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ABSTRACT 

In this study, the Drinfeld-Sokolov system is solved by the application of the improved Bernoulli sub-equation 

function method (IBSEFM). We have found new solutions different from the others articles in the literature. In 

addition, we carried all the computations out and the graphics plot in this article by software Wolfram Mathematica 

9. 
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Drinfeld-Sokolov Denkleminin IBSEFM Yöntemiyle Yeni Çözümleri 

 
ÖZ 

Bu çalışmada, geliştirilmiş Bernoulli fonksiyon yönteminin Drinfeld-Sokolov sistemine uygulanması sunulmuştur. 

Literatürdeki diğer makalelerden faklı yeni çözümler bulduk. Ek olarak, bu makaledeki tüm hesaplamalar ve grafik 

çizimleri Wolfram Mathematica 9 programı yardımıyla yapılmıştır.. 

Anahtar Kelimeler: Geliştirilmiş Bernoulli Denklem Metodu, Drinfeld-Sokolov denklemi, Yeni çözümler 
 

 

INTRODUCTION 

Nonlinear partial differential equations (NPDEs) have 

modeled Nonlinear complex phenomena in various 

scientific fields such as plasma physics, fluid 

mechanics, optical fibers, nonlinear optics, solid state 

physics and so on. The investigation of exact solutions 

of NPDEs will help to be better understanding the 

complex phenomena. In this paper, the Drinfeld-

Sokolov (DS) system of equations [1-3] is investigated 

by using the improved Bernoulli sub-equation function 

method(IBSEFM) [4]. DS equation system is an 

example of a system of nonlinear equations possessing 

Lax pairs of a special form [1] and it was introduced by 

Drinfeld and Sokolov. 

 

The Drinfeld-Sokolov (DS) equation is given by  

                                     

(1) 

 

where  and   

are constants.  

Various analytical approaches have been used in 

obtaining the exact solutions to the Drinfeld-Sokolov 

(DS) system of equations. Wazwaz [5] used the sine-

cosine and tanh methods to DS, El Wakil and Abdou [6] 

used the modified extend tanh-function method for 

finding exact solutions for five model of nonlinear 

differential equations, one of them is the DS system. 

And Zangh et al. [7] used the complex system for 

complex DS system. 

The IBSEFM  

Improved Bernoulli sub-equation function 

method (IBSEFM) formed by modifying the Bernoulli 

sub-equation function [8-10] method will be given in 

this part.  

Step 1. Let’s consider the following fractional 

differential equation; 

 , , , , 0,x t xtP u u u u      

                                      

(2) 

and take the wave transformation; 

                                                       

(3)  

where  is constant and, it will be determined later. 

Substituting Eq.(3) into Eq.(2), we obtain the following  

nonlinear ordinary differential equation; 

 , , , , 0.N U U U U                                                                 

(4) 
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Step 2. Considering trial equation of solution in Eq.(4), 

it can be written as following; 
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                                (5) 

According to the Bernoulli theory, we can consider the 

general form of Bernoulli differential equation for F   

as following; 

          

 , 0, 0, 0,1, 2 ,MF wF dF w d M      

 
                               (6)  

where  F F   is Bernoulli differential polynomial. 

Substituting above relations in Eq.(4), it yields 

equations of polynomial  F of F  as following;  

  0.
1 0

s
F F Fs                                                                                    

(7)                                                     

According to the balance principle, we can determine 

the relationship between ,n m  and M .  

Step 3. The coefficients of  F  all will be zero yield 

us an algebraic system of equations; 

0, 0, , .i si  
   

                                                                                           

(8)                                                                     

Solving this system, we will specify the values 

of
0, , na a and 0, , mb b . 

Step 4. When we solve nonlinear Bernoulli differential 

equation Eq.(6), we obtain the two following situations 

according to b and d ; 
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(9)                                                                         
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(10)                                 

 

Application 

In this section, the Drinfeld-Sokolov (DS) equation is 

solved by using the wave transformation on Eq. (1) in 

the application of the improved Bernoulli sub-equation 

function method.  

 

                                       

(11) 

 

we get the following system of nonlinear ordinary 

differential equations: 

 

                                                

(12) 

 

Integrating the first equation in the system (12), we get 

 

                                                                 

(13) 

 

Inserting Eq.(13) into the second equation of Eq. (12), 

we get the following single nonlinear ordinary 

differential equation: 

 

                                        

(14) 

 

Finally, integration Eq (14), we have 

 

                                       

(15) 

 

Balancing Eq. (15) by considering the highest derivative 

and power, we obtain 

 

1m M n   . 

 

Choosing gives  Thus, the 

trial solution to Eq. (1) takes the following form: 

 

                                            

(16) 

 

where . 

Substituting Eq. (16), its second derivative along with 

 into Eq. (15), 

yields a polynomial in . Solving the system of the 

algebraic equations, yields the values of the parameter 

involved. Substituting the obtained values of the 

parameters into Eq. (16), yields the solutions to Eq. (1). 

 

For ,w d  we can find following coefficients: 

 

Case 1.  

                             (17) 

Case 2.  
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                                 (18) 

 

Case 3.  

 

                           (19) 

 

Case 4.  

                         (20

 

 

Substituting Eq. (17) into Eq. (16), gives 

 

 

          (21) 

 

 

 

 

Substituting Eq. (18) into Eq. (16), gives 

 

 

 

      (22) 

 

 

Substituting Eq. (19) into Eq. (16), gives 
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Substituting Eq. (20) into Eq. (16), gives 

 

 

 

 (24) 

 

 

 

Choosing the suitable values of parameters, we performed the numerical simulations of the obtained solutions for 

(21) equation by plotting their 2D and 3D. 
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Figure-1 The 3D and 2Dsurfaces of the solution 

Eq.(21) for suitable values 
 

CONCLUSIONS 
In this article, new solutions are obtained for the 

Drinfeld-sokolov equation by using the IBSEFM 

method. We have seen that the results we obtained are 

new solutions when we compare them with previous 

ones. Our results might be useful in explaining the 

physical meaning of various nonlinear models arising in 

the field of nonlinear sciences. IBSEFM is powerful and 

efficient mathematical tool that can be used to handle 

various nonlinear mathematical models. 
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