Asymptotically I-Cesàro Equivalence of Sequences of Sets

Uğur Ulusu* and Erdinç Dündar*
*Department of Mathematics, Faculty of Science and Literature, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey

Abstract

In this paper, we defined concepts of asymptotically I-Cesàro equivalence and investigate the relationships between the concepts of asymptotically strongly I-Cesàro equivalence, asymptotically strongly I-lacunary equivalence, asymptotically p-strongly I-Cesàro equivalence and asymptotically I-statistical equivalence of sequences of sets.

1. Introduction

The concept of convergence of sequences of real numbers \mathbb{R} has been transferred to statistical convergence by Fast [5] and independently by Schoenberg [16]. I-convergence was first studied by Kostyrko et al. [9] in order to generalize of statistical convergence which is based on the structure of the ideal I of subset of the set of natural numbers \mathbb{N}. Das et al. [4] introduced new notions, namely I-statistical convergence and I-lacunary statistical convergence by using ideal. There are different convergence notions for sequence of sets. One of them handled in this paper is the concept of Wijsman convergence (see, [1], [2], [6], [7], [8], [9], [10], [11], [15], [19], [20]).

The concepts of statistical convergence and lacunary statistical convergence of sequences of sets were studied in [11, 18] in Wijsman sense. Also, new convergence notions, for sequences of sets, which is called Wijsman I-convergence, Wijsman I-statistical convergence and Wijsman I-Cesàro summability by using ideal were introduced in [7], [8], [20]. Marouf [10] presented definitions for asymptotically equivalent and asymptotic regular matrices. This concepts was investigated in [12, 13, 14]. The concept of asymptotically equivalence of sequences of real numbers which is defined by Marouf [10] has been extended by Ulusu and Nuray [19] to concepts of Wijsman asymptotically equivalence of set sequences. Moreover, natural inclusion theorems are presented. Kışı et al. [8] introduced the concepts of Wijsman I-asymptotically equivalence of sequences of sets.

2. Definitions and notations

Now, we recall the basic definitions and concepts (See [1, 2, 6, 7, 8, 9, 10, 11, 15, 19, 20]).

Let (Y, ρ) be a metric space. For any point $y \in Y$ and any non-empty subset U of Y, we define the distance from y to U by $d(y, U) = \inf_{u \in U} \rho(y, u)$.

Let (Y, ρ) be a metric space and U, U_i be any non-empty closed subsets of Y. The sequence $\{U_i\}$ is Wijsman convergent to U if for each $y \in Y$,

$$\lim_{i \to \infty} d(y, U_i) = d(y, U).$$

Let (Y, ρ) be a metric space and U, U_i be any non-empty closed subsets of Y. The sequence $\{U_i\}$ is Wijsman statistical convergent to U if $\{d(y, U_i)\}$ is statistically convergent to $d(y, U)$; i.e., for every $\varepsilon > 0$ and for each $y \in Y$,

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ i \leq n : |d(y, U_i) - d(y, U)| \geq \varepsilon \right\} \right| = 0.$$
A family of sets \(\mathcal{F} \subseteq 2^\mathbb{N} \) is called an ideal if and only if (i) \(\emptyset \in \mathcal{F} \), (ii) For each \(U, V \in \mathcal{F} \) we have \(U \cup V \in \mathcal{F} \), (iii) For each \(U \in \mathcal{F} \) and each \(V \subseteq U \) we have \(V \in \mathcal{F} \).

An ideal is called non-trivial ideal if \(\mathbb{N} \notin \mathcal{F} \) and non-trivial ideal is called admissible ideal if \(\{ n \} \in \mathcal{F} \) for each \(n \in \mathbb{N} \).

A family of sets \(\mathcal{I} \subseteq 2^\mathbb{N} \) is a filter if and only if (i) \(\emptyset \notin \mathcal{I} \), (ii) For each \(U, V \in \mathcal{I} \) we have \(U \cap V \in \mathcal{I} \), (iii) For each \(U \in \mathcal{I} \) and each \(V \supseteq U \) we have \(V \in \mathcal{I} \).

Proposition 2.1. \(\mathcal{I} \) is a non-trivial ideal in \(\mathbb{N} \) if and only if

\[
\mathcal{I}(\mathcal{F}) = \{ E \subseteq \mathbb{N} : (\exists U \in \mathcal{I})(E = N \setminus U) \}
\]

is a filter in \(\mathbb{N} \).

Throughout the paper, we let \((Y, \rho)\) be a separable metric space, \(\mathcal{I} \subseteq 2^\mathbb{N} \) be an admissible ideal and \(U, U_i \) be any non-empty closed subsets of \(Y \).

The sequence \(\{U_i\} \) is Wijsman \(\mathcal{I} \)-convergent to \(U \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \), \(U(y, \varepsilon) = \{ i \in \mathbb{N} : |d(y, U_i) - d(y, U)| \geq \varepsilon \} \) belongs to \(\mathcal{I} \).

The sequence \(\{U_i\} \) is Wijsman \(\mathcal{I} \)-statistical convergent to \(U \), if for every \(\varepsilon > 0, \delta > 0 \) and for each \(y \in Y \),

\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \left| \left\{ i \leq n : |d(y, U_i) - d(y, U)| \geq \varepsilon \right\} \right| \geq \delta \right\} \in \mathcal{I}
\]

and we write \(U_i \overset{S(\mathcal{I})}{\rightarrow} U \).

The sequence \(\{U_i\} \) is Wijsman \(\mathcal{I} \)-Cesàro summable to \(U \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),

\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y, U_i) - d(y, U)| \geq \varepsilon \right\} \in \mathcal{I}
\]

and we write \(U_i \overset{C(\mathcal{I})}{\rightarrow} U \).

The sequence \(\{U_i\} \) is Wijsman strongly \(\mathcal{I} \)-Cesàro summable to \(U \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),

\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y, U_i) - d(y, U)| \geq \varepsilon \right\} \in \mathcal{I}
\]

and we write \(U_i \overset{C_s(\mathcal{I})}{\rightarrow} U \).

The sequence \(\{U_i\} \) is Wijsman \(p \)-strongly \(\mathcal{I} \)-Cesàro summable to \(U \), if for every \(\varepsilon > 0 \), for each \(p \) positive real number and for each \(y \in Y \),

\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y, U_i) - d(y, U)|^p \geq \varepsilon \right\} \in \mathcal{I}
\]

and we write \(U_i \overset{C_{p}(\mathcal{I})}{\rightarrow} U \).

By a lacunary sequence we mean an increasing integer sequence \(\theta = \{k_r\} \) such that \(k_0 = 0 \) and \(h_r = k_r - k_{r-1} \to \infty \) as \(r \to \infty \). In this paper the intervals determined by \(\theta \) will be denoted by \(I_r = (k_{r-1}, k_r) \) and ratio \(\frac{k_r}{k_{r-1}} \) will be abbreviated by \(q_r \).

Let \(\theta \) be a lacunary sequence. The sequence \(\{U_i\} \) is Wijsman strongly \(\mathcal{I} \)-lacunary summable to \(U \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),

\[
\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k_r \leq i \leq k_{r+1}} |d(y, U_i) - d(y, U)| \geq \varepsilon \right\} \in \mathcal{I}
\]

and we write \(U_i \overset{N\alpha(\mathcal{I})}{\rightarrow} U \).

Two nonnegative sequences \(a = (a_i) \) and \(b = (b_i) \) are said to be asymptotically equivalent if

\[
\lim_{i \to \infty} \frac{a_i}{b_i} = 1
\]

and denoted by \(a \sim b \).

We define \(d(y; U_i, V_i) \) as follows:

\[
d(y; U_i, V_i) = \begin{cases}
\frac{d(y, U_i)}{d(y, V_i)}, & y \notin U_i \cup V_i \\
\mathcal{L}, & y \in U_i \cup V_i.
\end{cases}
\]

The sequences \(\{U_i\} \) and \(\{V_i\} \) are Wijsman asymptotically equivalent of multiple \(\mathcal{L} \), if for each \(y \in Y \),

\[
\lim_{i \to \infty} d(y; U_i, V_i) = \mathcal{L}.
\]
The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are Wijsman asymptotically statistical equivalent of multiple \(\mathcal{L} \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),
\[
\lim_{n \to \infty} \frac{1}{n} \left| \{ i \leq n : |d(y; U_i, V_i) - \mathcal{L}| \geq \varepsilon \} \right| = 0.
\]
The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are Wijsman asymptotically \(\mathcal{I} \)-equivalent of multiple \(\mathcal{L} \), if for every \(\varepsilon > 0 \) and each \(y \in Y \)
\[
\{ i \in \mathbb{N} : |d(y; U_i, V_i) - \mathcal{L}| \geq \varepsilon \} \in \mathcal{I}
\]
and we write \(U_i \overset{\mathcal{I}}{\sim} V_i \) and simply Wijsman asymptotically \(\mathcal{I} \)-equivalent if \(\mathcal{L} = 1 \).

The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are Wijsman asymptotically \(\mathcal{I} \)-statistical equivalent of multiple \(\mathcal{L} \), if for every \(\varepsilon > 0, \delta > 0 \) and for each \(y \in Y \),
\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \left| \{ i \leq n : |d(y; U_i, V_i) - \mathcal{L}| \geq \varepsilon \} \right| \geq \delta \right\} \in \mathcal{I}
\]
and we write \(U_i \overset{\mathcal{S}(\mathcal{I}^{\delta})}{\sim} V_i \) and simply Wijsman asymptotically \(\mathcal{I} \)-statistical equivalent if \(\mathcal{L} = 1 \).

3. Main results

In this section, we defined notions of asymptotically \(\mathcal{I} \)-Cesàro equivalence of sequences of sets. Also, we investigate the relationships between the concepts of asymptotically strongly \(\mathcal{I} \)-Cesàro equivalence, asymptotically strongly \(\mathcal{I} \)-lacunary equivalence, asymptotically \(p \)-strongly \(\mathcal{I} \)-Cesàro equivalence and asymptotically \(\mathcal{I} \)-statistical equivalence of sequences of sets.

Definition 3.1. The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are asymptotically \(\mathcal{I} \)-Cesàro equivalence of multiple \(\mathcal{L} \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),
\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y; U_i, V_i) - \mathcal{L}| \geq \varepsilon \right\} \in \mathcal{I}
\]
and we write \(U_i \overset{\mathcal{C}(\mathcal{I}^{\mathcal{L}})}{\sim} V_i \) and simply asymptotically \(\mathcal{I} \)-Cesàro equivalent if \(\mathcal{L} = 1 \).

Definition 3.2. The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are asymptotically strongly \(\mathcal{I} \)-Cesàro equivalence of multiple \(\mathcal{L} \), if for every \(\varepsilon > 0 \) and for each \(y \in Y \),
\[
\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y; U_i, V_i) - \mathcal{L}| \geq \varepsilon \right\} \in \mathcal{I}
\]
and we write \(U_i \overset{\mathcal{C}(\mathcal{I}^{\mathcal{L}})}{\sim} V_i \) and simply asymptotically strongly \(\mathcal{I} \)-Cesàro equivalent if \(\mathcal{L} = 1 \).

Theorem 3.3. Let \(\theta \) be a lacunary sequence. If \(\lim \inf q_r > 1 \) then,
\[
U_i \overset{\mathcal{C}(\mathcal{I}^{\mathcal{L}})}{\sim} V_i \Rightarrow U_i \overset{\mathcal{S}(\mathcal{I}^{\delta})}{\sim} V_i.
\]

Proof. If \(\lim \inf q_r > 1 \), then there exists \(\delta > 0 \) such that \(q_r \geq 1 + \delta \) for all \(r \geq 1 \). Since \(h_r = k_r - k_{r-1} \), we have
\[
\frac{k_r}{h_r} \leq \frac{1 + \delta}{\delta} \quad \text{and} \quad \frac{k_{r-1}}{h_r} \leq \frac{1}{\delta}.
\]
Let \(\varepsilon > 0 \) and for each \(y \in Y \), we define the set
\[
S = \left\{ k_r \in \mathbb{N} : \frac{1}{k_r} \sum_{i=1}^{k_r} |d(y; U_i, V_i) - \mathcal{L}| < \varepsilon \right\}.
\]
We can easily say that \(S \in \mathcal{F}(\mathcal{I}) \), which is a filter of the ideal \(\mathcal{I} \), so we have
\[
\frac{1}{n} \sum_{i=1}^{k_r} |d(y; U_i, V_i) - \mathcal{L}| = \frac{1}{n} \frac{k_r}{n} \sum_{i=1}^{k_r} |d(y; U_i, V_i) - \mathcal{L}| - \frac{1}{n} \frac{k_{r-1}}{n} \sum_{i=1}^{k_{r-1}} |d(y; U_i, V_i) - \mathcal{L}|
\]
\[
= \frac{k_r}{n} \cdot \frac{1}{k_r} \sum_{i=1}^{k_r} |d(y; U_i, V_i) - \mathcal{L}|
\]
\[
- \frac{k_{r-1}}{n} \cdot \frac{1}{k_{r-1}} \sum_{i=1}^{k_{r-1}} |d(y; U_i, V_i) - \mathcal{L}|
\]
\[
\leq \left(1 + \frac{\delta}{\delta} \right) \varepsilon - \frac{1}{\delta} \varepsilon.',
\]
for each \(y \in Y \) and for each \(k_r \in S \). Choose \(\eta = \left(\frac{1+\delta}{\delta} \right) \varepsilon + \frac{1}{\delta} \varepsilon' \). Therefore, for each \(y \in Y \)

\[
\left\{ r \in \mathbb{N} : \frac{1}{k_r} \sum_{j \in k_r} |d(y; U_i, V_i) - \mathcal{L}| < \eta \right\} \in \mathcal{F} (\mathcal{L}).
\]

Therefore, \(U_r^{\mathcal{N}^b_r} |_{\mathcal{F} r} \sim V_i \).

\[\square \]

Theorem 3.4. Let \(\theta \) be a lacunary sequence. If \(\limsup_r q_r < \infty \) then,

\[U_r^{\mathcal{N}^b_r} |_{\mathcal{F} r} \sim V_i \Rightarrow U_r^{C^1 |_{\mathcal{F} r}} |_{\mathcal{F} r} V_i, \]

\[\text{Proof.} \] If \(\limsup_r q_r < \infty \), then there exists \(K > 0 \) such that \(q_r < K \) for all \(r \geq 1 \). Let \(U_r^{\mathcal{N}^b_r} |_{\mathcal{F} r} \sim V_i \) and for each \(y \in Y \), we define the sets \(T \) and \(R \)

\[T = \left\{ r \in \mathbb{N} : \frac{1}{k_r} \sum_{j \in k_r} |d(y; U_i, V_i) - \mathcal{L}| < \epsilon_1 \right\} \]

and

\[R = \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y; U_i, V_i) - \mathcal{L}| < \epsilon_2 \right\}. \]

Let

\[a_j = \frac{1}{k_r} \sum_{j \in k_r} |d(y; U_i, V_i) - \mathcal{L}| < \epsilon_1 \]

for each \(y \in Y \) and for all \(j \in T \). It is obvious that \(T \in \mathcal{F} (\mathcal{L}) \). Choose \(n \) is any integer with \(k_{r-1} < n < k_r \), where \(r \in T \). Then, for each \(y \in Y \) we have

\[
\frac{1}{k_r} \sum_{i \in k_r} |d(y; U_i, V_i) - \mathcal{L}| \leq \frac{1}{k_{r-1}} \sum_{i \in k_{r-1}} |d(y; U_i, V_i) - \mathcal{L}|
\]

\[= \frac{1}{k_{r-1}} \left(\sum_{i \in k_{r-1}} |d(y; U_i, V_i) - \mathcal{L}| + \sum_{i \in k_r} |d(y; U_i, V_i) - \mathcal{L}| + \ldots + \sum_{i \in k_r} |d(y; U_i, V_i) - \mathcal{L}| \right) \]

\[= \frac{1}{k_{r-1}} \left(\sum_{i \in k_{r-1}} |d(y; U_i, V_i) - \mathcal{L}| \right) + \frac{k_r-k_{r-1}}{k_{r-1}} \left(\sum_{i \in k_r} |d(y; U_i, V_i) - \mathcal{L}| \right) + \ldots + \frac{k_r-k_{r-1}}{k_{r-1}} \left(\sum_{i \in k_r} |d(y; U_i, V_i) - \mathcal{L}| \right) \]

\[= \frac{1}{k_{r-1}} a_1 + \frac{k_r-k_{r-1}}{k_{r-1}} a_2 + \ldots + \frac{k_r-k_{r-1}}{k_{r-1}} a_r \]

\[\leq \left(\sup_{j \in T} a_j \right) \frac{k_r-k_{r-1}}{k_{r-1}} \leq \epsilon_1 \cdot K. \]

Choose \(\epsilon_2 = \frac{\epsilon}{K} \) and in view of the fact that

\[\bigcup \{ n : k_{r-1} < n < k_r, r \in T \} \subset R, \]

where \(T \in \mathcal{F} (\mathcal{L}) \), it follows from our assumption on \(\theta \) that the set \(R \) also belongs to \(\mathcal{F} (\mathcal{L}) \) and therefore, \(U_r^{C^1 |_{\mathcal{F} r}} |_{\mathcal{F} r} V_i \).

\[\square \]

We have the following Theorem by Theorem 3.3 and Theorem 3.4.

Theorem 3.5. Let \(\theta \) be a lacunary sequence. If \(1 < \liminf_r q_r < \limsup_r q_r < \infty \) then,

\[U_r^{C^1 |_{\mathcal{F} r}} |_{\mathcal{F} r} V_i \Leftrightarrow U_r^{\mathcal{N}^b_r} |_{\mathcal{F} r} V_i. \]

Definition 3.6. The sequences \(\{ U_i \} \) and \(\{ V_i \} \) are asymptotically \(p \)-strongly \(\mathcal{F} \)-Cesàro equivalence of multiple \(\mathcal{L} \) if for every \(\varepsilon > 0 \), for each \(p \) positive real number and for each \(y \in Y \),

\[\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{i=1}^{n} |d(y; U_i, V_i) - \mathcal{L}|^p \geq \varepsilon \right\} \in \mathcal{F} \]

and we write \(U_r^{C^1 |_{\mathcal{F} r}} |_{\mathcal{F} r} V_i \) simply asymptotically \(p \)-strongly \(\mathcal{F} \)-Cesàro equivalent if \(\mathcal{L} = 1 \).
Theorem 3.7. If the sequences \(\{U_i\} \) and \(\{V_i\} \) are asymptotically \(p \)-strongly \(\mathcal{F} \)-Cesàro equivalence of multiple \(\mathcal{L} \) then, \(\{U_i\} \) and \(\{V_i\} \) are asymptotically \(\mathcal{F} \)-statistical equivalence of multiple \(\mathcal{L} \).

Proof. Let \(U_i \overset{C^{(p)}_\mathcal{F}}{\sim} V_i \) and \(\varepsilon > 0 \) given. Then, for each \(y \in Y \) we have

\[
\sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p \geq \varepsilon \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p
\]

and so

\[
\frac{1}{\varepsilon^p} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p \geq \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}| \geq \varepsilon.
\]

Hence, for each \(y \in Y \) and for a given \(\delta > 0 \),

\[
\left\{ \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}| \geq \varepsilon \right\} \subseteq \left\{ \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p \geq \varepsilon - \delta \right\} \in \mathcal{F}.
\]

Therefore, \(U_i \overset{\mathcal{S}^{(p)}_\mathcal{F}}{\sim} V_i \).

Theorem 3.8. Let \(d(y;U_i) = \mathcal{O}(d(y;V_i)) \). If \(\{U_i\} \) and \(\{V_i\} \) are asymptotically \(\mathcal{F} \)-statistical equivalence of multiple \(\mathcal{L} \) then, \(\{U_i\} \) and \(\{V_i\} \) are asymptotically \(\mathcal{F} \)-Cesàro equivalence of multiple \(\mathcal{L} \).

Proof. Suppose that \(d(y;U_i) = \mathcal{O}(d(y;V_i)) \) and \(U_i \overset{\mathcal{S}^{(p)}_\mathcal{F}}{\sim} V_i \). Then, there is a \(K > 0 \) such that \(d(y;U_i,V_i) \leq K \) for all \(i \) and for each \(y \in Y \). Given \(\varepsilon > 0 \) and for each \(y \in Y \), we have

\[
\sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p \leq \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}| \leq K^p \cdot \frac{\varepsilon}{K^p}.
\]

Then, for any \(\delta > 0 \),

\[
\left\{ \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}| \geq \delta \right\} \subseteq \left\{ \frac{1}{n} \cdot \sum_{i=1}^{n} |d(y;U_i,V_i) - \mathcal{L}|^p \geq \delta \right\} \in \mathcal{F}.
\]

Therefore, \(U_i \overset{C^{(p)}_\mathcal{F}}{\sim} V_i \).

References