their system accurately predicted MR and 

clothing insulation with up to 100% accuracy and improved 

thermal comfort consistency, increasing the proportion of 

"no thermal change" votes by 17% compared to 

conventional set-point controls.  

In indoor thermal environment studies, building simulations 

are often tailored to specific activity types to realistically 

assess internal heat gains and occupant comfort. The level 

of physical activity directly influences the MR, which in 

turn affects the thermal loads within space. Depending on 

the intended use of the building and the occupants’ activity, 

various MR values have been utilized in literature to 

represent realistic internal conditions. For example, in [26], 

metabolic rates of 0.8, 1.0, and 1.2 met were used to 

represent low-activity conditions such as sitting or light 

movement, especially in residential settings. In [27], 

occupant activity was categorized into four levels, ranging 

from sedentary to intense, with corresponding MR values 

of 1.2, 2.4, 3.0, and 3.7 met, each phase lasting 20 minutes 

to assess the dynamic impact of different activity levels. In 

another study [4], thermal sensation was evaluated during 

sitting and two exercise conditions, associated with MR 

values of 1.0, 2.4, and 4.4 met. Further investigations, such 

as [28], simulated moderate indoor activities at 3.0, 3.5, and 

4.5 met over 30-minute intervals.  

In alignment with these studies, in this study, the simulation 

modeled a 100 m2 space without ventilation. It varied 
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occupancy levels (50 to 200 people) and metabolic rates (50 

to 200 W/person) to reflect a range of indoor scenarios. 

These combinations correspond approximately to MR 

values ranging from sedentary office work to moderate 

activity, simulating indoor environments such as waiting 

areas, classrooms, or high-density public zones. This 

modeling strategy reflects diverse use cases found in the 

literature while enabling a controlled parametric evaluation 

of occupant-induced thermal impacts. 

Studies focusing on continuous or intermittent building 

usage scenarios examine not only MR but also varying 

occupancy levels [29]–[31]. This is since occupancy rate 

significantly affects the total heat load within indoor spaces, 

thereby altering thermal balance and directly influencing 

the distribution of indoor temperatures [32]. Aparicio-Ruiz 

et al. [33] evaluated adaptive thermal comfort conditions in 

a primary school classroom with a floor area of 50 m2 and 

a capacity of 25 students. A survey conducted with 67 

students revealed inconsistencies between the thermal 

sensation vote (TSV) and the PMV. Kumar et al. [34] 

investigated thermal comfort in an engineering workshop 

occupied by approximately 15–20 students for over 20 

minutes. Post-occupancy surveys indicated that female 

participants reported a comfort temperature approximately 

1.5oC higher than their male counterparts. Yang et al. [35] 

experimentally analyzed thermal comfort conditions in test 

rooms with floor areas of 6.3 m2 and 17.6 m2, each occupied 

by four individuals. The study found that female 

participants exposed to indoor temperatures of 14°C and 

34°C reported feeling cooler and less comfortable at lower 

temperatures, whereas male participants felt warmer and 

less comfortable at higher temperatures. Reda et al. [36] 

examined thermal comfort and CO2 concentrations in a 

mosque with a floor area of 1,000 m2, accommodating 72 

people during Friday prayers (1 hour), 72–117 people 

during Tarawih prayers (2 hours), and 20–50 people during 

daily noon and afternoon prayers (30 minutes). The results 

showed that CO2 concentrations correlated with the 

duration of occupancy, reaching 480 ppm, 715 ppm, and 

900 ppm for 30-minute, 1-hour, and 2-hour periods, 

respectively. Additionally, the predicted percentage of 

dissatisfied (PPD) values for these durations were 10, 41, 

and 28%, respectively.  

MR and occupancy parameters play a pivotal role in 

ensuring thermal comfort and sustainable energy 

management, especially in high-occupancy buildings. 

While several studies have explored the thermal effects of 

MR and occupancy in buildings [4], these investigations 

typically focus on structures with varying floor areas, 

functions, and usage patterns. For instance, prior works 

have modeled occupant activities using a broad range of 

metabolic rates, such as 0.8–1.2 met for sedentary or elderly 

individuals, 1.2–3.7 met for staged activity simulations, and 

up to 5 met for higher-intensity activities under stable 

environmental conditions [26], [27]. These examples 

illustrate the relevance of MR variation across different 

indoor use cases and provide a foundation for selecting 

representative MR values in building simulations. Despite 

these efforts, a notable gap remains in understanding which 

of the two factors, MR or occupancy, has a more significant 

impact on indoor thermal gains. This study aims to address 

this gap by providing a comprehensive analysis of the 

effects of MR and occupancy on indoor environmental 

conditions. To achieve this objective, a building model was 

developed to simulate different activity levels and 

occupancy rates. In this context, internal heat gains of 50, 

100, 150, and 200 W/person were used to represent 

metabolic activity levels ranging approximately from 0.85 

to 3.4 met, in alignment with prior indoor environment 

research [4], [28]. The analysis focuses on variations in 

indoor air temperatures, interior surface temperatures, and 

internal thermal gains generated by occupants. The present 

study intentionally excluded humidity and ventilation 

effects to isolate the thermal gains due to occupancy alone, 

following the scope defined in the simulation framework. 

This approach allowed for controlled comparison of 

thermal loads arising directly from MR and occupancy 

density without confounding external climatic influences, 

despite the known importance of moisture in overall 

thermal comfort evaluations. The findings of this study are 

expected to offer critical insights into the interplay between 

MR and occupancy, contributing to the optimization of 

internal thermal gains and informing future energy 

efficiency strategies. 

Material and Methods 

Building upon the extensive literature addressing the 

significance of MR in assessing individual comfort [12], 

[13], [19], [37], this study employs EnergyPlus, a state-of-

the-art building energy modeling tool, to further investigate 

these dynamics. EnergyPlus is a state-of-the-art building 

energy modeling tool developed by the U.S. Department of 

Energy. It is recognized for its ability to simulate various 

energy-related aspects of building performance, including 

thermal, lighting, and ventilation dynamics. The software 

provides a detailed analysis of energy flows, enabling 

simulations of both the building's energy consumption and 

the indoor environment. With its comprehensive set of 

features, EnergyPlus models the heat transfer within 

building materials, air movement, and internal heat gains 

from occupants and equipment. This makes it an ideal 

choice for evaluating how different levels of occupancy 

density and metabolic rates influence indoor temperatures 

and overall thermal dynamics. In this study, EnergyPlus 

software was employed to investigate the effects of varying 

MR and occupancy densities on indoor air temperatures and 

thermal dynamics.  

The simulation was based on a 100 m2 building model with 

a total volume of 300 m3, specifically designed without 

natural ventilation, enabling a controlled and isolated 

assessment of internal thermal dynamics. Outdoor air 

conditions were defined using the "BSk" Koppen-Geiger 

climate classification, as shown in Fig. 1 [38]. This 

classification, which falls under the B (dry) climate group 

with S (steppe) indicating a semi-arid precipitation regime 

and k (cold) representing low mean annual temperatures, 

characterizes a cold semi-arid (steppe) climate. The 

building was assumed to be located within this BSk climate 

zone, exemplified by cities such as Denver, Colorado 
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(Latitude: 39.74oN, Longitude: 105.0oW), which 

experience semi-arid conditions with cold, dry winters and 

warm summers. The solar incidence angle in the modeled 

location varies throughout the day and year. At solar noon 

during the summer solstice, the sun reaches a maximum 

altitude of approximately 73o, resulting in a minimal 

incidence angle of about 17o. Conversely, during the winter 

solstice, the solar altitude at noon drops to around 27o, 

increasing the incidence angle to approximately 63o. This 

choice reflects the specific climate characteristics of the 

region where the modeled building is situated and ensures 

that the simulation results are relevant to realistic 

environmental conditions. 

 

Figure 1. Monthly variations in outdoor air conditions for 

investigated BSk climate location. 

 

Figure 2. Building model and wall components. 

The wall components of the building, as illustrated in Fig. 2 

and Table 1, were constructed with materials that provided 

a U-value of 0.53 W/m2K, ensuring a moderate level of 

thermal insulation. However, this U-value was relatively 

high compared to the values recommended in the latest 

national standards. According to the revised Turkish 

Thermal Insulation Standard TS825, the maximum 

allowable U-values for external walls vary regionally and 

range between 0.45 and 0.20 W/m2K, depending on the 

severity of the local climate [39]. Although the selected U-

value in the present study reflects older or less-insulated 

building stock still common in practice, this deviation from 

the latest recommendations was intentionally made to 

represent a more conservative and realistic scenario for 

thermal load analysis. 

Additionally, all exterior walls were equipped with double-

glazed windows, which accounted for 30% of the total wall 

surface area [40]. Each window used in the model was a 

standard double-glazing system, made up of two glass 

panes of 3 mm thickness, separated by a 13 mm air-filled 

cavity. These windows had a thermal transmittance of 2.7 

W/m²K. Their overall solar energy transmittance was 62%, 

with 54% of direct solar radiation passing through, and 62% 

of visible light being transmitted into space. 

In the study, it was assumed that the indoor environment 

was not ventilated, and that no heat losses occurred other 

than through the building components. Additionally, the 

study did not include the effects of HVAC systems, as the 

primary focus was on investigating the impact of occupancy 

density and MR on internal thermal gains. It should be noted 

that ventilation was intentionally excluded in this 

simulation to isolate the effects of internal thermal gains 

caused solely by human metabolic activity and occupancy 

rate. The study was designed as a parametric analysis, in 

which the number of occupants and their metabolic rates 

were systematically varied to evaluate their direct impact on 

indoor thermal dynamics. Although such a non-ventilated 

and densely occupied environment does not reflect typical 

or safe real-world conditions, this modeling approach 

allows for a clearer understanding of the threshold points 

where internal gains begin to significantly influence 

thermal comfort. 

Internal thermal gains can be defined as the thermal energy 

generated by the activities of individuals present in the 

environment and the devices used. These gains generally 

include the heat produced by human metabolic activities, 

the operation of electrical devices, indoor heaters, various 

activities within the building, and other internal energy 

sources. Metabolic gains refer to the thermal energy 

produced by individuals because of their physical activities, 

while the occupancy rate represents the number of people 

and their activity level within the building. In the presented 

study, MR and occupancy rate were considered the primary 

factors influencing internal thermal gains. Other potential 

internal heat gain sources such as equipment and lighting 

were intentionally excluded to ensure that the effects of 

occupants’ sensible heat contributions could be assessed in 

isolation. This approach allowed for a focused analysis of 

how MR and occupancy influence indoor thermal dynamics 

in the absence of external or non-human internal loads. Four 

MR values were evaluated: 50, 100, 150, and 200 

W/person, representing different activity levels. Occupancy 

levels were varied as 50, 100, 150, and 200 occupants, 

resulting in total internal heat gains ranging from 2,500 W 

(50 occupants × 50 W) to 40,000 W (200 occupants × 200 

W). This approach allowed for a focused and quantifiable 

analysis of how MR and occupancy influence indoor 

thermal dynamics under controlled internal gain conditions. 

The study was designed to represent a broad range of human 

activities, covering both low and high activity levels. 

Activities such as sleeping, which are associated with a 

metabolic rate of 0.7–0.8 met or 45–55 W/person, were 

considered alongside more physically demanding activities, 

such as heavy physical labor, which generate a higher 

metabolic rate of 2.5–3.5 met or 200–300 W/person. 

Moreover, the proportion of sensible and latent heat gains 

varies depending on both activity level and ambient 

temperature. According to ASHRAE Standard 55-2020 

[17], [41], at an ambient temperature of 26oC, 
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approximately 42% of the total metabolic heat generated by 

a resting individual is sensible, while the remaining 58% is 

latent. This ratio can shift depending on the activity level, 

with higher-intensity activities leading to increased latent 

heat production due to elevated perspiration and respiration 

rates. For example, in activities exceeding 2.5 met (e.g., 

heavy manual labor), latent heat can surpass sensible heat 

gains [42]. Although this study does not separate these 

components explicitly in the simulation, the total metabolic 

rates (e.g., 200 W/person) implicitly include both latent and 

sensible portions as estimated by EnergyPlus's internal 

algorithms. In EnergyPlus, internal gains from people are 

specified using the "People" object, where the activity level 

represents the total metabolic rate. This total is then 

internally divided into sensible and latent heat gains based 

on predefined algorithms, which rely on ambient 

temperature and activity level. Specifically, EnergyPlus 

uses empirical correlations, derived from ASHRAE 

Standard 55-2020, to partition the total metabolic heat into 

dry (sensible) and moist (latent) components. Sensible heat 

further contributes to convective and radiative heat transfer 

within space, while latent heat contributes to moisture gains 

through respiration and perspiration. Although users do not 

manually enter these fractions, EnergyPlus dynamically 

calculates them during simulations to ensure realistic 

thermal and moisture load estimations under various 

environmental and metabolic conditions. 

 

Table 1. Thermophysical properties of building materials. 

 Material Thickness Density Thermal Conductivity Specific heat 

(m) (kg/m3) (W/m.K) (J/kg.K) 

Wall Outer cement plaster 0.005 1760 0.72 840 

XPS insulation 0.03 35 0.034 1400 

Aerated concrete 0.2 750 0.24 1000 

Inner cement plaster 0.005 1760 0.72 840 

Roof Roof brick 0.1 1000 0.3 840 

Roofing felt 0.02 960 0.19 837 

Roof insulation 0.06 20 0.035 1100 

Floor Aerated concrete 0.1 750 0.24 1000 

Flooring block 0.14 650 0.14 1200 

 

The values used in the simulations (up to 200 W/person) 

correspond to activities such as moderate walking, manual 

work, or physically active standing tasks, which might 

occur in emergency response centers, temporary shelters, or 

crowded healthcare environments during intense or 

stressful periods. These activities were selected to reflect 

not routine conditions, but highly loaded emergency-like 

scenarios. Additionally, the study considered a range of 

occupancy densities from 0.5 to 2 people/m2 to evaluate the 

effects of varying population densities on thermal 

performance. Although these values are significantly higher 

than the typical standards defined by ASHRAE Standard 

55-2020 [17] (5-100 m2 per person), they were deliberately 

selected to simulate high-density occupancy scenarios 

beyond normal conditions. The simulated building was 

intended to represent public-use spaces such as primary 

healthcare waiting areas, temporary shelters, or emergency 

response centers, where elevated occupancy levels may 

temporarily occur. However, it is acknowledged that the 

upper-bound internal load condition (e.g., 2 people/m2 

combined with high metabolic activity leading to 200 

W/m2) exceeds the typical operational range of such 

facilities. This scenario does not represent passive activities 

like sitting or standing quietly, but rather a hypothetical 

worst-case scenario involving moderately active occupants 

(e.g., moving, queueing, or interacting) densely packed in a 

confined space. The goal was not to reflect average or 

routine usage but to explore how the indoor thermal 

environment responds to extreme internal load conditions. 

In all scenarios, occupants were assumed to be uniformly 

distributed throughout the 100 m2 indoor space, ensuring 

consistent internal heat gain distribution. This modeling 

approach allowed for a comprehensive assessment of 

system performance under stressful conditions that could 

arise in overcrowded environments such as emergency 

shelters or waiting rooms during peak hours. Besides, it was 

assumed that both MR and occupancy remained constant 

throughout the year, maintaining steady values 24 hours a 

day, 7 days a week. This simplification allowed for a 

focused analysis, free from the complicating factors of 

fluctuating occupancy patterns or seasonal variations in 

activity levels. However, to reflect real-world conditions 

more accurately, clothing insulation values were assumed 

to vary seasonally, with different values applied for 

summer, transitional, and winter months. The clothing 

insulation was set at 0.5 clo for summer, 1.0 clo for 

transitional months, and 1.5 clo for winter months, 

corresponding to the typical clothing insulation levels 

expected for each season. 

Validation of Simulation Model 

To validate the reliability of the developed EnergyPlus-

based simulation model, indoor air temperature outputs 

were compared with real-world data reported by Alonso et 

al. [43]. In reference study [43], the thermal performance of 

classrooms in southern Spain was monitored under specific 

HVAC protocols during January 2020 (pre-pandemic) and 
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January 2021 (pandemic period with altered ventilation 

strategies). 

For the North Class (A6) with 100 m2 floor area, which was 

selected for validation purposes, mechanical ventilation and 

heating were active from 7:30 a.m. to 2:00 p.m. with no 

manual airing in January 2020. During January 2021, the 

protocol changed to manual airing through one window 

(11:30 a.m. to 2:00 p.m.), with no mechanical ventilation 

and only heating being applied. These HVAC protocols 

were incorporated solely for model validation. In the 

remainder of the study, the building was modeled as a 

naturally non-ventilated space with no mechanical 

ventilation, representing a controlled scenario for 

investigating the impact of internal heat gains and 

occupancy patterns. The MR and occupancy ratio were 1.4 

met and 3.85 m2/person, respectively. 

The reference study [43] reported average indoor air 

temperatures of 21.9oC and 18.0oC for January 2020 and 

January 2021, respectively. The simulated values under 

corresponding HVAC conditions were 22.8oC and 18.7oC. 

The maximum deviation was 0.9oC and 0.7oC, which fell 

within the acceptable range for thermal modeling [44]. 

Simulated temperature ranges also aligned closely with 

measured field data. These results confirmed that the 

simulation model could capture indoor thermal behavior 

under real-world HVAC strategies, supporting its validity 

for further use in thermal comfort and energy performance 

analysis of buildings. 

 

Table 2. Comparison of average indoor air temperatures 

between the reference [43] and present study. 

Average indoor air temperatures (oC) 

 January 2020 January 2021 

Reference Study 

[43] 

21.9oC 
(range: 14.5-26.8) 

18.0oC 
(range: 14.0-20.0) 

Present Study 

(Simulation) 

22.8oC  
(range: 14.0-27.5) 

18.7oC  
(range: 14.5-21.2) 

Difference (ΔT) 0.9oC 0.7oC 

 

Model Limitations 

In this study, mechanical ventilation and HVAC systems 

were intentionally excluded from the simulation model after 

the validation phase, with the aim of developing a 

simplified framework that isolates the effects of internal 

heat gains, occupancy rates, and metabolic activity on 

thermal conditions. This approach allows for a more 

focused analysis of thermal comfort dynamics that are often 

overshadowed by HVAC operation in fully conditioned 

spaces. However, it is important to acknowledge that the 

exclusion of ventilation inherently limits the model’s ability 

to capture certain environmental parameters, such as CO2 

concentration and indoor air quality metrics. In real 

buildings, especially those with continuous or dense 

occupancy, ventilation plays a vital role in maintaining 

acceptable air quality and regulating humidity. The current 

model, by design, does not simulate these aspects, as its 

primary objective is to examine the thermal response of the 

indoor environment under passive or emergency-like 

conditions where ventilation may be reduced or temporarily 

unavailable. While scenarios involving extended high 

occupancy without ventilation are not intended to reflect 

standard operating conditions, they serve to highlight the 

thermal consequences and internal load behaviors in the 

absence of mechanical systems. Therefore, the findings 

should be interpreted as representing a boundary case that 

contributes to a better understanding of how internal factors 

influence thermal comfort when HVAC support is limited 

or selectively deactivated. 

Results and Discussion 

The variations in monthly average outdoor and indoor air 

temperatures, as well as interior surface temperatures for 

different occupancy and MR values, are presented in Fig. 3. 

As expected, an increase in MR or occupancy led to an 

increase in indoor air temperature and interior surface 

temperatures. In scenarios with 50 occupants, the impact of 

increasing MR on temperatures was more pronounced. 

However, in scenarios with 100 or more occupants, the 

effect of MR on monthly average indoor air and wall 

surface temperatures remained limited. For the case with 50 

occupants, the difference between the maximum and 

minimum indoor temperatures was 16.8oC for MR of 50 

W/person and 10.1oC for MR of 200 W/person. For 200 

occupants, these values were determined as 4.4oC and 

4.1oC, respectively. Additionally, with every increment of 

50 people, the average indoor air temperatures increased by 

3.7, 1.2, and 0.6oC, while the average interior surface 

temperatures increased by 2.9, 0.9, and 0.5oC, respectively. 

The reduction in temperature differences with increasing 

occupancy highlighted that the contribution of thermal 

gains from occupants to the total heat load was significant, 

making these effects more noticeable at lower occupancy 

levels. 

On the other hand, an increase in MR significantly 

influenced indoor temperatures, and it was observed that at 

an MR value of 200 W/person, indoor air temperatures 

remained higher regardless of the number of occupants. 

This result clearly highlighted the dominant role of 

metabolic activity in shaping internal thermal conditions, 

especially under low occupancy scenarios. This indicated 

that the increase in heat production per person elevated the 

total internal heat gain, consequently raising indoor 

temperatures as expected. Each 50 W/person increase in 

MR raised the average indoor air temperatures by 5.4, 0.7, 

and 0.6oC for an occupancy of 50 people, and by 0.1, 0.1, 

and 0.2oC for an occupancy of 200 people. This non-linear 

trend suggested that as the internal thermal load increased, 

the relative impact of additional metabolic heat generation 

diminished, indicating a saturation effect in enclosed 

environments. Therefore, it was determined that the 

influence of MR diminished in conditions where high 

internal thermal gains and temperatures were achieved. 

Additionally, as outdoor temperatures increased, indoor 

temperatures reached maximum levels, indicating a 

potential rise in cooling loads. Although the interior surface 

temperatures followed a trend parallel to indoor air 
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temperatures, they exhibited more limited variations in 

response to increases in MR and occupancy. For 50 

occupants and an MR of 50 W/person, the difference 

between the average indoor air and interior surface 

temperatures was 1.8oC, which increased to 3.1oC with 

rising MR and occupancy. In the study by Calvaresi et al. 

[45], an increase of approximately 50 W/person in 

metabolic rate during the winter months was noted to cause 

a rise in air temperature of up to 3oC for occupancy level of 

10 people. In the present study, this increase corresponded 

to average temperature rises of 2.1, 0.6, 0.3, and 0.1oC for 

occupancy levels of 50, 100, 150, and 200 people during 

January, February, and December. This was attributed to 

the slower response of wall surfaces to heat transfer 

processes and the influence of thermal mass. Additionally, 

these findings underscored the buffering role of building 

envelope materials in mitigating rapid indoor temperature 

changes, which could be strategically utilized in passive 

design approaches. Kumar et al. [34] evaluated thermal 

comfort conditions in a university workshop located in a 

“Cwa” climate zone based on the Koppen–Geiger 

classification, involving students with an estimated 

metabolic rate of approximately 100 W/person. Although 

the floor area per person was not specified, the average 

indoor air temperatures during autumn, winter, and the 

overall experimental period were reported as 25.1oC, 

18.1oC, and 20.8oC, respectively. In the present study, under 

a comparable metabolic rate (100 W/person) and an 

occupancy level of 50 individuals, the corresponding values 

were calculated as 30.8oC, 24.9oC, and 27.9oC. This notable 

difference was likely attributed to variations in building 

envelope configurations and regional climate 

characteristics. Furthermore, other factors such as 

differences in solar exposure levels or internal heat gains 

from equipment might also have contributed to the observed 

temperature discrepancies. These findings demonstrated 

that, even under similar metabolic loads, indoor thermal 

conditions could differ significantly depending on building 

and environmental parameters. 

On the other hand, when MR values were kept constant and 

occupancy varied, the differences observed in indoor air 

and interior surface temperatures were more pronounced 

compared to scenarios where occupancy was kept constant 

and MR varied. This was because the increase in the heat 

transfer surface area associated with the number of 

occupants had a more significant effect than individual heat 

gains resulting from metabolic density. In other words, the 

spatial distribution and density of heat sources (people) had 

a greater influence on the thermal environment than the 

intensity of each source. Particularly, as the number of 

occupants increased, the heat transfer surface area of the 

indoor environment expanded, which led to a higher 

potential for heat insulation or heat loss. Consequently, it 

was concluded that occupancy had a much stronger impact 

on indoor temperature dynamics compared to MR. This 

conclusion aligned with the fundamental principles of 

internal heat gain modeling, emphasizing that both 

occupant density and distribution significantly affect 

thermal comfort outcomes. 

In Fig. 4, the variation of monthly internal thermal gains 

from occupants (total metabolic gains) according to MR and 

the number of occupants is presented. It was determined 

that total internal thermal gains reached minimum levels 

during the summer months and maximum values during the 

winter months. This indicated that the thermal balance of 

the indoor environment was related to outdoor 

temperatures. Additionally, it was identified that due to the 

high outdoor temperatures in the summer, heat production 

from occupants had a limited impact. However, the increase 

in internal thermal gains during the winter months (January, 

February, December) was identified as a significant factor 

contributing to the maintenance of indoor temperatures. 

A noticeable increase in thermal gains was observed with 

the rise in occupancy when the MR was kept constant and 

the number of occupants varied. This trend was particularly 

evident in the scenario with 200 occupants, where the total 

internal heat gain in January and December was 

significantly higher than in other scenarios. These findings 

emphasized the substantial impact of occupant density on 

indoor heat accumulation, even when individual metabolic 

contributions remained unchanged. This highlighted the 

influence of per capita metabolic heat on total thermal 

gains. 

Internal thermal gains increased as the MR rose when the 

number of occupants was kept constant and the MR varied. 

For instance, in the scenario with 50 occupants, thermal 

gains generated by individuals with a MR of 200 W/person 

showed a significant increase compared to those with a MR 

of 50 W/person. This showed a saturation point where the 

relative contribution of additional metabolic energy per 

person becomes less significant in environments with 

already high internal heat loads. 

In the findings presented thus far in this study, the increases 

in indoor air temperatures, interior surface temperatures, 

and internal thermal gains from occupants due to the rise in 

MR or the number of occupants were expected outcomes. 

However, determining which factor (MR or occupancy) had 

a greater influence on internal thermal gains was significant, 

particularly for improving energy efficiency and thermal 

comfort in buildings. Therefore, scenarios with different 

combinations of MR and the number of occupants, where 

the total metabolic thermal gains (MR × number of 

occupants) were equal, were analyzed to determine their 

impacts on indoor air temperature, interior surface 

temperature, and internal thermal gains from occupants, as 

shown in Fig. 5. 

Despite having the same total metabolic heat production 

(e.g., MR: 50 W/person with 100 occupants and MR: 100 

W/person with 50 occupants), notable differences in indoor 

air and wall surface temperatures were observed, especially 

during winter and transitional seasons. In scenarios with a 

higher number of occupants and lower MR, indoor air and 

surface temperatures tended to be slightly higher due to 

more homogeneous heat distribution and reduced local 

temperature gradients. Conversely, in scenarios with fewer 

occupants and higher MR, heat was concentrated around 
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fewer individuals, reducing distribution efficiency and 

resulting in lower average indoor temperatures. 

Furthermore, while sharp peaks in thermal gains were 

observed in scenarios with higher MR but fewer occupants, 

the total thermal contribution remained limited due to local 

heat losses and inefficient air mixing. In contrast, scenarios 

with lower MR and more occupants exhibited more stable 

and balanced thermal gains, contributing to the stability of 

indoor temperatures. Notably, scenarios with a higher 

number of occupants demonstrated greater internal thermal 

gains even when the total metabolic heat production was the 

same, highlighting the importance of heat distribution 

dynamics. 

 

 

Figure 3. Indoor air and interior surface temperatures for different occupancy and MR values. 



DUJE (Dicle University Journal of Engineering) 16:3 (2025) Page 725-737 

 

733 
 

 

Figure 4. Internal thermal gains from occupants for different occupancy and MR values. 

Seasonal variations also had a pronounced effect on indoor 

conditions. During winter months, the differences between 

scenarios became more evident, particularly in those 

involving a higher number of occupants, which consistently 

maintained elevated indoor temperatures. This contributed 

to a reduction in heating demand, as internal heat gains from 

occupancy played a more dominant role in thermal 

regulation. 

In the summer, due to high outdoor temperatures, the 

influence of metabolic thermal gains diminished; however, 

a large number of occupants could marginally increase 

indoor temperatures, potentially impacting cooling loads. 

As in studies such as [46], which examined energy 

consumption and comfort under different occupancy levels, 

it was determined that a greater number of occupants could 

maintain indoor temperatures despite fluctuations in 

metabolic rates. Besides, it was revealed that the interaction 

between MR and occupancy was non-linear. Despite having 

the same total metabolic heat, the distribution of occupants 

significantly affected indoor temperatures. This finding 

addressed a gap in the literature, which typically focused on 

total heat output while overlooking the effects of spatial 

distribution and air mixing. Additionally, seasonal analyses 

highlighted the variable impacts of internal thermal gains 

under different climatic conditions, emphasizing the 

importance of context-specific strategies in building energy 
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design. In conclusion, even when total metabolic heat 

remained constant across different MR-occupancy 

scenarios, indoor conditions were influenced by factors 

such as heat distribution efficiency and occupant density. 

These findings contributed to a deeper understanding of 

thermal comfort modeling and building energy 

consumption, offering valuable insights for the 

development of more responsive and adaptive HVAC 

strategies. 

 

 

Figure 5. Monthly mean temperatures and internal thermal gains for different occupancy and MR combinations. 

 

Conclusion 

In this study, a simulation-based parametric analysis was 

conducted to examine the effects of different combinations 

of MR and occupancy on indoor air temperature, interior 

surface temperature, and internal thermal gains from 

occupants. Unlike previous studies that primarily 

investigated thermal effects in buildings with diverse 

functions, floor areas, and usage scenarios, this research 

specifically isolated the influence of MR and occupancy in 

a controlled non-ventilated building model. By 

systematically varying these parameters, the study provided 

a novel perspective on their relative impact on temperature 

distribution and thermal dynamics. The findings 

contributed to bridging the existing knowledge gap by 

clarifying which factor (MR or occupancy) played a more 

dominant role in shaping indoor thermal conditions. These 

insights served as a foundation for optimizing internal 

thermal gains and advancing energy-efficient design 

strategies. To eliminate external influences and isolate the 

thermal effects of occupants, ventilation was intentionally 

excluded from the simulation model. Consequently, the 
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humidity released by occupants accumulated over time, 

causing indoor relative humidity to reach saturation (100%) 

in all cases. Since relative humidity remained saturated and 

showed no variation across scenarios, it was not included in 

the comparative analysis. 

This modeling approach is particularly relevant for 

temporary or transitional indoor environments where 

ventilation may be limited or intentionally suspended. 

Examples include temporary emergency shelters, high-

density waiting areas (e.g., during crises or vaccination 

campaigns), or enclosed public spaces used for short-term 

occupancy, such as modular field hospitals or relief centers. 

In such contexts, understanding the thermal effects of 

occupancy and metabolic activity is critical for ensuring 

occupant safety, thermal resilience, and energy resource 

planning. By identifying the dominant role of occupant 

density in shaping indoor temperatures, even under 

conditions of constant metabolic heat, the study provides 

actionable insights for energy load forecasting and passive 

design strategies in these special-use environments. 

The key findings revealed that both MR and occupancy 

significantly impacted indoor thermal conditions, but their 

effects differed depending on the scenario. While an 

increase in MR or occupancy generally led to higher indoor 

air and wall surface temperatures, the influence of MR 

diminished in scenarios with high occupancy. Conversely, 

occupancy had a stronger effect on indoor temperature 

dynamics, particularly due to its role in expanding the heat 

transfer surface area. Notably, even when total metabolic 

heat production was constant, scenarios with a higher 

number of occupants demonstrated greater internal thermal 

gains due to more homogeneous heat distribution. Seasonal 

variations played a critical role, with the impact of 

metabolic thermal gains being more pronounced during the 

winter months, thereby reducing heating demands, whereas 

in the summer, their influence was limited due to dominant 

outdoor temperatures. 

In conclusion, even when total metabolic heat remained 

constant across different MR-occupancy scenarios, indoor 

conditions were influenced by factors such as heat 

distribution efficiency and occupant density. These findings 

contributed to a deeper understanding of thermal comfort 

modeling and building energy consumption. 

In future work, it would be valuable to explore how 

different heating and cooling strategies, beyond traditional 

HVAC systems, influence the relationship between MR, 

occupancy, and indoor thermal conditions. Moreover, it 

may be beneficial to investigate the impact of smart 

building technologies, such as automated shading or 

adaptive lighting systems, on the interplay between MR, 

occupancy, and indoor thermal comfort. Expanding the 

scope of such modeling to include emergency-use scenarios 

and adaptive ventilation schemes may further enhance its 

relevance and practical applicability. This could provide 

insights into how responsive systems can optimize energy 

use while maintaining occupant comfort under varying 

conditions. 
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