
Çok Boyutlu Yazılım Geliştirme Verimlilik Değerlendirme
Modeli Önerisi ve Uzaktan Çalışma Ortamlarında Kullanım

Örnekleri
Multi-Dimensional Software Development Efficiency

Assessment Model Proposal and Its Evaluation in Remote
Work Environments

Öz
Geleneksel yazılım geliştirme projelerinde verimlilik,
yalnızca girdi-çıktı oranı üzerinden değerlendirilen, çoğu
zaman tek boyutlu bir yaklaşımla ele alınmaktadır. Bu
bakış açısı, kod kalitesi, bakım yükü ve müşteri
memnuniyeti gibi kritik unsurları göz ardı ederek,
verimliliğin çok boyutlu doğasını tam olarak
yansıtamamaktadır. Bu çalışmada, yazılım geliştirme
süreçlerindeki verimliliği somut verilerle ölçülebilir hale
getirmeyi amaçlayan, dokuz temel boyuttan oluşan
kapsamlı bir model önerilmiştir.

Modelin uygulanabilirliğini ve geçerliliğini test etmek
amacıyla, üç farklı kurumda üçer yıllık döngüleri kapsayan
bir örnek olay çalışması gerçekleştirilmiştir. Elde edilen
bulgular, önerilen modelin gerçek hayattaki yazılım
geliştirme süreçleriyle uyumlu olduğunu ve kurumlardaki
gözlemlerle tutarlı sonuçlar üretebildiğini göstermektedir.
Bu yönüyle, önerilen model, literatürdeki tek boyutlu
verimlilik yaklaşımlarından önemli ölçüde ayrışmaktadır.

Verimlilik sonuçlarının, kurum kültürü, takım yapısı,
kullanılan teknolojiler ve teknik borç gibi bağlamsal
faktörlerden etkilendiği görülmüştür. Bu nedenle, modelin
sağladığı değerlerin her kuruma özgü olduğu ve doğrudan
kurumlar arası karşılaştırma yerine, kurumlardaki zaman
içindeki değişimin incelenmesinin daha anlamlı sonuçlar
vereceği vurgulanmıştır. Önerilen model, yapay zekanın
yazılım geliştirmeye entegrasyonu ve farklı iş modellerinin
verimliliğe olan etkileri gibi güncel konuların incelenmesi
için bir temel sunmaktadır. Bu çalışma, gelecekteki
araştırmalar için verimlilik analizlerinde bir zemin
hazırlamakta ve yazılım verimliliği alanında çok boyutlu ve
bağlama duyarlı yaklaşımların önemini ortaya
koymaktadır.

Anahtar sözcükler: Yazılım geliştirme, verimlilik,
üretkenlik, yazılım metrikleri, yapay zeka, uzaktan çalışma

Abstract
In traditional software development, efficiency is often
evaluated through a one-dimensional approach that
focuses solely on the input-output ratio. This perspective
overlooks critical factors such as code quality,
maintenance burden, and customer satisfaction, failing to
capture the multidimensional nature of efficiency. This
study proposes a comprehensive, nine-dimensional model
designed to make software development efficiency and
productivity measurable using concrete data.

To test the model's applicability and validity, a case study
was conducted across three different organizations,

Haluk ALTUNEL
Bilkent Üniversitesi

Bilgisayar Mühendisliği
Ankara Türkiye

altunel@bilkent.edu.tr
ORCID: 0000-0003-1103-3644

Makale Bilgileri
Türü: Derleme
Geliş tarihi: 15.06.2025
Kabul tarihi: 30.10.2025

Article Info
Type: Survey
Received date: 15.06.2025
Accepted date: 30.10.2025

Atıf/ to Cite (IEEE): H. ALTUNEL: Çok Boyutlu Yazılım
Geliştirme Verimlilik Değerlendirme Modeli Önerisi ve

Uzaktan Çalışma Ortamlarında Kullanım Örnekleri :
Bilgisayar Bilimleri ve Mühendisliği Dergisi, Cilt 18 2025 Sayı-

2 1-12. Sf: 69-80, : DOI: 10.54525/bbmd.1719996

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 163

covering three-year periods within each. The findings
demonstrate that the proposed model is consistent with
real-world software development processes and produces
results that align with observations within these
organizations. In this regard, the model significantly
departs from the one-dimensional efficiency approaches
prevalent in existing literature.

The results indicate that efficiency is influenced by
contextual factors such as company culture, team
structure, technologies used, and technical debt.
Therefore, it is emphasized that the values provided by the
model are specific to each organization. Instead of direct
comparison, analyzing changes over time within a single
organization yields more meaningful results. The proposed
model provides a foundation for examining current topics,
such as the integration of artificial intelligence into
software development and the impact of different
business models on efficiency. This work establishes a
basis for future research and highlights the importance of
adopting a multidimensional, context-aware approach to
software efficiency.

Keywords: Software development, efficiency,
productivity, software metrics, artifical intelligence,
remote working environment.

1. Giriş
Yazılım geliştirme projeleri, temelinde üretim projeleridir
ve genel olarak yeni bir ürün veya yeni fonksiyonaliteler
ortaya çıkartmayı hedefler. Üretimin olduğu ortamlarda
girdi ve çıktıdan söz edilebilir. Yazılım geliştirme
sistemlerinde temel girdi insanın zekası ve emeğidir. Çıktı
ise hedeflenen ürün veya buna bağlı fonksiyonalitedir.
Üretim sistemi bakış açısı ile bu tür bir sistemin çıktısının
girdisine oranına bakılarak en yalın hali ile verimlilik
hesaplamak mümkündür. Bunun sonucu olarak, yazılım
geliştirme dünyasında verimlilik ve üretkenlik ölçümleri
genel olarak tek boyutlu olarak hesaplanmıştır. Öte
yandan yazılım geliştirmedeki diğer çıktılar olan kodun
kalitesi, canlıda çıkan hatalar, bakım yükü, kodun güvenliği
ve müşteride yarattığı memnuniyet ise verimliliğin parçası
olarak görülmemiş sadece verimliliğe etki eden faktörler
olarak değerlendirilmiştir. Ayrıca yazılımı üreten insanların
verimliliği ise yazılım geliştirme verimlilik değerlendirme
modellerinin bir parçası olarak değerlendirilmemiştir.
Halbuki yazılım geliştirmede verimlilik ve üretkenlik çok
boyutludur ve farklı boyutları da dahil edilerek ele
alınmalıdır.
Son yıllarda yazılım geliştirme ekosistemini önemli ölçüde
etkileyen dış etkenler bulunmaktadır. Bunlardan ilki yapay
zekanın yazılım geliştirmedeki kullanımının
yaygınlaşmasıdır. Diğeri de pandeminin de etkisi ile
uzaktan çalışmanın yaygın şekilde endüstride kullanılmaya
başlamasıdır [1]. Her ikisi de yazılım geliştirme
alışkanlıklarını değiştirmekte, verimliliğe ve üretkenliğe
yeniden ve daha geniş bir açıdan bakmayı gerekli
kılmaktadır. Dolayısı ile bu çalışmada yazılım geliştirme

alanında çok boyutlu bir verimlilik değerlendirme modeli
önerilmiştir. Toplam 9 boyut belirlenmiş ve bu boyutların
ölçümleri için formüller ortaya konmuştur. Önerilen çok
boyutlu verimlilik modeli 3 farklı kurumda uzaktan çalışma
koşullarında denenmiş ve kullanılabildiği görülmüştür.

Makale temel olarak 4 bölüm halinde yapılandırılmıştır.
Sıradaki bölümünde yazılım geliştirmede verimlilik
ölçümüne dair literatürdeki çalışmalar özetlenmiştir.
Üçüncü bölümde önerilen model ve bunun bileşenlerine
yer verilmiştir. Dördüncü bölümde uygulamaya dair 3
örnek ele alınmış ve modelin uygulama sonuçları
değerlendirilerek karşılaştırılmıştır. Çalışmanın sonuçları
özetlenerek, çalışmanın gelişmesine dönük sonraki
adımlara yer verilerek kapanış yapılmıştır.

2. Kaynak Taraması

2.1 Yazılım Geliştirme Verimlilik Değerlendirme
Modelleri

Yazılım geliştirme alanındaki üretkenlik ve verimlilik ölçme
ve değerlendirme modellerinin belirlenmesi için aşağıdaki
araştırma sorularına yanıt aranmıştır:

AS (Araştırma Sorusu)-1: Yazılım geliştirmede hangi
verimlilik modelleri ve bunlara bağlı hangi metrikler
tanımlanmıştır?
AS (Araştırma Sorusu)-2: Yazılım geliştirmede hangi
üretkenlik modelleri ve bunlara bağlı hangi metrikler
tanımlanmıştır?
Bu sorulara literatürde verilen yanıtların takibi amacı ile
sorgu komutları oluşturularak araştırma
kütüphanelerinde tarama yapılmıştır.
Sorgu Komutu-1: "Software Development" AND
"Productivity Model".
Sorgu Komutu-2: "Software Development" AND
"Efficiency Model".
Web of Science (WoS) ana araştırma kütüphanesi olarak
kullanılmıştır. Google Scholar da tamamlayıcı kütüphane
olarak taramaya dahil edilmiştir. Taramalar Eylül 2025’de
yapılarak sonuçları Tablo 1’de özetlenmiştir. Taramalarda
güncel çalışmalara yer verilmesi ve de teknolojideki
değişimin etkilerinin yansımasının görülebilmesi amacı ile
2020 ve sonrasındaki yayınlara dair sorgu sonuçları da
Tablo 1’de yer almaktadır. Ayrıca odaklanılacak kümenin
belirlenmesi amacı ile atıf alan yayınlara dair sayılar da
Tablo 1’e eklenmiştir. Bu makalenin ana amacı sistematik
literatür taraması olmadığı için tarama çalışması diğer
araştırma kütüphanelerine genişletilmemiştir.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 164

Çizelge-1: Sorgu Komutları Sonucu Listelenen Yayın Sayıları

Çizelge-1’deki çalışmalardan 2020 ve sonrasında
yayınlanan ve atıf alan çalışmalara odaklanılmıştır. Tek bir
liste oluşturulması amacı ile ilk adım olarak Sorgu Komutu
1 ve 2’de ortak yer alan çalışmalar tekleştirilmiştir. İkinci
adım olarak listede tüm çalışmalar, bilimsel titizlik ve
konuyla ilgisi açısından gözden geçirilerek odaklanılacak
çalışma sayısı 18’e indirilmiştir ve bu çalışmalar Tablo 2’de
yer almaktadır.

Çizelge-2’de yer alan çalışmalardan 7 tanesi verimlilik
modeli veya verimlilik ölçümü önermesinde bulunmuştur.
Yazılım üretkenliğinin göstergesi olarak üretilen kod
miktarı için Kod Satır Sayısı (KSS) ve üretilen fonksiyonalite
için Fonksiyon Nokta (FN) ölçümleri önerilmiştir [2].
Bunlara ilave olarak toplam emek, üretilen Kullanım
Durumu Noktaları (KDN) analiz edilerek üretkenlik ölçümü
için bu ikisinin oranını olan Üretkenlik Faktörü (ÜF) ortaya
konmuştur [3]. Çevik yöntemlerin kullanılması durumunda
işlerin kıyaslaması için kullanılabilecek Göreceli Emek
kavramı ortaya atılmıştır [4]. Fonksiyonel Boyut (FB)
yazılımın fonksiyonel boyutu olarak üretkenliğin temel
boyutu olarak öne çıkartılmıştır [5]. Açık kaynaklı
projelerde ekosistemdeki katılımcıların, ürettiği kod
deposu oluşturma, kod gönderme, sorun bildirme, yorum
yapma gibi bilgilerin toplamını ele alan Açık Kaynak Yazılım
Ekosistemi Toplam Üretkenliği (AKYETÜ) kavramı
üretilmiştir ancak formüle edilmemiştir [6, 7]. Yazılım
projelerindeki üretkenlik, üretim çıktısının emeğe oranı
olarak önerilmiş ancak sadece bu açıdan
değerlendirmenin yeterli olmayacağı, projedeki
insanların, geliştirilen ürünün ve organizasyonun da
etkisinin olduğu değerlendirilmiştir [8].

Üretkenliğe ve verimliğe etki eden faktörler farklı
çalışmalara konu olmuş ve temel olarak yazılım geliştirme
yöntemi, proje karmaşıklığı, ekip otonomisi, yazılımın
geliştirildiği programlama dilleri, yazılımın mimarisi,
DevOps altyapısı, iş alanı ekibin motivasyonu, yetkinliği ve
tecrübe seviyesinin ön planda olduğu gösterilmiştir [9-17].
Son yıllarda yazılım geliştirmede yaygınlığı giderek artan
yapay zeka kullanımının üretkenliğe etkileri ortaya
konmuş ancak ayrı bir değerlendirme modeli
önerilmemiştir [18, 19].

2.2 Verimlilik Değerlendirmenin Uzaktan Çalışma
Ortamlarındaki Kullanım Örnekleri

Teknoloji alanındaki gelişmelerin sonucu olarak uzaktan
çalışma fikri 2000’li yılların başında tartışılmaya başlanan
bir kavram haline gelmiştir. İngiltere’de bu modelle
çalışanların 1997-2002 yılları arasındaki deneyimleri
derlendiğinde çalışma saatlerinin ve mekânsal esnekliğin
getirdiği avantajların yanında stres seviyesinin artması ve
sınırların bulanıklaşması sorunlarını beraberinde getirmesi
sonucuna ulaşılmıştır [20]. Benzer avantajların yanında
uzaktan çalışmanın sosyal ilişkiler, iş ortamındaki güven ve
çalışanlar arası bilgi paylaşımı noktasında zorluklara sebep
olduğu da ortaya konmuştur [21]. Uzaktan ekip
yönetmenin farklı hazırlıklar gerektirdiği, çalışanlara daha
sık ve veriye dayalı geri bildirim verilmesi gerekliliği de yine
aynı çalışmada tespit edilmiştir.

Çizelge-2: Odaklanılan Yayınlar

Yazılım geliştirme alanı özelinde uzaktan çalışmaya dair
araçlar ve altyapı, bilgi paylaşımı, uzaktan eşli
programlama, büyük grup toplantıları, farkındalık ve
sosyal etkileşim zorluklarının ön plana çıktığı tespit
edilmiştir [22]. Uzaktan çalışan yazılım profesyonellerinin
zihinsel iş yüklerinin yüksek olduğu ve bunun arka
planında yeni teknolojileri öğrenme zorunluluğu ve zaman
kısıtlarının öne çıktığı anlaşılmıştır [23]. Diğer yandan
küçük takımların daha yüksek verimlilik sağladığını; takım
üyelerinin motivasyonu, iletişimi ve yeniliğe destek gibi

W
oS

G
oo

gl
e

Sc
ho

la
r

W
oS

 (2
02

0
ve

so

nr
as

ı)

G
oo

gl
e

Sc
ho

la
r

(2
02

0
ve

 so
nr

as
ı)

W
oS

 (2
02

0
ve

so

nr
as

ı o
lu

p
at

ıf
al

an
)

G
oo

gl
e

Sc
ho

la
r

(2
02

0
ve

 so
nr

as
ı

ol
up

 a
tıf

 a
la

n)

Sorgu Komutu-1: "Software
Development" AND "Productivity
Model"

101 60 17 38 12 24
Sorgu Komutu-2: "Software
Development" AND "Efficiency
Model"

109 43 17 11 12 8

Yayın Adı

Ya
yı

n
Ti

pi

(D
er

gi
/K

on
fe

ra
ns

)

Ya
yı

n
Yı

lı

At
ıf

Sa
yı

sı

Enhanced framework for ensemble effort estimation by using
recursive-based classification D 2021 14

Towards an evidence-based theoretical framework on factors
influencing the software development productivity D 2020 22

Framework of Software Developers Engagement Antecedents and
Productivity - A Review K 2020 19

Low-Code Versus Code-Based Software Development: Which Wins the
Productivity Game? D 2022 31

A Cost Estimating Method for Agile Software Development D 2021 16

Parametric Software Reliability Growth Model with Testing Effort : A
Review K 2021 6

The Measurement of the Software Ecosystem's Productivity with
GitHub K 2021 9

How to Evaluate the Productivity of Software Ecosystem: A Case Study
in GitHub D 2020 9

Placing Trust in Automated Software Development Processes D 2022 1

Tool for Measuring Productivity in Software Development Teams D 2021 6

Studying Task Processes for Improving Programmer Productivity D 2021 13

Software Development Productivity Model: Validation through Expert
Review K 2021 4

Using COSMIC to measure functional size of software: a Systematic
Literature Review K 2022 4

A Process Model for Component-Based Model-Driven Software
Development D 2020 15

Evaluation of the implementation of a subset of ISO/IEC 29110
Software Implementation process in four teams of undergraduate
students of Ecuador. An empirical software engineering experiment

D 2020 21

Factors influencing vendor organizations in the selection of DevOps for
global software development: an exploratory study using a systematic
literature review

D 2023 11

Hints for Generative AI Software Development D 2024 7

Evaluation of the Code Generated By Large Language Models: The
State of the Art K 2025 2

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 165

başlıkların verimlilik üzerinde etkili olduğu sonucuna
varılmıştır [24]. Üretimin tek boyutlu olmadığı, üretilen
yazılımın kalitesi, güvenliği, performansı ve bakım yükü
gibi fonksiyonel olmayan boyutların da üretkenlikle
birlikte değerlendirilmesi gerekmektedir [25]. Çevik
yöntemlerin ve bu yöntemlerle çalışmanın uygun şartlar
ve takım yapısı oluşturulduğunda yazılım üretkenliği ve
verimliliği üzerinde pozitif korelasyonla katkı yaptığı
belirlenmiştir [26].

Pandemi dönemi ve sonrasında yazılım geliştirme alanında
uzaktan çalışma ve buna bağlı etkiler daha çok ilgi çeker ve
araştırılır hale gelmiştir. Nepal’de pandemi sürerken
yapılan bir anket çalışmasında katılımcı olan teknoloji
sektörü profesyonellerinin %55’i üretkenliklerinin
düştüğünü ve bunun nedeninin zamanında geri bildirim
alınamaması ve ev ortamında dikkat dağıtıcı unsurlar
olarak öne çıkmıştır [27]. Polonya’da çoğunluğunu yazılım
geliştirme alanında uzmanların oluşturduğu bilişim
teknolojileri profesyonelleri arasında yapılan ankette
uzaktan çalışmanın ofisten çalışmaya göre verimli olduğu
fikrini tercih edenlerin oranı %70’ den fazladır [28]. Aynı
çalışmada ofisten çalışmanın özellikle yeni veya az
tecrübeli çalışanların takım dinamiklerini anlama ve işi
öğrenme yönünden fayda sağladığı belirlenmiştir.
Uluslararası bir şirketin Avrupa ve Amerika’da çalışan
yazılım geliştiricilerinin ürettiği kod verileri, ortak çalışma
platformu verileri (Slack vb.), toplantı ve eposta verileri
analiz edilerek, kod üretiminin arttığını, buna karşın
çalışma süresinin ve toplantı sayısının da paralel şekilde
arttığını göstermiştir [29]. Amerika’daki yazılım geliştirme
alanı profesyonelleri ile yapılan anket ve görüşmelerin
derlenmesi ile üretkenliğin ve yenilikçiliğin uzaktan
çalışma ortamında arttığı, ancak bunun ön koşulunun
güçlü bilgi paylaşımı altyapısının bulunması olduğu tespit
edilmiştir [30]. 35 farklı ülke ve farklı kıtalardan
katılımcıların dahil olduğu bir başka çalışmada yazılım
geliştirmede teknik rollerde olan çalışanların üretkenliği
artarken iş analizi, proje yönetimi gibi paydaş etkileşimi
gerektiren rollerde çalışanların üretkenliklerinin azaldığı
ve bu nedenle projelerin yaklaşık %47’sinin uzaktan
çalışma nedeni ile geciktiği raporlanmıştır [31]. Proje
yönetiminin uzaktan çalışma ortamında sanal platformlara
taşınması ile çevik yöntemlerin bu duruma uyarlanması,
sorumluluk bilincinin yerleşmesi için daha sık retrospektif
yapılması ve verimliliği arttırmak için daha fazla
otomasyon yapılması önerilmiştir [32]. Büyük bölümü
Brezilya ve Hindistan’da uzaktan çalışan yazılım
geliştiriciler ve test uzmanları ile yapılan bir araştırmaya
göre iş birliği ve verimliliği arttırmanın iletişim kanallarının
arttırarak ve sık sık hizalanma toplantıları yaparak
mümkün olabileceği sonucuna ulaşılmıştır [33].

Farklı ülkelerde yapılan çalışmaların ortak noktası
verimlilik modellerinden ziyade, iletişim ve iş birliği
odağında ilerlemiş ve bunları destekleyecek toplantı vb.
ritüeller ile dijital iş birliği platformlarının daha etkin
kullanımı öne çıkartılmıştır. Öte yandan yazılım geliştiren
ekiplerde verimliliğin ölçümü ve bu ölçümlerin

değerlendirme modeli haline getirildiği ve uzaktan çalışan
ekiplerde kullanımına dair örneklere rastlanmamıştır.

3. Çok Boyutlu Verimlilik Değerlendirme
Modeli

Üretkenlik elde edilen çıktı miktarına odaklanır. Yazılım
geliştirme alanında üretkenlik çıktı olarak ana ürüne
eklenen özellikler veya müşteriye sunulan fonksiyonlar
olduğu için birim zamanda üretilen fonksiyon veya özellik
üzerinden ölçüm yapılır. Bunlara ek olarak müşterinin
görmediği ancak ürünün/çözümün teknik olarak
fonksiyonel olmayan ihtiyaçlarının karşılamasına dönük
tüm başlıklar da üretkenliğin konusudur. Üretkenlik “ne
kadar” üretildiği ile ilgilenir. Bu amaçla birim zamanda
üretilen Fonksiyon Nokta (FP) Sayısı veya çevik
yöntemlerle çalışan takımlarda Kullanıcı Hikayesi
kullanılır. Bu çalışmada, çağlayan ve çevik her iki
metodolojiyi tek çatı altında eritmek amacı ile Üretim
Çıktısı kavramı kullanılacaktır. Üretim Çıktısı, belli bir
zaman diliminde tamamlanan iş adedini temsil eder. Diğer
taraftan Üretim Çıktısı olarak kod satır sayısını veya
yazılımın teknik metriklerini ölçmeyi deneyen yaklaşımlar
olsa da bunlar ana üretim hedefi olarak değil, üretimin
yöntemi ve verimlilik faktörlerine dönük analizde
kullanılmalıdır [8].

Verimlilik çıktının “nasıl” elde edildiğine odaklanır. Üretim
verimliliği ise birim zamanda üretilen iş çıktısının harcanan
efora oranıdır ve Formül 1.a ve 1.b’de yer almaktadır.
Formül 1.a, çağlayan modeli kullanan yazılım geliştirme
ekiplerine dönük hazırlanmıştır. Formülde üretilen
fonksiyon nokta sayısının bunları üretmek için harcanan
efora oranı verilmiştir ve birimi FP/Kişi-Gün’dür. Formül
1.b, çevik yöntemleri kullanan ekiplere yönelik
hazırlanmıştır. Formülde üretilen kullanıcı hikayesi
sayısının (User Story) bunları üretmek için harcanan efora
oranı gösterilmiştir ve birimi US/Kişi-Gün’dür. Yazılım
üretimi esas olarak insan emeği ile yapıldığı için temel
girdi, insan eforu olarak alınmıştır. İnsan eforu, kişi-gün
veya kişi-saat olarak ölçülür. Yazılım geliştirme
projelerinde ister çağlayan ister çevik yöntemler
kullanılsın, çalışanlar üzerinde çalıştıkları iş paketleri için
efor girişi yaparak harcadıkları maliyetleri yapılan iş ile
ilişkilendirirler. Bunu yaparken Jira, Asana, ClickUp ve
bunlara benzer araçlar kullanılır. Dolayısı ile üretim
verimliliği ölçümü için endüstrideki firmalarda veri elde
edilmesi mümkündür.

 Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = ∑Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 (1.a)

Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = ∑Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
∑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 (1.b)

Yazılım geliştirme alanında üretimin gerçekleşmesi için
oluşan insan eforu dışındaki maliyetin de bir başka
bağımsız boyut olarak ele alınması gerekir. Maliyeti
belirleyen unsurlar, dış firmalardan tedarik edilen ilave
lisanslar, proje özelinde ihtiyaç duyulan donanımlar ve

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 166

varsa diğer ek maliyetlerden oluşur. Üretim Çıktısı başına
yapılan harcama, maliyet odaklı verimlilik değerini verir ve
Formül 2 ile gösterilmiştir. Buradaki üretim çıktısı,
çağlayan çalışan ekiplerde Fonksiyon Nokta (FP) ve çevik
çalışan ekiplerde Kullanıcı Hikayesi (US) olarak dikkate
alınır. Formülün paydasında yer alan Toplam Üretim
Maliyeti, para birimi ile gösterilir ve üretimin yapılması için
gereken maliyetlerin toplamıdır. Bu maliyetin içinde satın
alınan ek donanımlar, ek yazılım lisansları, dış firmalara
yaptırılan fonksiyonlara dair maliyetler yer alır. Farklı
zamanlarda oluşan maliyetlerin kıyaslamasında
kullanılabilmesi için Net Bugünkü Değer (Net Present
Value-NPV) kullanılmıştır.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = ∑Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Ç𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤𝚤
∑𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (2)

Üretilen kod miktarının planlanan kod miktarına oranı,
teknik odaklı verimlilik değerlendirmesi için kullanılabilir.
Ancak bu noktada kullanılan yazılım dili, kütüphaneler ve
daha önce hazırlanmış altyapıların üretilen kod satır
sayısına doğrudan etkisi vardır. Bu nedenle bu alan ayrıca
ölçüm için önerilmemiştir.

Yazılım geliştirme alanında yapılan üretimin standart ve
tekrarlı olmaması, üretilen her bir çıktının farklı teknik
karmaşıklık içermesi, ölçümlerde kullanılan Üretim
Çıktısının ağırlıklandırılmasını ve kıyaslanabilir hale
gelmesini gerektirmektedir. Bu amaçla farklı yaklaşımlar
bulunmaktadır ve özellikle yazılım büyüklüğü tahminleme
çalışmalarında yararlanılır [34]. Bunlardan COSMIC
Fonksiyonel Nokta yaygın kullanımı ve ISO19761 ile
standart haline dönüşmüş olması nedenleri ile tercih
edilmiştir [35]. Bu yöntem, yazılım geliştirmenin analiz
aşamasında belirlenen veri işlemleri, giriş/çıkış
fonksiyonları, sorguları ve değişiklikleri esas alır.

Verimin çıktılara dayalı olması yeterli değildir. Diğer boyut
olarak çalışan verimliliği de dahil edilmelidir. Bu amaçla
uzaktan çalışanları takip amacı ile kullanılan yazılımlar
kullanılır ve bunlar pandemi dönemi ve sonrasında
oldukça popüler hale gelmiştir [36]. Çalışan verimliliğini
takip edip ölçen Teramind, AktivTrack, Hubstaff, Berqun
gibi ürünler pandemi ve sonrasındaki dönemde hızla
yaygınlaşmıştır. Bu ürünlerin yardımı ile çalışanların
bilgisayarda yürüttükleri aktiviteler takip edilebilmekte ve
kategorize edilerek, verimli ve verimsiz olarak
sınıflanabilmektedir. Dolayısı ile çalışanların günlerinin ne
kadarını verimli olarak sınıflanan aktivitelerle
geçirebildikleri tespit edilmektedir ve Formül 3’te
gösterildiği üzere Çalışan Verimliliği olarak
ölçülebilmektedir. Örneğin Word, Excel gibi
uygulamalarda geçirilen süreler, eposta uygulamalarında
geçirilen süreler genel olarak verimli sınıflanmaktadır.
Ancak bu doğrudan üretim çıktısı oluşturmak için
olmayabilir. Bu tür yazılımlar, çalışanların üretim çıktısı
oluşturmak için kullandıkları zamanı ayırt edememektedir.
Dolayısı ile Formül 3 ile ölçülen Çalışan Verimliliği, Formül
1 ile ölçülen Üretim Verimliliğinden bağımsız bir boyuttur.

Ç𝑎𝑎𝑎𝑎𝑎𝑎ş𝑎𝑎𝑎𝑎 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = ∑𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆ü𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

. 100 (3)

Yazılım geliştirme yapanlar özelinde geliştirilen koda dair
farklı metrikleri, DevOps hatları üzerinden toplanarak
yapılan kodlamanın verimliliği bir başka boyut olarak
değerlendirebilir. Bu amaçla DevOps hatlarındaki
aktivitelere ve Git vb. kod depolarına erişerek buradaki
kayıtları analiz eden Haystack, Allstack, Pluralsight Flow
Jellyfish, Oobeya gibi ürünler bulunmaktadır. Bu araçların
ölçtüğü metrikler çeşitlilik gösterse de ortak payda olarak
kodun verimliliği olarak nitelendirilebilecek bir metrik
daha ölçülebilir. Bu metrik kodun yeni bir kod olup
olmamasına bakarak, kodlama verimliliğine dair bir ölçüm
yapılmasına imkan vermektedir. Yazılım geliştirme
faaliyeti sonrasında kod deposuna eklenen, değişen veya
silinen kodun kendi içindeki dağılımı üzerinden kodlama
verimliliği belirlenebilir. Yeni kod ve başkasına ait kodun
gözden geçirilip iyileştirilmesi verimli aktiviteler iken, eski
kodların değişimini değerlendirme kısmı teknik olarak
dikkat gerektirmektedir. Eski kod üzerinde yapılan
değişiklik yeniden düzenleme sebepli olduğu gibi, çıkan
hataların düzeltilmesi amacı ile yapılan düzenlemeleri de
içerebilir. Bu nedenle verimli ve verimsiz ayrımı yapılması
gereklidir ve Formül 4 ile ifade edilmiştir. Kodlama
verimliliği formülündeki KSS: Kod Satır Sayısını ifade eder.
Otomatik üretilen veya dış kütüphanelerden alınan kodlar
KSS’ye dahil edilmez. Kodlama verimliliği ölçümü % değer
olarak verilir. Bunun ayrımını hem süre hem de yapılan
değişikliğin hatalarla ilişkisine bakarak belirlemek
mümkündür.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = ∑ (𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝐾𝐾𝐾𝐾𝐾𝐾+ 𝐷𝐷ü𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝐾𝐾𝐾𝐾𝐾𝐾)
∑𝑇𝑇ü𝑚𝑚 𝐾𝐾𝐾𝐾𝐾𝐾

 .100 (4)

Yazılım kalite boyutuna dair etkiyi değerlendirmek için
kodun kurallara ve belirlenen standartlara uyumlu
yazıldığını tespit etmek amacı ile kodun kurallara uyum
oranı Formül 5’te gösterildiği gibi % olarak hesaplanabilir.
Bu amaçla statik kod analizi yapan Sonarqube, Codacy,
PVC Studio türü araçlar kullanılabilir. Birim test yazılması
ve buna dair kapsama oranının ölçülmesi de yaygın bir
pratiktir, hatta DevOps hatlarında bir kalite kapısı haline
dönüştürülebilir [37, 38]. Ancak birim test kapsama oranı
tek başına kaliteye dair değerlendirme için yeterli
olmayacaktır. Birim testin kodun iş mantığını içeren
karmaşık bölümlerine yazılması ile daha basit standart
bölümlerine yazılması arasında fark olacaktır. Dolayısı ile
birim test kapsama oranının verimlilik
değerlendirmesinde ayrı bir boyutu temsil etmesi
mümkün değildir.

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = ∑ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
∑𝑇𝑇ü𝑚𝑚 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

. 100 (5)

Yazılımın güvenlik boyutunu değerlendirmek için benzer
şekilde kod güvenliği analizi yapılmalıdır, bu esnada kod
içindeki güvenlik zafiyetleri değerlendirilir, bunlar yüksek,
orta ve düşük olarak kategorize edilerek raporlanır.
Kodlama güvenliği için Fortify, Checkmarx, Aikido Security

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 167

gibi araçları kullanarak OWASP tarafından yayınlanan
Top10 listesini esas alan kodlama güvenlik zafiyetleri
belirlenir [39]. Güvenlik boyutuna dair farklı ölçüm
yöntemleri ve skorlarını sunan modeller bulunmakta ve
bunlar, Sonarqube gibi ürünlerde yer almaktadır. Kodlama
açısından güvenlik verimliliği Formül 6’da gösterilmiştir.
Güvenlik zafiyet puanının hesaplanmasında yüksek, orta
ve düşük güvenlik zafiyetleri sırasıyla 3, 2 ve 1 katsayıları
ile ağırlıklandırılarak yansıtılır.

𝐺𝐺ü𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = 100 − ∑𝐺𝐺ü𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
∑𝑇𝑇ü𝑚𝑚 𝐾𝐾𝐾𝐾𝐾𝐾

. 100 (6)

Üretilen çıktının kalitesinin tespiti için testlerde çıkan
hataların kod satır sayısına oranı ile hata yoğunluğu
(Defect Density) kullanılır [40]. Hataların bağımsız test
veya kalite ekipleri tarafından tespit edildiği ve bunların
sistem testleri ve regresyon testleri esnasında tespit
edilmeleri halinde, yazılım geliştirmede bağımsız bir boyut
olarak değerlendirilebilir. Bu noktada hata yoğunluğu ayrı
bir boyut olarak ele alınmalıdır ve Formül 7 ile
gösterilmiştir.

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = 100 − ∑𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∑ 𝑇𝑇ü𝑚𝑚 𝐾𝐾𝐾𝐾𝐾𝐾 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

. 100 (7)

Tüm geliştirme aşamaları tamamlanarak canlı ortama
kurulan bir yazılım ürünün işletimine dair bakım eforu ve
operasyonel maliyetler ile canlı ortamda ortaya çıkan olay
kayıtları da verimlilik açısından önem taşır. Proje bazlı ve
teslimat odağı ile uzaktan çalışan ekiplerde çoğunlukla bu
boyut göz ardı edilse de özellikle verimlilik analizinde
önem taşır. Uzaktan çalışma ile farklı coğrafyalarda yazılım
üreten ekiplerin çoğunlukla canlı ortama kadar olan
taahhütlerine odaklandıkları bir gerçektir. Çalışan ve
testleri geçen yazılımın canlıya çıkışı sonrasında
yaşananlara yeterince önem verilmediği, bakım için
harcanan 3 yıllık eforun toplam proje eforunun %75-90
seviyesine kadar yükseldiği görülmektedir [41]. Bu
noktada yazılım bakımı ve teknik işletim operasyonları için
harcanan 3 yıllık ortalama efor ile toplam proje eforunun
oranlanması ile bakım verimliliği hesaplanır ve Formül 8 ile
ifade edilir. Bakım eforunda canlı ortamda oluşan olay
kayıtlarının yarattığı efor da yer alır ve toplam bakım eforu
bütünsel hesaplanmalıdır. Eğer canlıya geçerken teknik bir
borç bırakıldı ise buna dair etki canlı ortamdaki bakım
maliyetinde kendini gösterecektir.

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ğ𝑖𝑖 = 100 − ∑𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖ş𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ş𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

. 100 (8)

Verimlilik değerlendirmesinin sağlıklı yapılabilmesi için
farklı teknik boyutların yanında müşteri memnuniyeti
boyutunun da eklenmesi gereklidir. Yapılan teknik ölçüm
ve analizlerin müşteri beklentilerini karşılamadaki etkisi,
müşteri memnuniyetine katkısı ve özellikle müşterinin
tavsiye etme potansiyeli de ölçülerek tüm boyutlardaki
değişimle ilişkilendirilmedir. Bu amaçla müşteriler
nezdindeki durumu değerlendirmek amacı ile bağımsız ve
periyodik anketler kullanılabilir. Anketler tasarlanırken

müşteri memnuniyetini en net şekilde alacak sorular
sorulmalı ve sonuçlar Likert Ölçeği ile hazırlanmış anketler
kullanılarak müşteri memnuniyeti ölçülerek değerlendirilir
[42]. Müşteri memnuniyeti % olarak hesaplanır ve Formül
9 ile gösterilir. Net tavsiye skoru da bu ölçümde müşteri
memnuniyetine dair gösterge olması sebebi ile verimlilik
analizi için ayrıca bir boyut olarak eklenmesine gerek
bulunmamaktadır.

𝑀𝑀üş𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀üş𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
∑𝑇𝑇ü𝑚𝑚 𝑀𝑀üş𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

. 100 (9)

Tüm bu 9 boyutu bir araya getirince Çok Boyutlu Yazılım
Geliştirme Verimlilik Modeli oluşmaktadır. Her bir boyuta
dair ölçüm farklı formüllere ve verilere dayanarak yapıldığı
için boyutlar birbirinden bağımsızdır. Bu boyutlara dair
ölçümlerin değerlendirilmesi için radar grafiği kullanılır,
örneği Şekil 1’de yer almaktadır. Radar grafiğinde, düzenli
ölçümlerle yapılan kurumlarda, boyutlardaki değişim ve
boyutlar arası etkileşim daha net bir şekilde izlenebilir.

Yazılım geliştirme yaşam döngüsünde doğrudan ölçülen ve
türev olarak elde edilen farklı metrikler de bulunmasına
rağmen, yaygın kullanımı nedeniyle bu 9 boyut ve buna
dair metrikler seçilmiştir. Modelin tüm boyutlarına dair
ölçümler veya bu ölçümleri yapacak araçlar ve altyapılar
bulunmayabilir. 9 boyutun 5 veya daha fazlası
ölçülebildiğinde model, değerlendirmeye uygun bir
çerçeve sunacaktır. Ölçülen boyutların zamana bağlı
değişimi, yazılım geliştirmeye dair verimlilik değişimini
değerlendirmek için gereklidir. Zamana bağlı değişimin
dikkatlice irdelenmesi ile boyutlardaki değişimler ve
bunların aralarındaki ilişkilerin incelenmesi mümkün
olacaktır.

Şekil-1: Çok Boyutlu Yazılım Geliştirme Verimlilik Modeli Radar
Grafiği.

4. Modelin Uygulanması ve Sonuçları
Farklı dönemlerde 3 farklı kurumda model kullanılmıştır.
Kurumlar, en az 100 ve daha fazla yazılım geliştiricisi olan,
ürün ve proje geliştiren firmalardır. Her bir kurumun ana
işkolu teknoloji ürünlerinin geliştirilmesidir. Teknoloji
ürünleri sadece yazılım odaklı olabildiği gibi donanım ve
yazılımın bir arada olduğu ürün veya projeler de olabilir.
Kurumlar, mahremiyetleri nedeni ile A, B ve C olarak

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 168

anılacaktır ve firma detaylarına yer verilmeyecektir. Her 3
kurum da Türkiye merkezli olup, yurtiçi ve yurtdışındaki
müşterilerle çalışmaktadır. A ve B firmaları işletmeden
işletmeye (B2B) alanda teknoloji geliştirirken, C firması
işletmeden tüketiciye (B2C) alanda teknoloji
geliştirmektedir. Her 3 kurumun çalıştığı alanlar ve hedef
müşteri kitleleri birbirinden farklıdır.

4.1. Kurum A’da Model Uygulaması

Kurum A’da modelin kullanımı esnasında tam zamanlı
uzaktan çalışma yürütülmüştür. Bu kurum genel olarak
çevik yaklaşımları benimsemiştir ve proje bazlı
çalışmaktadır. Projeler temelde müşteri talepleri ile
şekillenmektedir. Çalışmada toplam 6 boyuta dair veri
ölçümleri yapılmıştır. Bu ölçümler, uzaktan çalışmaya
başlandığı dönem olan 2020 ile uzaktan çalışmanın devam
ettiği 2022 arasında yapılmıştır. İlk ölçüm olan 2020 ve son
ölçüm olan 2022 yıllarına dair verilerin olduğu radar
görüntüsü Şekil 2’de yer almaktadır.

İlk ve son ölçüm değerleri kıyaslandığında üretim
verimliliği ve maliyet verimliliğinde iyileşme olurken,
kodlama kurallarına uyum ve güvenli kodlama verimliliği
alanlarında gerileme olmuştur. Bu dört boyut birlikte
değerlendirildiğinde Kurum A’daki üretim hızı artarken,
kod kalitesi ve güvenliği alanlarında düşüş görülmektedir.
Bakım verimliliği alanındaki değişim çok sınırlıdır. Müşteri
memnuniyetinin ise belirgin şekilde arttığı gözlenmiştir.
Model’e göre bu kurumun üretim hızını arttırarak müşteri
memnuniyetine katkı sağladığı ancak kod kalitesi ve
güvenliği alanlarında gerilemelere sebep olduğu
söylenebilir. Bu sonuca etki edebilecek üretim dışı farklı
etkenler de söz konusudur. Örneğin uzaktan çalışmaya
uyumun artması, müşteri taleplerinin niteliği ve niceliği,
çalışan devinimi, kurumun yer aldığı sektörün dinamikleri.
Kurum özelinde tüm bu etkenleri sabit tutarak veri elde
edilmesi mümkün olmadığı için, verimlilik metriklerinin
zamana ve birbirlerine karşı değişimi gözlenmiştir.
Değişimi tetikleyen dinamiklerin netleştirilmesi için daha
steril koşullarda farklı bir çalışma yapılması gereklidir.

Şekil-2: Kurum A’nın ilk ölçüm olan 2020 değerleri ve son ölçüm
olan 2022 değerleridir.

4.2. Kurum B’de Model Uygulaması

Kurum B’de de uzaktan çalışmanın tamamen uygulandığı
2021 ve 2023 dönemleri arasında çalışma yürütülmüştür.
Bu kurum müşteri talepleri ile şekillenen projeler odaklı
çalışmaktadır, eş zamanlı ürünleştirme çalışmaları da
yürütülmekte olup bu alandaki çalışmalar sınırlıdır. Kurum
hem çevik hem de çağlayan çalışma modellerini
benimsemiştir. İlk ve son ölçüm yıllarına dair verilerin
olduğu radar görüntüsü Şekil 3’te yer almaktadır. Toplam
8 boyutta ölçüm yapılmıştır. Güvenli Kodlama Verimliliği
için ölçüm bu alandaki araçlardan herhangi bir tanesinin
bulunmaması nedeni ile yapılamamıştır. Yıllık ölçümler
yapılırken ilgili yılda gerçekleştirilen tüm projeler ve bu
projeler için geliştirilen tüm kodlar dikkate alınmıştır. Bu
nedenle yıllık veriler ilgili yılın tamamını içermektedir ve yıl
sonunda toplanmıştır.

Şekil-3: Kurum B’nin ilk ölçüm olan 2021 değerleri ve son ölçüm
olan 2023 değerleridir.

Kurum B için ilk ve son ölçüm verileri karşılaştırıldığında,
üretim verimliliği ve maliyet verimliliğinin arttığı
görülmektedir. Buna karşın çalışan verimliliğinin belirgin
şekilde azaldığı görülmektedir. Kodlama verimliğinin sınırlı
düştüğü, kodlama kurallarına uyumun ise daha belirgin
gerilediği gözlenmektedir. Hata verimliliğinin düşerken,
bakım verimliliği sınırlı oranda gerilemiştir. Müşteri
memnuniyetinde kısmı bir artış görülmektedir. Modele
göre Kurum B’de de yazılım üretimi hızı artmış ve üretim
ve maliyet verimliliği yükselmiştir. Bu da müşteri
memnuniyetine kısmı bir artış olarak yansımıştır. Kodlama
verimliliği ve kodlama kurallarına uyum ise gerilemiştir.
Ana sebebin üretim hızına dönük beklentinin kodlama
üzerinde yarattığı baskı kaynaklı olduğu
değerlendirilmektedir. Kurum B özelinde en belirgin
değişim çalışan verimliliğindeki düşüştür. Çalışanların
daha uzun sürelerde çalıştığı ve bunun üretim verimliliğine
olumlu yansıdığı görülmüştür. Bunun arkasında projelerin
teslim sürelerine yetiştirilmesi baskısı bulunmaktadır. Öte
yandan bilgisayar başında geçen süre arttığı için
dinlenebilmek amaçlı film izleme gibi farklı aktivitelerin de
bilgisayarlarda yapılmaya başlandığı ve bunun da verimsiz
aktivitelerin oranını önemli ölçüde arttırdığı ve çalışan
verimliliği oranını negatif etkilediği tespit edilmiştir. Diğer
yandan ölçülen 8 verimlilik metriği yanında üretim dışı

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 169

faktörlerin de etki edebilmesi söz konusudur. Deneysel bir
ortam kurulamadığı için tüm dış faktörlerin sabit tutulması
mümkün olmamıştır. Ayrıca verimlilik metriklerinin kendi
aralarındaki korelasyonlarını ortaya çıkartmak için yeterli
veri olmadığı için bu analize yer verilememiştir. Bu başlık
daha sonraki çalışmaların konusu olarak planlanmıştır.

4.3. Kurum C’de Model Uygulaması

Kurum C’nin ölçümlerinin yapıldığı dönem 2022 ve 2024
yılları arasındadır. Kurum C, 2022’de tam zamanlı uzaktan
çalışma yürütmüş, 2023 itibarı ile isteğe bağlı hibrit
modele geçmiştir. Bu dönemde dileyen çalışan, uzaktan
çalışabilirken, dileyen çalışan haftada 2 gün ofise giderek
çalışmıştır. Melez çalışmayı tercih edenlere şirket mali yan
haklarla destek olmuştur. Bunun sonucunda şirketin
17%’si melez çalışmayı tercih etmiş, kalan çoğunluk ise
uzaktan çalışmayı sürdürmüştür. Şirket ürün bazlı
yapılanmış, ürünlere yeni fonksiyonlar ekleyen veya
teknolojik altyapısını yenileyen projeler geliştirmektedir.
Ürünler, platform model ile yapılandırılmış web ve
mobilden son müşteri tarafından doğrudan erişilebilir
durumdadır. İki yıla dair verilerin olduğu radar görüntüsü
Şekil-4’te yer almaktadır.

Kurum C’nin ölçümleri incelendiğinde ve ilk yıl ile son yıl
karşılaştırıldığında üretim verimliliği ve maliyet
verimliliğindeki artış oranı oldukça yüksektir. Çalışan
verimliliği de önemli oranda artmıştır. Kodlama verimliliği
de yükselirken, kod kurallarına uyumdaki iyileşme sınırlı
kalmıştır. Bakım verimliliği artmış, müşteri memnuniyeti
önemli oranda yükselmiştir. Ölçülen verimlilik
boyutlarının tamamında iyileşme söz konusudur. Bu
veriler diğer 2 kurumdan ayrışmaktadır. Kurum C’deki
pozitif değişime daha yakından bakıldığında, 2023 yılında
başlatılan platform yenileme çalışmalarının etkisi olduğu
görülmektedir. Var olan ürün platformları, yeni
teknolojilerle yenilenmeye başlanmış ve 2024 yılında
büyük ölçüde bu dönüşüm tamamlanmıştır. Fonksiyonel
olarak yeniliğin sınırlı miktarda eklendiği, bunun yerine
öncelikli olarak teknik iyileştirmelerin yapıldığı bir
ortamda çalışanlar, bildikleri bir ürünü yenilemişlerdir. Bu
da çalışan verimliliği, kodlama verimliliği, kodlama
kurallarına uyum alanlarında da iyileşme fırsatı vermiştir.
Üründeki iyileşme müşteri memnuniyetine doğrudan
yansımıştır. Bunun yanında dış etkenlerin, müşteri
beklentilerinin ve sektörün değişiminin de sonuçlara etkisi
olması muhtemeldir. Bu etkilerden izole edilerek veri elde
edilmesi mümkün olmadığı için verimlilik metriklerinin
kendi aralarındaki korelasyonlarını ortaya çıkartmak
Kurum C için de mümkün olmamıştır.

Şekil-4: Kurum C’nin ilk ölçüm olan 2022 değerleri ve son ölçüm
olan 2024 değerleridir.

Her üç kurumun da ölçüm değerleri Çizelge-3’te
sunulmuştur. Bu ölçümler, analiz dönemi boyunca (2025
yılı itibarıyla devam eden) uzaktan veya karma çalışma
modelleri bağlamında gerçekleştirilmiştir. Bu nedenle,
elde edilen değerler, söz konusu çalışma düzenlerinin
gerçek dünyadaki temsiliyetini yansıtmaktadır. Ancak,
kurumların kendi içinde ölçülen verimlilik değerlerinin
değişiminde, tek başına uzaktan veya karma çalışma
modelinin belirleyici tek etken olmadığı kabul edilmelidir.
Daha önce bahsedilen diğer dış etkenlerin de doğrudan
veya dolaylı etkileri bulunmaktadır. Bu çok değişkenli
etkinin analiz edilmesi, sonuçların iç geçerliliğini tam
olarak tesis etmek için ayrı bir çalışma gerektirmektedir.
Bu amaçla, bulguların geçerliliğini artırmak için iki adımlı
bir yaklaşım planlanmaktadır. İlk adım olarak, aynı kurum
içindeki benzer özelliklere sahip, ancak farklı çalışma
modelleri (uzaktan/karma) uygulayan ekiplerin verimlilik
değişimlerini inceleyerek kontrollü bir kıyaslama imkanı
sağlanacaktır. İkinci adımda ise, tam zamanlı ofisten
çalışan ekiplerdeki verimlilik ölçümleri zamana bağlı olarak
ayrı bir çalışmayla analiz edilecektir. Bu karşılaştırmalı
analiz, ofisten çalışmanın getirdiği iletişim ve fiziksel
etkileşim farkının verimlilik boyutlarına olan özel etkisini
izole ederek, mevcut bulgularımızın temsil gücünü ve
geçerliliğini daha sağlam temellere oturtacaktır.

Çizelge-3: Kurumlar için 9 Boyuta dair İlk ve Son Ölçüm
Değerleri

1.
Ü

re
tim

 V
er

im
lil

iğ
i

(F
P/

 K
işi

-g
ün

)

2.
M

al
iy

et
 V

er
im

lil
iğ

i
(F

P/
 1

0
Bi

n
TL

)

3.
Ça

lış
an

 V
er

im
lil

iğ
i

(%
)

4.
Ko

dl
am

a
Ve

rim
lil

iğ
i

(%
)

5.
Ko

dl
am

a
Ku

ra
lla

rın
a

U
yu

m
 (%

)

6.
Gü

ve
nl

i K
od

la
m

a
Ve

rim
lil

iğ
i (

%
)

7.
Ha

ta
 V

er
im

lil
iğ

i (
%

)

8.
Ba

kı
m

 V
er

im
lil

iğ
i

(%
)

9.
M

üş
te

ri
M

em
nu

ni
ye

ti
(%

)

Kurum A (İlk Ölçüm) 0.9 1.4 95% 81% 20% 75%

Kurum A (Son Ölçüm) 1.1 1.7 92% 79% 21% 82%

Kurum B (İlk Ölçüm) 0.6 0.9 67% 75% 92% 67% 19% 62%

Kurum B (Son Ölçüm) 0.7 1.1 59% 74% 89% 65% 18% 65%

Kurum C (İlk Ölçüm) 0.4 1.3 82% 72% 93% 17% 47%

Kurum C (Son Ölçüm) 0.7 1.2 88% 90% 95% 22% 61%

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 170

Verimlilik boyutlarının kendi aralarındaki ilişkisini
incelemek için daha geniş bir veri setine ihtiyaç
duyulmaktadır. Diğer yandan bu üç kurumda tüm
boyutların hepsinin aynı anda ölçülebilmesi mümkün
olmamıştır. Özel yazılım ürünü gerektiren güvenli kodlama
verimliliği ve çalışan verimliliği gibi alanlarında tüm
kurumlarda veri bulunmamaktadır. Verilerin
toplanabileceği araçların yaygınlaşma hızı da bu
ölçümlerin sağlıklı yapılması için anahtar konumundadır.
Bu nedenlerle istatistiksel olarak anlamlı ilişkiler tespit
edebilmek amacı ile verimlilik boyutları arasındaki
korelasyon, daha yaygın ölçüm imkanı olan boyutlardan
başlanarak ayrı bir çalışmada ele alınacaktır.

Ölçüm sonuçları genel olarak incelendiğinde, modelin
dokuz boyutundan ölçülebilenlerin olduğu ve bu
ölçümlerin yıllar içindeki değişiminin güvenilir bir şekilde
takip edilebildiği görülmüştür. Bu durum, modelin
sektörde yaygın olarak kullanılan mevcut araçlar ve
altyapılardan elde edilen ham verilerle uyumlu olduğunu
ve pratikte uygulanabilirliğini göstermektedir. Ayrıca,
verimliliğin tek bir boyutla incelenemeyeceği; farklı
boyutlarla ele alınmasının ve zamana bağlı değişiminin
değerlendirilmesinin daha sağlıklı olacağı sonucu
pekişmiştir.

Bu çok boyutlu verimlilik modeli, kurumlardaki yetkililere
sadece gözlem yapma imkanı sunmakla kalmaz, aynı
zamanda somut karar verme noktalarında da kritik bir
temel sağlar. Ölçülen verimlilik değerleri, her ne kadar
kuruma özgü olsa da zaman içindeki kendi değişimleri
üzerinden referans değerler oluşturur. Örneğin, bir
boyutun trendinde gözlemlenen belirgin bir düşüş,
yöneticilere "ekibe ek kaynak alımı", "eğitim/mentorluk
ihtiyacı" veya "teknik borcu temizleme" gibi konularda
proaktif kararlar almaları için kanıt sunar. Bu sürekli
izleme, kararların deneye dayalı olmasına olanak tanır. Bu
ölçme yöntemini uygulamak, yazılım geliştiren kurum için
elbette bir maliyet getirecektir. Ancak bu maliyet, elde
edilecek somut faydalarla dengelenmektedir:

Risk Azaltma ve Erken Uyarı: Verimlilik boyutlarındaki
anormal değişimler, potansiyel proje gecikmeleri veya
kalite sorunları için erken uyarı görevi görerek, yüksek
maliyetli kriz müdahalelerinin önüne geçer.

Yatırımın Geri Dönüşü (ROI): Yönetim, bu verileri
kullanarak yeni bir araç, teknoloji adaptasyonu veya ekibe
yeni bir çalışan alımı gibi yatırımların verimlilik boyutlarına
etkisini somut olarak ölçebilir ve böylece kaynakların
doğru yerlere yönlendirilip yönlendirilmediğini
değerlendirebilir.

Sonuç olarak, verimlilik boyutlarında çıkan değerler
kuruma özgü olmakla birlikte, bu değerlerin zamana bağlı
değişiminin analizi, kurumun içinde bulunduğu
bağlamdaki (teknolojik borç, ekip devinimi, kültürel
adaptasyon) değişimin sonuçlara etkisini de ortaya koyar
ve stratejik yönetim kararlarını destekler.

5. Sonuç
Bu çalışma ile yazılım geliştirme verimlilik değerlendirme
modeli 9 temel boyut ile somut veriye dayalı şekilde
ölçülebilir şekilde önerilmiştir. Modelin uygulaması 3 farklı
kurumda, 3’er yıllık döngüleri içine alacak şekilde
uygulanmış, ölçülebilen boyutlar ile gerçek hayattaki
karşılıkları kıyaslanmıştır. Buna göre modelin uygulanabilir
olduğu ve sonuçlarının kurumlardaki tespitlerle uyumlu
olduğu görülmüştür. Çok boyutlu verimlilik değerlendirme
modeli literatürdeki tek boyutlu diğer çalışmalardan
ayrışmaktadır.

Modelin daha fazla kurumda kullanılması ile farklı iş
modelleri, farklı sektörler, farklı ülkelerdeki uygulama
sonuçlarının benzerlik ve farklılıkları değerlendirilecektir.
Bu ilerleyen aşamalar için planlanmıştır. Ayrıca modelin
boyutları arasındaki ilişki için üç kurumun verileri ile
istatistiksel olarak anlamlı bir korelasyon çalışması
mümkün olmamıştır. Hangi boyutun diğerlerine nasıl
etkisi olduğunu anlamak için daha fazla örneğe ihtiyaç
bulunmaktadır.

Verimliliğe dair kurum kültürü, takım yapılanması,
kullanılan metodolojiler, teknolojiler, çalışan tecrübesi ve
demografisi gibi başlıklar sonuçları etkileyebilir [43]. Bu
amaçla verimlilik odağı ilgi çeken bir alan olup birçok
çalışma üretilmiştir [44]. Ayrıca üzerinde çalışılan
projelerin niteliği, teknik mimarisi ve iş alanı da verimliliğe
doğrudan etki yapabilir. Bir diğer önemli etken de ürün
odaklı çalışılan projelerde, ürünün yaşam döngüsünde
bulunduğu aşama ve bu aşamaya uygun gerçekleştirilen
projelerin de üretkenliğe ve verimliliğe farklı boyutlarda
etkileri olacaktır [45]. Dolayısı ile verimlilik boyutlarındaki
iyileşme veya kötüleşme sadece tek bir boyuta bağlı
olmayabilir. Ancak farklı etkileri ayrıştırıp analiz edebilmek
için modelin daha geniş kitlelerce kullanılması
gerekmektedir.

Yapay zekanın yazılım geliştirme alanındaki ağırlığı ve
etkisi birçok sektörde olduğu gibi her geçen gün
artmaktadır. Verimlilik boyutları incelenirken yapay
zekanın yazılım geliştirme adımlarındaki etkisi de ayrı bir
başlık olarak değerlendirilmelidir. Yapay zeka kullanılarak
yazılım geliştirmenin, modelde belirlenen 9 boyuta
doğrudan veya dolaylı etkisi olacaktır. Bu alanda ayrı bir
çalışma planlanmıştır.

Kaynakça
[1] Fan, W. Moen, P. “Working more, less or the same during

COVID-19? A mixed method, intersectional analysis of
remote workers”, Work and Occupations, Vol. 49, No. 2,
(pp. 143-186), 2022

[2] Chapetta, W. A. Travassos, G. H. "Towards an evidence-
based theoretical framework on factors influencing the
software development productivity", Empirical Software
Engineering, 25, 3501–3543, 2020.

[3] Trigo, A. Varajão, J. Almeida, M. "Low-Code Versus Code-
Based Software Development: Which Wins the Productivity
Game?," IT Professional, 24(5), 61-68, 2022.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 171

[4] Butt, S. A. Misra, S. Piñeres-Espitia, G. Ariza-Colpas, P.
Sharma, M. M."A Cost Estimating Method for Agile Software
Development," in Computational Science and Its
Applications – ICCSA 2021, 12955, 2021.

[5] Ahmad, M. Z. Ahmad, N. "Parametric Software Reliability
Growth Model with Testing Effort: A Review," 2021
International Conference on Computational Performance
Evaluation (ComPE), 899-904, 2021.

[6] Liao, Z. Zhao, Y. Liu, S. Zhang, Y. Liu, L. Long, J. "The
Measurement of the Software Ecosystem’s Productivity
with GitHub," Computer Systems Science and Engineering,
36(1), 239-258, 2021.

[7] Liao, Z. Qi, X. Zhang, Y. Fan, X. Zhou, Y. "How to Evaluate
the Productivity of Software Ecosystem: A Case Study in
GitHub," 2020.

[8] Mota, J. S. Tives, H. A. Canedo, E. D. "Tool for Measuring
Productivity in Software Development Teams", Information,
12(10), 396, 2021.

[9] Hussain, A. Raja, M. Vellaisamy, P. Krishnan, S. Rajendran,
L. "Enhanced framework for ensemble effort estimation by
using recursive-based classification," IET Software, 2021.

[10] Alsunki, A. A. M. Ali, M. A. M. Jaharadak, A. A. Tahir, N. Md
"Framework of Software Developers Engagement
Antecedents and Productivity - A Review," 2020 16th IEEE
International Colloquium on Signal Processing & Its
Applications (CSPA), 302-307, 2020.

[11] Michael, J. B. "Placing Trust in Automated Software
Development Processes," Computer, 55(7), 78-81, 2022.

[12] Jalote, P. Kamma, D. "Studying Task Processes for
Improving Programmer Productivity," IEEE Transactions on
Software Engineering, 47(4), 801-817, 2021.

[13] Nordin, A. A. M. Latih, R. Ali, N. M. "Software Development
Productivity Model: Validation through Expert Review,"
2021 International Conference on Electrical Engineering and
Informatics (ICEEI), 1-6, 2021.

[14] Martino, V. L. Gravino, C. "Using COSMIC to measure
functional size of software: a Systematic Literature Review,"
2022 48th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 225-228, 2022.

[15] Alrubaee, U. A. Cetinkaya, D. Liebchen, G. Dogan, H. "A
process model for component-based model-driven
software development," Information, 11(6), 302, 2020.

[16] Castillo-Salinas, L. Sanchez-Gordon, S. Villarroel-Ramos, J.
Sánchez-Gordón, M. "Evaluation of the implementation of
a subset of ISO/IEC 29110 Software Implementation process
in four teams of undergraduate students of Ecuador. An
empirical software engineering experiment," Computer
Standards & Interfaces, 70, 103430, 2020.

[17] Khan, S. U., Khan, A. W., Khan, F., Khan, J., & Lee, Y. (2023).
Factors influencing vendor organizations in the selection of
DevOps for global software development: an exploratory
study using a systematic literature review. Cognition,
Technology & Work, 25(4), 411-426.

[18] Ebert, C., Arockiasamy, J. P., Hettich, L., & Weyrich, M.
(2024). Hints for generative AI software development. IEEE
Software, 41(5), 24-33.

[19] Ying, Z. Towey, D. Zhang, Y. "Evaluation of the Code
Generated By Large Language Models: The State of the Art,"
2025 IEEE 49th Annual Computers, Software, and
Applications Conference (COMPSAC), 440-449, 2025.

[20] Hardill, I. Green, A. “Remote working—altering the spatial
contours of work and home in the new economy”, New
Technology Work and Employment, 18(3), 212-222, 2003.

[21] Hislop, D. Axtell, C. Daniels, K. “The challenge of remote
working”, 2008.

[22] Sharp, H. Barroca, L. Deshpande, A. Gregory, P. Taylor, K.
“Remote working in an Agile team”, Agile Research
Network, 1-15, 2016.

[23] Zulfany, A. H. Dewi, R. S. Partiwi, S. G. “Analyzing mental
workload of remote worker by using SWAT methodology
(case study: Remote software engineer)”, IOP Conference
Series: Materials Science and Engineering, Cilt 598, Sayı 1,
Ağustos 2019.

[24] Sudhakar, G. Farooq, A. Patnaik, S. “Measuring productivity
of software development teams”, Serbian Journal of
Management, 7(1), 65-75, 2012.

[25] Delaney, S. Schmidt, D. “A productivity framework for
software development literature review”, Proceedings of
the 2nd International Conference on Software Engineering
and Information Management, (pp. 69-74), Ocak 2019.

[26] Iqbal, J. Omar, M. Yasin, A. “An empirical analysis of the
effect of agile teams on software productivity”, 2019 2nd
International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET), (pp. 1-8), Ocak 2019.

[27] Nordin, A. A. M. Latih, R. Ali, N. M. “Software Development
Productivity Model: Validation through Expert Review”,
2021 International Conference on Electrical Engineering and
Informatics (ICEEI), (pp. 1-6), Ekim 2021.

[28] Rot, A. Sobinska, M. Busch, P. “Programming Teams in
Remote Working Environments: an Analysis of Performance
and Productivity”, 2023 13th International Conference on
Advanced Computer Information Technologies (ACIT), (pp.
376-381), Eylül 2023.

[29] Smite, D. Moe, N. B. Klotins, E. Gonzalez-Huerta, J. “From
forced Working-From-Home to voluntary working-from-
anywhere: Two revolutions in telework”, Journal of Systems
and Software, 195, 111509, 2023.

[30] Nwankpa, J. K. Roumani, Y. F. “Remote work, employee
productivity and innovation: the moderating roles of
knowledge sharing and digital business intensity”, Journal of
Knowledge Management, 28(6), 1793-1818, 2024.

[31] Nguyen‐Duc, A. Khanna, D. Le, G. H. Greer, D. Wang, X.
Zaina, L. M. P. Abrahamsson, “Work‐from‐home impacts on
software project: A global study on software development
practices and stakeholder perceptions”, Software: Practice
and Experience, 54(5), 896-926, 2024.

[32] Somanathan, S. “Optimizing Agile Project Management for
Virtual Teams: Strategies for Collaboration,
Communication, and Productivity in Remote Settings”,
International Journal of Applied Engineering & Technology,
5, 2023.

[33] Jansen, F. Souza Santos, R. De “Remote Communication
Trends Among Developers and Testers in Post-Pandemic
Work Environments”, 2024 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Flagstaff,
AZ, A.B.D., (pp. 672-677), 2024, doi:
10.1109/ICSME58944.2024.00071.

[34] Pfleeger, S. L. Wu, F. Lewis, R. Software cost estimation
and sizing methods: issues, and guidelines, Cilt 269, Rand
Corporation, 2005.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 172

[35] Common Software Measurement International Consortium
(COSMIC), “COSMIC Software Sizing - open standard for
software size measurement”, https://cosmic-sizing.org/,
2025.

[36] Bogdanović, D. Sladojević, S. Arsenović, M. Anderla, A.
“Multi-Criteria Analysis of Characteristics of Remote
Employee Monitoring Systems”, 21st International
Symposium INFOTEH-JAHORINA (INFOTEH), (pp. 1-6), 2022.

[37] Wilkes, B. Milani, A. M. P. Storey, M. A. “A framework for
automating the measurement of devops research and
assessment (DORA) metrics”, 2023 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), (pp. 62-72), Ekim 2023.

[38] Altunel, H. Say, B. “Software product system model: a
customer-value oriented, adaptable, devops-based product
model”, SN Computer Science, 3(1), 38, 2022.

[39] OWASP Foundation, “OWASP Top Ten”,
https://owasp.org/www-project-top-ten/, 2025.

[40] Dayyala, N. Walstrom, K. A. Bagchi, K. K. Udo, G. “Factors
impacting defect density in software development

projects”, International Journal of Information Technologies
and Systems Approach (IJITSA), 15(1), 1-23, 2022.

[41] Butt, S. A. Melisa, A. C. Misra, S. “Software product
maintenance: A case study”, International Conference on
Computer Information Systems and Industrial
Management, (pp. 81-92), Cham: Springer International
Publishing, Temmuz 2022.

[42] Giro Manzano, P. Customer Satisfaction Measurement:
strategies, methodologies and factors influencing customer
satisfaction measures, 2021.

[43] Cleaver, K. Teamwork Quality and Success in Remote,
Hybrid, and Proximal Agile Software Development (ASD)
Teams, Doktora Tezi, The Chicago School of Professional
Psychology, 2024.

[44] Hernández, G. Martínez, Á. Jiménez, R. Jiménez, F.
“Productivity metrics for an agile software development
team: A systematic review”, TecnoLógicas, 22(SPE), 63-81,
2019.

[45] Altunel, H. “Product life cycle based project management
model”, The Journal of Modern Project Management, Vol.
4, No. 3, 2017.

Bilgisayar Bilimleri ve Mühendisliği Dergisi (2025 Cilt: 18 - Sayı: 2) - 173

https://cosmic-sizing.org/
https://owasp.org/www-project-top-ten/

