DUIJE (Dicle University Journal of Engineering) 16:3 (2025) Page 725-737

Dicle University
Journal of Engineering

https://dergipark.org.tr/tr/pub/dumf
duje.dicle.edu.tr

Research Article

Parametric Impacts of Metabolic Rate and Occupancy on Internal Thermal Gains in

Buildings

Ahmet YUKSEL"™

! Yalova University, Electricity and Energy Department, ahmet.yuksel@yalova.edu.tr, ORCID No: 0000-0002-0472-0342

ARTICLE INFO

ABSTRACT

Article history:

Received 11 June 2025

Received in revised form 23 July 2025
Accepted 23 July 2025

Available online 30 September 2025

Keywords:

Building energy simulation,
internal thermal gains, metabolic
rate, occupancy level, parametric
analysis

Doi: 10.24012/dumf 1717808

* Corresponding author

This study investigated the effects of varying metabolic rate (MR) and occupancy levels on indoor air
temperature, interior surface temperatures, and internal thermal gains within a non-ventilated building
model. The goal was to evaluate how these parameters influence thermal dynamics and determine which
plays a more dominant role. Ventilation was intentionally excluded to isolate the thermal effects of
occupants and eliminate external influences. The relative humidity generated by occupants accumulated,
causing relative humidity to reach saturation in all scenarios. Since relative humidity showed no variation
between cases, it was not included in the analysis. The results demonstrated that both MR and occupancy
significantly impacted indoor thermal responses. Higher values of either parameter led to increased
temperatures, though their relative influence varied. MR had a stronger effect under low-occupancy
conditions, while its impact diminished as occupancy increased. For instance, in scenarios with 50
occupants, the indoor air temperature difference between MR values of 50 and 200 W/person reached
6.7°C. Conversely, increasing occupancy led to more uniform total thermal gains due to expanded heat
transfer surface area, especially with 200 occupants. The study concluded that both MR and occupancy
need to be considered when modeling indoor thermal comfort and energy efficiency. Additionally, the
results indicated that occupancy had a more significant influence on indoor temperature dynamics,
particularly due to its role in heat transfer surface area expansion. These findings underscored the critical
role of occupancy density in shaping indoor temperature profiles and highlighted the need to account for
metabolic activity levels when designing energy-efficient and thermally comfortable building
environments.

Introduction

Energy efficiency and indoor comfort are pivotal and
continuously evolving research areas that form the
foundation of sustainability-focused work in buildings [1],
[2]. Achieving thermal comfort conditions often requires
substantial energy consumption, primarily driven by
heating, ventilation, and air conditioning (HVAC) systems
[3]. These systems demand considerable energy to maintain
indoor comfort parameters within ideal ranges, posing a
significant challenge for energy efficiency, especially in
buildings with high occupancy densities. In this context,
reducing energy consumption while optimizing thermal
comfort conditions is a fundamental objective in sustainable
building design and operation [4].

Thermal comfort is a key determinant of occupant
satisfaction in indoor environments [5]. It is influenced by
environmental factors such as indoor temperature, relative
humidity, air velocity, and mean radiant temperature, as
well as personal factors like clothing insulation and
metabolic rate (MR) [6]-[8]. Among these, MR refers to the
amount of heat generated by the body in proportion to an
individual’s physical activity level [9]. Variations in
metabolic activity can lead to differing thermal comfort
perceptions under the same environmental conditions [10].

Numerous studies in the literature have addressed the
consideration of MR to assess individual comfort [11]-[13].
Zhang et al. [14] examined the role of MR in thermal
comfort evaluation, emphasizing the importance of accurate
MR measurement for enhancing thermal index models. The
study highlighted that dynamic MR changes are key human
factors affecting thermal regulation and underscored the
need for portable, affordable, and precise MR monitoring
devices. Nomoto et al. [15] investigated MR values among
Japanese individuals performing typical office activities,
reporting significantly lower MR values (0.8-2.6 met)
compared to international standards (1.0-3.0 met). This
discrepancy, particularly pronounced among female
participants, suggested potential inaccuracies in thermal
comfort assessments and CO; generation estimations when
applying global standards to specific populations. Jia et al.
[16] evaluated the effectiveness of the standard effective
temperature in thermal comfort studies across different MR
levels. They found that the traditional model failed to
maintain consistent thermal sensation across MR variations.
Consequently, they proposed a new standard environment
incorporating clothing insulation and convective heat
transfer coefficients based on actual activity levels,
ensuring a linear relationship between standard effective
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temperature and thermal sensation votes from 1.0 to 3.8
met.

International standards such as ASHRAE Standard 55-2020
[17] have been updated to better reflect the impact of
occupant-related variables on indoor environmental quality.
These standards emphasize the importance of accounting
for dynamic human factors, such as activity level and
occupant density, in the design and operation of HVAC
systems. Accordingly, recent studies have begun integrating
personalized inputs like MR and real-time occupancy levels
into performance assessments, aiming to enhance comfort
while optimizing energy use. Culié¢ et al. [18] reviewed
advancements in monitoring technologies for personal
thermal comfort and their implications for building energy
performance. The review highlighted the significance of
both environmental parameters (e.g., room temperature,
humidity, mean radiant temperature) and personal factors
(e.g., MR, skin temperature), with emerging technologies
like wearable devices and connected sensors offering
promising solutions for accurate data collection. Choi et al.
[19] proposed a vision-based approach to estimate
individual thermal comfort parameters, such as metabolic
rate and clothing insulation, using indoor images in real
time. Their intelligent model was designed to function in
both single and multi-occupant spaces and achieved high
accuracy through advanced computer vision techniques.
The estimated parameters were integrated into a predicted
mean vote (PMV) based control algorithm, which
significantly improved thermal comfort compared to
conventional methods. The study emphasized that using
representative values for group scenarios offered a practical
solution for real-time thermal regulation while maintaining
energy efficiency. Yun et al. [20] developed an occupant-
centric control strategy that utilizes real-time MR
estimation to enhance thermal comfort and reduce energy
use. Their approach combined pose classification and object
interaction detection from indoor images to predict MR
values, which were then integrated into a novel indoor
thermal environment control algorithm. Experimental
validation in real building settings demonstrated that this
method significantly improved comfort levels, by up to
59% compared to fixed temperature control, and reduced
energy consumption by as much as 88%. Jung et al. [21]
introduced a semi-supervised multi-task learning model
designed to estimate key occupant-specific parameters,
namely MR and clothing insulation, for enhanced thermal
comfort control. Leveraging both labeled and unlabeled
image data, the proposed convolutional neural network
model employed a dual-phase training method with pseudo
labels to improve activity and clothing detection. Validation
against existing models showed substantial accuracy gains,
with a 15.8% increase in activity detection and a 25%
improvement in clothing recognition. Zhang et al. [22]
introduced a novel wearable sensor system designed to
accurately estimate human MR, addressing the limitations
of conventional bulky and intrusive measurement tools.
Their model integrates physiological indicators such as
heart rate, skin resistance, heat loss, and muscle
composition to predict MR through a linear regression
framework. Experimental validation involving various

activity  intensities and environmental conditions
demonstrated strong agreement with reference equipment
(R? = 0.90), achieving high accuracy and low uncertainty.
Na et al. [23] proposed a deep learning-based approach to
estimate individual MR for improved thermal comfort
assessment. The study measured metabolic equivalents for
eight common indoor activities in a diverse group of
participants, analyzing the impact of gender and body mass
index (BMI) on MR values. Their self-evaluation model
achieved a low coefficient of variation, indicating reliable
performance, while the third-party model demonstrated
promising generalization across individuals. Notably, the
results showed that MR values varied with both activity
intensity and individual characteristics, highlighting the
need for personalized comfort models in indoor
environments. Yildirim and Pekel [24] conducted a
systematic review to explore how wearable sensors
integrated with artificial intelligence (AI) can objectively
assess physical activity levels, particularly among sedentary
individuals. By screening 582 studies published between
2015 and 2024, they identified 17 relevant articles that
examined Al-supported activity tracking using wearable
technologies. Their findings highlighted the growing
potential of such systems to monitor daily movement
patterns, estimate MR, and support personalized
interventions. The study emphasized that Al-enhanced
wearable tools not only enable accurate and continuous
activity assessment but also offer promising applications for
promoting healthier behaviors in school-aged populations.
Choi et al. [25] proposed a real-time MR and clothing
insulation estimation method using deep learning and
computer vision, alongside a comfort-focused temperature
control strategy. Their system accurately predicted MR and
clothing insulation with up to 100% accuracy and improved
thermal comfort consistency, increasing the proportion of
"no thermal change" votes by 17% compared to
conventional set-point controls.

In indoor thermal environment studies, building simulations
are often tailored to specific activity types to realistically
assess internal heat gains and occupant comfort. The level
of physical activity directly influences the MR, which in
turn affects the thermal loads within space. Depending on
the intended use of the building and the occupants’ activity,
various MR values have been utilized in literature to
represent realistic internal conditions. For example, in [26],
metabolic rates of 0.8, 1.0, and 1.2 met were used to
represent low-activity conditions such as sitting or light
movement, especially in residential settings. In [27],
occupant activity was categorized into four levels, ranging
from sedentary to intense, with corresponding MR values
of 1.2,2.4, 3.0, and 3.7 met, each phase lasting 20 minutes
to assess the dynamic impact of different activity levels. In
another study [4], thermal sensation was evaluated during
sitting and two exercise conditions, associated with MR
values of 1.0, 2.4, and 4.4 met. Further investigations, such
as [28], simulated moderate indoor activities at 3.0, 3.5, and
4.5 met over 30-minute intervals.

In alignment with these studies, in this study, the simulation
modeled a 100 m? space without ventilation. It varied
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occupancy levels (50 to 200 people) and metabolic rates (50
to 200 W/person) to reflect a range of indoor scenarios.
These combinations correspond approximately to MR
values ranging from sedentary office work to moderate
activity, simulating indoor environments such as waiting
areas, classrooms, or high-density public zones. This
modeling strategy reflects diverse use cases found in the
literature while enabling a controlled parametric evaluation
of occupant-induced thermal impacts.

Studies focusing on continuous or intermittent building
usage scenarios examine not only MR but also varying
occupancy levels [29]-[31]. This is since occupancy rate
significantly affects the total heat load within indoor spaces,
thereby altering thermal balance and directly influencing
the distribution of indoor temperatures [32]. Aparicio-Ruiz
et al. [33] evaluated adaptive thermal comfort conditions in
a primary school classroom with a floor area of 50 m? and
a capacity of 25 students. A survey conducted with 67
students revealed inconsistencies between the thermal
sensation vote (TSV) and the PMV. Kumar et al. [34]
investigated thermal comfort in an engineering workshop
occupied by approximately 15-20 students for over 20
minutes. Post-occupancy surveys indicated that female
participants reported a comfort temperature approximately
1.5°C higher than their male counterparts. Yang et al. [35]
experimentally analyzed thermal comfort conditions in test
rooms with floor areas of 6.3 m? and 17.6 m?, each occupied
by four individuals. The study found that female
participants exposed to indoor temperatures of 14°C and
34°C reported feeling cooler and less comfortable at lower
temperatures, whereas male participants felt warmer and
less comfortable at higher temperatures. Reda et al. [36]
examined thermal comfort and CO, concentrations in a
mosque with a floor area of 1,000 m?, accommodating 72
people during Friday prayers (1 hour), 72-117 people
during Tarawih prayers (2 hours), and 20-50 people during
daily noon and afternoon prayers (30 minutes). The results
showed that CO, concentrations correlated with the
duration of occupancy, reaching 480 ppm, 715 ppm, and
900 ppm for 30-minute, 1-hour, and 2-hour periods,
respectively. Additionally, the predicted percentage of
dissatisfied (PPD) values for these durations were 10, 41,
and 28%, respectively.

MR and occupancy parameters play a pivotal role in
ensuring thermal comfort and sustainable energy
management, especially in high-occupancy buildings.
While several studies have explored the thermal effects of
MR and occupancy in buildings [4], these investigations
typically focus on structures with varying floor areas,
functions, and usage patterns. For instance, prior works
have modeled occupant activities using a broad range of
metabolic rates, such as 0.8—1.2 met for sedentary or elderly
individuals, 1.2-3.7 met for staged activity simulations, and
up to 5 met for higher-intensity activities under stable
environmental conditions [26], [27]. These examples
illustrate the relevance of MR variation across different
indoor use cases and provide a foundation for selecting
representative MR values in building simulations. Despite
these efforts, a notable gap remains in understanding which

of the two factors, MR or occupancy, has a more significant
impact on indoor thermal gains. This study aims to address
this gap by providing a comprehensive analysis of the
effects of MR and occupancy on indoor environmental
conditions. To achieve this objective, a building model was
developed to simulate different activity levels and
occupancy rates. In this context, internal heat gains of 50,
100, 150, and 200 W/person were used to represent
metabolic activity levels ranging approximately from 0.85
to 3.4 met, in alignment with prior indoor environment
research [4], [28]. The analysis focuses on variations in
indoor air temperatures, interior surface temperatures, and
internal thermal gains generated by occupants. The present
study intentionally excluded humidity and ventilation
effects to isolate the thermal gains due to occupancy alone,
following the scope defined in the simulation framework.
This approach allowed for controlled comparison of
thermal loads arising directly from MR and occupancy
density without confounding external climatic influences,
despite the known importance of moisture in overall
thermal comfort evaluations. The findings of this study are
expected to offer critical insights into the interplay between
MR and occupancy, contributing to the optimization of
internal thermal gains and informing future energy
efficiency strategies.

Material and Methods

Building upon the extensive literature addressing the
significance of MR in assessing individual comfort [12],
[13], [19], [37], this study employs EnergyPlus, a state-of-
the-art building energy modeling tool, to further investigate
these dynamics. EnergyPlus is a state-of-the-art building
energy modeling tool developed by the U.S. Department of
Energy. It is recognized for its ability to simulate various
energy-related aspects of building performance, including
thermal, lighting, and ventilation dynamics. The software
provides a detailed analysis of energy flows, enabling
simulations of both the building's energy consumption and
the indoor environment. With its comprehensive set of
features, EnergyPlus models the heat transfer within
building materials, air movement, and internal heat gains
from occupants and equipment. This makes it an ideal
choice for evaluating how different levels of occupancy
density and metabolic rates influence indoor temperatures
and overall thermal dynamics. In this study, EnergyPlus
software was employed to investigate the effects of varying
MR and occupancy densities on indoor air temperatures and
thermal dynamics.

The simulation was based on a 100 m? building model with
a total volume of 300 m?, specifically designed without
natural ventilation, enabling a controlled and isolated
assessment of internal thermal dynamics. Outdoor air
conditions were defined using the "BSk" Koppen-Geiger
climate classification, as shown in Fig. 1 [38]. This
classification, which falls under the B (dry) climate group
with S (steppe) indicating a semi-arid precipitation regime
and k (cold) representing low mean annual temperatures,
characterizes a cold semi-arid (steppe) climate. The
building was assumed to be located within this BSk climate
zone, exemplified by cities such as Denver, Colorado
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(Latitude:  39.74°N, Longitude: 105.0°W), which
experience semi-arid conditions with cold, dry winters and
warm summers. The solar incidence angle in the modeled
location varies throughout the day and year. At solar noon
during the summer solstice, the sun reaches a maximum
altitude of approximately 73°, resulting in a minimal
incidence angle of about 17°. Conversely, during the winter
solstice, the solar altitude at noon drops to around 27°,
increasing the incidence angle to approximately 63°. This
choice reflects the specific climate characteristics of the
region where the modeled building is situated and ensures
that the simulation results are relevant to realistic
environmental conditions.
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Figure 1. Monthly variations in outdoor air conditions for
investigated BSk climate location.
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Figure 2. Building model and wall components.

The wall components of the building, as illustrated in Fig. 2
and Table 1, were constructed with materials that provided
a U-value of 0.53 W/m?K, ensuring a moderate level of
thermal insulation. However, this U-value was relatively
high compared to the values recommended in the latest
national standards. According to the revised Turkish
Thermal Insulation Standard TS825, the maximum
allowable U-values for external walls vary regionally and
range between 0.45 and 0.20 W/m?K, depending on the
severity of the local climate [39]. Although the selected U-
value in the present study reflects older or less-insulated
building stock still common in practice, this deviation from
the latest recommendations was intentionally made to
represent a more conservative and realistic scenario for
thermal load analysis.

Additionally, all exterior walls were equipped with double-
glazed windows, which accounted for 30% of the total wall
surface area [40]. Each window used in the model was a
standard double-glazing system, made up of two glass
panes of 3 mm thickness, separated by a 13 mm air-filled

cavity. These windows had a thermal transmittance of 2.7
W/m?K. Their overall solar energy transmittance was 62%,
with 54% of direct solar radiation passing through, and 62%
of visible light being transmitted into space.

In the study, it was assumed that the indoor environment
was not ventilated, and that no heat losses occurred other
than through the building components. Additionally, the
study did not include the effects of HVAC systems, as the
primary focus was on investigating the impact of occupancy
density and MR on internal thermal gains. It should be noted
that ventilation was intentionally excluded in this
simulation to isolate the effects of internal thermal gains
caused solely by human metabolic activity and occupancy
rate. The study was designed as a parametric analysis, in
which the number of occupants and their metabolic rates
were systematically varied to evaluate their direct impact on
indoor thermal dynamics. Although such a non-ventilated
and densely occupied environment does not reflect typical
or safe real-world conditions, this modeling approach
allows for a clearer understanding of the threshold points
where internal gains begin to significantly influence
thermal comfort.

Internal thermal gains can be defined as the thermal energy
generated by the activities of individuals present in the
environment and the devices used. These gains generally
include the heat produced by human metabolic activities,
the operation of electrical devices, indoor heaters, various
activities within the building, and other internal energy
sources. Metabolic gains refer to the thermal energy
produced by individuals because of their physical activities,
while the occupancy rate represents the number of people
and their activity level within the building. In the presented
study, MR and occupancy rate were considered the primary
factors influencing internal thermal gains. Other potential
internal heat gain sources such as equipment and lighting
were intentionally excluded to ensure that the effects of
occupants’ sensible heat contributions could be assessed in
isolation. This approach allowed for a focused analysis of
how MR and occupancy influence indoor thermal dynamics
in the absence of external or non-human internal loads. Four
MR values were evaluated: 50, 100, 150, and 200
W/person, representing different activity levels. Occupancy
levels were varied as 50, 100, 150, and 200 occupants,
resulting in total internal heat gains ranging from 2,500 W
(50 occupants x 50 W) to 40,000 W (200 occupants x 200
W). This approach allowed for a focused and quantifiable
analysis of how MR and occupancy influence indoor
thermal dynamics under controlled internal gain conditions.
The study was designed to represent a broad range of human
activities, covering both low and high activity levels.
Activities such as sleeping, which are associated with a
metabolic rate of 0.7-0.8 met or 45-55 W/person, were
considered alongside more physically demanding activities,
such as heavy physical labor, which generate a higher
metabolic rate of 2.5-3.5 met or 200-300 W/person.
Moreover, the proportion of sensible and latent heat gains
varies depending on both activity level and ambient
temperature. According to ASHRAE Standard 55-2020
[17], [41], at an ambient temperature of 26°C,
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approximately 42% of the total metabolic heat generated by
a resting individual is sensible, while the remaining 58% is
latent. This ratio can shift depending on the activity level,
with higher-intensity activities leading to increased latent
heat production due to elevated perspiration and respiration
rates. For example, in activities exceeding 2.5 met (e.g.,
heavy manual labor), latent heat can surpass sensible heat
gains [42]. Although this study does not separate these
components explicitly in the simulation, the total metabolic
rates (e.g., 200 W/person) implicitly include both latent and
sensible portions as estimated by EnergyPlus's internal
algorithms. In EnergyPlus, internal gains from people are
specified using the "People” object, where the activity level
represents the total metabolic rate. This total is then

internally divided into sensible and latent heat gains based
on predefined algorithms, which rely on ambient
temperature and activity level. Specifically, EnergyPlus
uses empirical correlations, derived from ASHRAE
Standard 55-2020, to partition the total metabolic heat into
dry (sensible) and moist (latent) components. Sensible heat
further contributes to convective and radiative heat transfer
within space, while latent heat contributes to moisture gains
through respiration and perspiration. Although users do not
manually enter these fractions, EnergyPlus dynamically
calculates them during simulations to ensure realistic
thermal and moisture load estimations under various
environmental and metabolic conditions.

Table 1. Thermophysical properties of building materials.

Material Thickness Density Thermal Conductivity Specific heat
(m) (kg/m?) (W/m.K) (J/kg.K)
Wall Outer cement plaster 0.005 1760 0.72 840
XPS insulation 0.03 35 0.034 1400
Aerated concrete 0.2 750 0.24 1000
Inner cement plaster 0.005 1760 0.72 840
Roof  Roof brick 0.1 1000 0.3 840
Roofing felt 0.02 960 0.19 837
Roof insulation 0.06 20 0.035 1100
Floor Aerated concrete 0.1 750 0.24 1000
Flooring block 0.14 650 0.14 1200

The values used in the simulations (up to 200 W/person)
correspond to activities such as moderate walking, manual
work, or physically active standing tasks, which might
occur in emergency response centers, temporary shelters, or
crowded healthcare environments during intense or
stressful periods. These activities were selected to reflect
not routine conditions, but highly loaded emergency-like
scenarios. Additionally, the study considered a range of
occupancy densities from 0.5 to 2 people/m? to evaluate the
effects of wvarying population densities on thermal
performance. Although these values are significantly higher
than the typical standards defined by ASHRAE Standard
55-2020 [17] (5-100 m? per person), they were deliberately
selected to simulate high-density occupancy scenarios
beyond normal conditions. The simulated building was
intended to represent public-use spaces such as primary
healthcare waiting areas, temporary shelters, or emergency
response centers, where elevated occupancy levels may
temporarily occur. However, it is acknowledged that the
upper-bound internal load condition (e.g., 2 people/m?
combined with high metabolic activity leading to 200
W/m?) exceeds the typical operational range of such
facilities. This scenario does not represent passive activities
like sitting or standing quietly, but rather a hypothetical
worst-case scenario involving moderately active occupants
(e.g., moving, queueing, or interacting) densely packed in a
confined space. The goal was not to reflect average or
routine usage but to explore how the indoor thermal
environment responds to extreme internal load conditions.

In all scenarios, occupants were assumed to be uniformly
distributed throughout the 100 m? indoor space, ensuring
consistent internal heat gain distribution. This modeling
approach allowed for a comprehensive assessment of
system performance under stressful conditions that could
arise in overcrowded environments such as emergency
shelters or waiting rooms during peak hours. Besides, it was
assumed that both MR and occupancy remained constant
throughout the year, maintaining steady values 24 hours a
day, 7 days a week. This simplification allowed for a
focused analysis, free from the complicating factors of
fluctuating occupancy patterns or seasonal variations in
activity levels. However, to reflect real-world conditions
more accurately, clothing insulation values were assumed
to vary seasonally, with different values applied for
summer, transitional, and winter months. The clothing
insulation was set at 0.5 clo for summer, 1.0 clo for
transitional months, and 1.5 clo for winter months,
corresponding to the typical clothing insulation levels
expected for each season.

Validation of Simulation Model

To validate the reliability of the developed EnergyPlus-
based simulation model, indoor air temperature outputs
were compared with real-world data reported by Alonso et
al. [43]. In reference study [43], the thermal performance of
classrooms in southern Spain was monitored under specific
HVAC protocols during January 2020 (pre-pandemic) and
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January 2021 (pandemic period with altered ventilation
strategies).

For the North Class (A6) with 100 m? floor area, which was
selected for validation purposes, mechanical ventilation and
heating were active from 7:30 a.m. to 2:00 p.m. with no
manual airing in January 2020. During January 2021, the
protocol changed to manual airing through one window
(11:30 a.m. to 2:00 p.m.), with no mechanical ventilation
and only heating being applied. These HVAC protocols
were incorporated solely for model validation. In the
remainder of the study, the building was modeled as a
naturally non-ventilated space with no mechanical
ventilation, representing a controlled scenario for
investigating the impact of internal heat gains and
occupancy patterns. The MR and occupancy ratio were 1.4
met and 3.85 m?/person, respectively.

The reference study [43] reported average indoor air
temperatures of 21.9°C and 18.0°C for January 2020 and
January 2021, respectively. The simulated values under
corresponding HVAC conditions were 22.8°C and 18.7°C.
The maximum deviation was 0.9°C and 0.7°C, which fell
within the acceptable range for thermal modeling [44].
Simulated temperature ranges also aligned closely with
measured field data. These results confirmed that the
simulation model could capture indoor thermal behavior
under real-world HVAC strategies, supporting its validity
for further use in thermal comfort and energy performance
analysis of buildings.

Table 2. Comparison of average indoor air temperatures
between the reference [43] and present study.

Average indoor air temperatures (°C)

January 2020 January 2021
Reference Study 21.9°C 18.0°C
[43] (range: 14.5-26.8)  (range: 14.0-20.0)
Present Study 22.8°C 18.7°C
(Simulation) (range: 14.0-27.5)  (range: 14.5-21.2)
Difference (AT)  0.9°C 0.7°C

Model Limitations

In this study, mechanical ventilation and HVAC systems
were intentionally excluded from the simulation model after
the validation phase, with the aim of developing a
simplified framework that isolates the effects of internal
heat gains, occupancy rates, and metabolic activity on
thermal conditions. This approach allows for a more
focused analysis of thermal comfort dynamics that are often
overshadowed by HVAC operation in fully conditioned
spaces. However, it is important to acknowledge that the
exclusion of ventilation inherently limits the model’s ability
to capture certain environmental parameters, such as CO>
concentration and indoor air quality metrics. In real
buildings, especially those with continuous or dense
occupancy, ventilation plays a vital role in maintaining
acceptable air quality and regulating humidity. The current
model, by design, does not simulate these aspects, as its

primary objective is to examine the thermal response of the
indoor environment under passive or emergency-like
conditions where ventilation may be reduced or temporarily
unavailable. While scenarios involving extended high
occupancy without ventilation are not intended to reflect
standard operating conditions, they serve to highlight the
thermal consequences and internal load behaviors in the
absence of mechanical systems. Therefore, the findings
should be interpreted as representing a boundary case that
contributes to a better understanding of how internal factors
influence thermal comfort when HVAC support is limited
or selectively deactivated.

Results and Discussion

The variations in monthly average outdoor and indoor air
temperatures, as well as interior surface temperatures for
different occupancy and MR values, are presented in Fig. 3.
As expected, an increase in MR or occupancy led to an
increase in indoor air temperature and interior surface
temperatures. In scenarios with 50 occupants, the impact of
increasing MR on temperatures was more pronounced.
However, in scenarios with 100 or more occupants, the
effect of MR on monthly average indoor air and wall
surface temperatures remained limited. For the case with 50
occupants, the difference between the maximum and
minimum indoor temperatures was 16.8°C for MR of 50
W/person and 10.1°C for MR of 200 W/person. For 200
occupants, these values were determined as 4.4°C and
4.1°C, respectively. Additionally, with every increment of
50 people, the average indoor air temperatures increased by
3.7, 1.2, and 0.6°C, while the average interior surface
temperatures increased by 2.9, 0.9, and 0.5°C, respectively.
The reduction in temperature differences with increasing
occupancy highlighted that the contribution of thermal
gains from occupants to the total heat load was significant,
making these effects more noticeable at lower occupancy
levels.

On the other hand, an increase in MR significantly
influenced indoor temperatures, and it was observed that at
an MR value of 200 W/person, indoor air temperatures
remained higher regardless of the number of occupants.
This result clearly highlighted the dominant role of
metabolic activity in shaping internal thermal conditions,
especially under low occupancy scenarios. This indicated
that the increase in heat production per person elevated the
total internal heat gain, consequently raising indoor
temperatures as expected. Each 50 W/person increase in
MR raised the average indoor air temperatures by 5.4, 0.7,
and 0.6°C for an occupancy of 50 people, and by 0.1, 0.1,
and 0.2°C for an occupancy of 200 people. This non-linear
trend suggested that as the internal thermal load increased,
the relative impact of additional metabolic heat generation
diminished, indicating a saturation effect in enclosed
environments. Therefore, it was determined that the
influence of MR diminished in conditions where high
internal thermal gains and temperatures were achieved.
Additionally, as outdoor temperatures increased, indoor
temperatures reached maximum levels, indicating a
potential rise in cooling loads. Although the interior surface
temperatures followed a trend parallel to indoor air
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temperatures, they exhibited more limited variations in
response to increases in MR and occupancy. For 50
occupants and an MR of 50 W/person, the difference
between the average indoor air and interior surface
temperatures was 1.8°C, which increased to 3.1°C with
rising MR and occupancy. In the study by Calvaresi et al.
[45], an increase of approximately 50 W/person in
metabolic rate during the winter months was noted to cause
arise in air temperature of up to 3°C for occupancy level of
10 people. In the present study, this increase corresponded
to average temperature rises of 2.1, 0.6, 0.3, and 0.1°C for
occupancy levels of 50, 100, 150, and 200 people during
January, February, and December. This was attributed to
the slower response of wall surfaces to heat transfer
processes and the influence of thermal mass. Additionally,
these findings underscored the buffering role of building
envelope materials in mitigating rapid indoor temperature
changes, which could be strategically utilized in passive
design approaches. Kumar et al. [34] evaluated thermal
comfort conditions in a university workshop located in a
“Cwa” climate zone based on the Koppen—Geiger
classification, involving students with an estimated
metabolic rate of approximately 100 W/person. Although
the floor area per person was not specified, the average
indoor air temperatures during autumn, winter, and the
overall experimental period were reported as 25.1°C,
18.1°C, and 20.8°C, respectively. In the present study, under
a comparable metabolic rate (100 W/person) and an
occupancy level of 50 individuals, the corresponding values
were calculated as 30.8°C, 24.9°C, and 27.9°C. This notable
difference was likely attributed to variations in building
envelope  configurations and  regional  climate
characteristics. Furthermore, other factors such as
differences in solar exposure levels or internal heat gains
from equipment might also have contributed to the observed
temperature discrepancies. These findings demonstrated
that, even under similar metabolic loads, indoor thermal
conditions could differ significantly depending on building
and environmental parameters.

On the other hand, when MR values were kept constant and
occupancy varied, the differences observed in indoor air
and interior surface temperatures were more pronounced
compared to scenarios where occupancy was kept constant
and MR varied. This was because the increase in the heat
transfer surface area associated with the number of
occupants had a more significant effect than individual heat
gains resulting from metabolic density. In other words, the
spatial distribution and density of heat sources (people) had
a greater influence on the thermal environment than the
intensity of each source. Particularly, as the number of
occupants increased, the heat transfer surface area of the
indoor environment expanded, which led to a higher
potential for heat insulation or heat loss. Consequently, it
was concluded that occupancy had a much stronger impact
on indoor temperature dynamics compared to MR. This
conclusion aligned with the fundamental principles of
internal heat gain modeling, emphasizing that both
occupant density and distribution significantly affect
thermal comfort outcomes.

In Fig. 4, the variation of monthly internal thermal gains
from occupants (total metabolic gains) according to MR and
the number of occupants is presented. It was determined
that total internal thermal gains reached minimum levels
during the summer months and maximum values during the
winter months. This indicated that the thermal balance of
the indoor environment was related to outdoor
temperatures. Additionally, it was identified that due to the
high outdoor temperatures in the summer, heat production
from occupants had a limited impact. However, the increase
in internal thermal gains during the winter months (January,
February, December) was identified as a significant factor
contributing to the maintenance of indoor temperatures.

A noticeable increase in thermal gains was observed with
the rise in occupancy when the MR was kept constant and
the number of occupants varied. This trend was particularly
evident in the scenario with 200 occupants, where the total
internal heat gain in January and December was
significantly higher than in other scenarios. These findings
emphasized the substantial impact of occupant density on
indoor heat accumulation, even when individual metabolic
contributions remained unchanged. This highlighted the
influence of per capita metabolic heat on total thermal
gains.

Internal thermal gains increased as the MR rose when the
number of occupants was kept constant and the MR varied.
For instance, in the scenario with 50 occupants, thermal
gains generated by individuals with a MR of 200 W/person
showed a significant increase compared to those with a MR
of 50 W/person. This showed a saturation point where the
relative contribution of additional metabolic energy per
person becomes less significant in environments with
already high internal heat loads.

In the findings presented thus far in this study, the increases
in indoor air temperatures, interior surface temperatures,
and internal thermal gains from occupants due to the rise in
MR or the number of occupants were expected outcomes.
However, determining which factor (MR or occupancy) had
a greater influence on internal thermal gains was significant,
particularly for improving energy efficiency and thermal
comfort in buildings. Therefore, scenarios with different
combinations of MR and the number of occupants, where
the total metabolic thermal gains (MR x number of
occupants) were equal, were analyzed to determine their
impacts on indoor air temperature, interior surface
temperature, and internal thermal gains from occupants, as
shown in Fig. 5.

Despite having the same total metabolic heat production
(e.g., MR: 50 W/person with 100 occupants and MR: 100
W/person with 50 occupants), notable differences in indoor
air and wall surface temperatures were observed, especially
during winter and transitional seasons. In scenarios with a
higher number of occupants and lower MR, indoor air and
surface temperatures tended to be slightly higher due to
more homogeneous heat distribution and reduced local
temperature gradients. Conversely, in scenarios with fewer
occupants and higher MR, heat was concentrated around
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fewer individuals, reducing distribution efficiency and
resulting in lower average indoor temperatures.

Furthermore, while sharp peaks in thermal gains were
observed in scenarios with higher MR but fewer occupants,
the total thermal contribution remained limited due to local
heat losses and inefficient air mixing. In contrast, scenarios
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with lower MR and more occupants exhibited more stable
and balanced thermal gains, contributing to the stability of
indoor temperatures. Notably, scenarios with a higher
number of occupants demonstrated greater internal thermal
gains even when the total metabolic heat production was the
same, highlighting the importance of heat distribution
dynamics.
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Figure 3. Indoor air and interior surface temperatures for different occupancy and MR values.
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Figure 4. Internal thermal gains from occupants for different occupancy and MR values.

Seasonal variations also had a pronounced effect on indoor
conditions. During winter months, the differences between
scenarios became more evident, particularly in those
involving a higher number of occupants, which consistently
maintained elevated indoor temperatures. This contributed
to a reduction in heating demand, as internal heat gains from
occupancy played a more dominant role in thermal

regulation.

In the summer, due to high outdoor temperatures, the
influence of metabolic thermal gains diminished; however,
a large number of occupants could marginally increase
indoor temperatures, potentially impacting cooling loads.
As in studies such as [46], which examined energy

consumption and comfort under different occupancy levels,
it was determined that a greater number of occupants could
maintain indoor temperatures despite fluctuations in
metabolic rates. Besides, it was revealed that the interaction
between MR and occupancy was non-linear. Despite having
the same total metabolic heat, the distribution of occupants
significantly affected indoor temperatures. This finding
addressed a gap in the literature, which typically focused on
total heat output while overlooking the effects of spatial
distribution and air mixing. Additionally, seasonal analyses
highlighted the variable impacts of internal thermal gains
under different climatic conditions, emphasizing the
importance of context-specific strategies in building energy
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design. In conclusion, even when total metabolic heat
remained constant across different MR-occupancy
scenarios, indoor conditions were influenced by factors
such as heat distribution efficiency and occupant density.
These findings contributed to a deeper understanding of
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thermal comfort modeling and building energy
consumption, offering valuable insights for the
development of more responsive and adaptive HVAC
strategies.
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Figure 5. Monthly mean temperatures and internal thermal gains for different occupancy and MR combinations.

Conclusion

In this study, a simulation-based parametric analysis was
conducted to examine the effects of different combinations
of MR and occupancy on indoor air temperature, interior
surface temperature, and internal thermal gains from
occupants. Unlike previous studies that primarily
investigated thermal effects in buildings with diverse
functions, floor areas, and usage scenarios, this research
specifically isolated the influence of MR and occupancy in
a controlled non-ventilated building model. By

systematically varying these parameters, the study provided
a novel perspective on their relative impact on temperature
distribution and thermal dynamics. The findings
contributed to bridging the existing knowledge gap by
clarifying which factor (MR or occupancy) played a more
dominant role in shaping indoor thermal conditions. These
insights served as a foundation for optimizing internal
thermal gains and advancing energy-efficient design
strategies. To eliminate external influences and isolate the
thermal effects of occupants, ventilation was intentionally
excluded from the simulation model. Consequently, the
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humidity released by occupants accumulated over time,
causing indoor relative humidity to reach saturation (100%)
in all cases. Since relative humidity remained saturated and
showed no variation across scenarios, it was not included in
the comparative analysis.

This modeling approach is particularly relevant for
temporary or transitional indoor environments where
ventilation may be limited or intentionally suspended.
Examples include temporary emergency shelters, high-
density waiting areas (e.g., during crises or vaccination
campaigns), or enclosed public spaces used for short-term
occupancy, such as modular field hospitals or relief centers.
In such contexts, understanding the thermal effects of
occupancy and metabolic activity is critical for ensuring
occupant safety, thermal resilience, and energy resource
planning. By identifying the dominant role of occupant
density in shaping indoor temperatures, even under
conditions of constant metabolic heat, the study provides
actionable insights for energy load forecasting and passive
design strategies in these special-use environments.

The key findings revealed that both MR and occupancy
significantly impacted indoor thermal conditions, but their
effects differed depending on the scenario. While an
increase in MR or occupancy generally led to higher indoor
air and wall surface temperatures, the influence of MR
diminished in scenarios with high occupancy. Conversely,
occupancy had a stronger effect on indoor temperature
dynamics, particularly due to its role in expanding the heat
transfer surface area. Notably, even when total metabolic
heat production was constant, scenarios with a higher
number of occupants demonstrated greater internal thermal
gains due to more homogeneous heat distribution. Seasonal
variations played a critical role, with the impact of
metabolic thermal gains being more pronounced during the
winter months, thereby reducing heating demands, whereas
in the summer, their influence was limited due to dominant
outdoor temperatures.

In conclusion, even when total metabolic heat remained
constant across different MR-occupancy scenarios, indoor
conditions were influenced by factors such as heat
distribution efficiency and occupant density. These findings
contributed to a deeper understanding of thermal comfort
modeling and building energy consumption.

In future work, it would be valuable to explore how
different heating and cooling strategies, beyond traditional
HVAC systems, influence the relationship between MR,
occupancy, and indoor thermal conditions. Moreover, it
may be beneficial to investigate the impact of smart
building technologies, such as automated shading or
adaptive lighting systems, on the interplay between MR,
occupancy, and indoor thermal comfort. Expanding the
scope of such modeling to include emergency-use scenarios
and adaptive ventilation schemes may further enhance its
relevance and practical applicability. This could provide
insights into how responsive systems can optimize energy
use while maintaining occupant comfort under varying
conditions.
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