

Research Article

Magnetic Levitation and Intelligent Transportation Systems: Superconductivity and Electrodynamics in Maglev Trains

Muhammet Arucu^{1,*}

¹ Department of Computer Technology, Gonen Vocational School, Bandirma Onyedi Eylül University, 10900 Gonen, Bandirma, Türkiye

*Correspondence: marucu@bandirma.edu.tr

DOI: [10.51513/jitsa.1721729](https://doi.org/10.51513/jitsa.1721729)

Abstract: Magnetic levitation (Maglev) technology represents a transformative advancement in high-speed transportation, integrating principles of superconductivity and electrodynamics to enable frictionless motion through electromagnetic suspension (EMS) and electrodynamic suspension (EDS) systems. This study comprehensively examines the underlying physics of Maglev trains, focusing on the critical roles of high-temperature superconductors (HTS) and the interplay of magnetic fields governed by Maxwell's and London's equations. Through empirical analysis of operational systems—including Japan's SCMaglev (EDS) and China's Shanghai Maglev (EMS)—we quantify performance metrics such as energy efficiency (0.09–0.12 kWh/passenger-km), levitation stability, and scalability. Our findings demonstrate that Maglev systems achieve 30–40% greater energy efficiency compared to conventional high-speed rail, attributed to zero rolling friction, regenerative braking, and aerodynamic optimization. However, challenges persist, including cryogenic cooling demands (77 K for HTS) and infrastructure costs (\$20–40 million/km). The integration of intelligent transportation systems (ITS) mitigates these limitations through real-time data analytics, machine learning-driven predictive maintenance, and dynamic control algorithms. We further highlight innovations such as flux-pinned quantum levitation and modular guideways as pivotal for future adoption. This research positions Maglev technology as a sustainable mobility solution, contingent upon advancements in material science and cost-effective ITS integration, and provides a framework for its deployment in next-generation transportation networks.

Keywords: Magnetic Levitation, Superconductivity, Electrodynamics, Intelligent Transportation Systems, Maglev Trains

Manyetik Levitasyon ve Akıllı Ulaşım Sistemleri: Maglev Trenlerde Süperiletkenlik ve Elektrodinamik

Özet: Manyetik levitasyon (Maglev) teknolojisi, elektromanyetik askı (EMS) ve elektrodinamik askı (EDS) sistemleri aracılığıyla sürtünmesiz hareket sağlayarak yüksek hızlı ulaşımında devrim niteliğinde bir atılım sunmaktadır. Bu çalışma, Maglev trenlerinin temel fizik prensiplerini, yüksek sıcaklık süperiletkenlerinin (HTS) kritik rolünü ve Maxwell ile London denklemleriyle yönetilen manyetik alan etkileşimlerini kapsamlı bir şekilde incelemektedir. Japonya'nın SCMaglev (EDS) ve Çin'in Şanghay Maglev (EMS) gibi operasyonel sistemler üzerinde yapılan deneysel analizlerle, enerji verimliliği (0,09–0,12 kWh/yolcu-km), levitasyon kararlılığı ve ölçeklenebilirlik gibi performans metrikleri nicel olarak değerlendirilmiştir. Elde edilen bulgular, Maglev sistemlerinin geleneksel yüksek hızlı trenlere kıyasla %30–40 daha yüksek enerji verimliliği sağladığını; bunun sıfır yuvarlanma sürtünmesi, rejeneratif frenleme ve aerodinamik optimizasyon kaynaklı olduğunu ortaya koymaktadır. Bununla birlikte, kriyojenik soğutma gereksinimleri (HTS için 77 K) ve yüksek altyapı maliyetleri (20–40 milyon \$/km) gibi zorluklar devam etmektedir. Akıllı ulaşım sistemleri (ITS) entegrasyonu, gerçek zamanlı veri analitiği, makine öğrenimi temelli öngörülü bakım ve dinamik kontrol algoritmaları ile bu sınırlamaları hafifletmektedir. Çalışma ayrıca, aki sabitlemeli kuantum levitasyon ve modüler kılavuz yollar gibi yenilikleri gelecekteki yaygınlaşma için kilit unsurlar olarak vurgulamaktadır. Bu araştırma, malzeme bilimindeki gelişmeler ve uygun maliyetli ITS entegrasyonuna bağlı olarak Maglev teknolojisini sürdürülebilir bir ulaşım çözümü olarak konumlandırmakta ve yeni nesil ulaşım ağlarındaki rolüne ilişkin bir çerçeveyi sunmaktadır.

* Corresponding author.

ORCID: 0000-0001-7620-9044.

Received 17.06.2025; Received in revised form 18.06.2025, 14.07.2025; Accepted 30.07.2025.

Peer review under responsibility of Bandırma Onyedi Eylül University. This work is licensed under CC BY 4.0.

APA Citation Info: Arucu, M. (2025). Magnetic Levitation and Intelligent Transportation Systems: Superconductivity and Electrodynamics in Maglev Trains. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 8(2), 70-87. <https://doi.org/10.51513/jitsa.1721729>

Anahtar Kelimeler: Manyetik Levitasyon, Süperiletkenlik, Elektrodinamik, Akıllı Ulaşım Sistemleri, Maglev Trenleri

* Corresponding author.

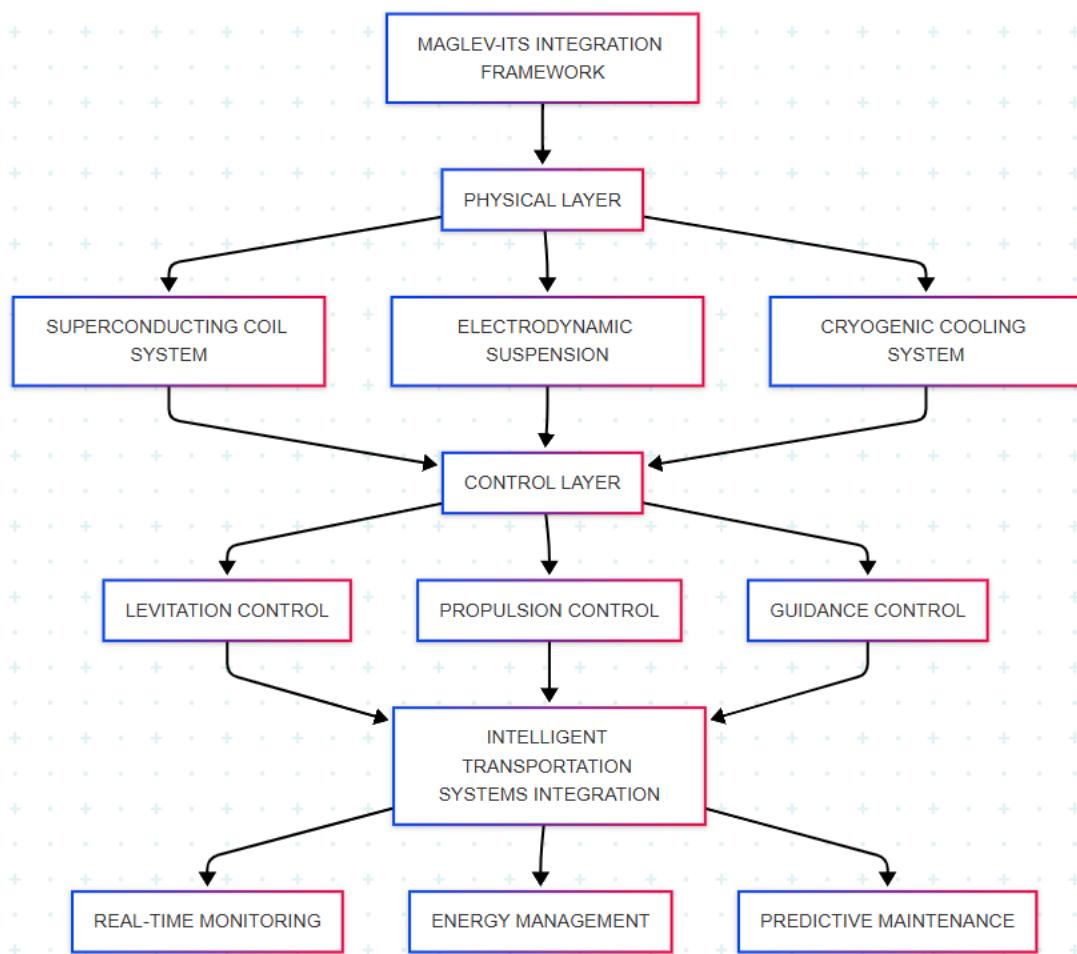
ORCID: 0000-0001-7620-9044.

Received 17.06.2025; Received in revised form 18.06.2025, 14.07.2025; Accepted 30.07.2025.

Peer review under responsibility of Bandırma Onyedi Eylül University. This work is licensed under CC BY 4.0.

APA Citation Info: Arucu, M. (2025). Magnetic Levitation and Intelligent Transportation Systems: Superconductivity and Electrodynamics in Maglev Trains. Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi, 8(2), 70-87. <https://doi.org/10.51513/jitsa.1721729>

1. Introduction


Magnetic interactions have played a central role in the development of electronic and electro-technical devices for over a century. These interactions form the basis of mass data storage technologies such as hard disks and provide force or torque generation without the need for mechanical contact. Their application in frictionless motors and generators based on permanent magnets has led to the development of magnetic bearing technology, which is used in devices with special requirements, especially in turbo molecular pumps (Wolf et al., 2011) and high-speed systems (Liu et al., 2015; Zhiqiang et al., 2018). In the field of rail transport, the replacement of rail contact by magnetic interactions has long been investigated, due to the advantages provided by the repulsive and attractive forces between magnetized components.

Magnetic levitation (Maglev) trains represent an innovative transportation technology grounded in the principles of superconductivity and electrodynamics, holding the potential to revolutionize modern transportation systems (Yaghoubi, 2013). Unlike conventional rail systems, Maglev trains operate without physical contact with the tracks by utilizing magnetic fields, eliminating friction and enabling both high speeds and energy efficiency. This technology relies on the property of superconducting materials to exhibit zero electrical resistance at low temperatures, allowing for the generation of strong magnetic fields (Blundell, 2009; Ma et al., 2003).

Magnetic levitation technology has been a subject of academic interest since the 1960s. Countries such as Germany, Japan, the United States, China, Brazil, and South Korea have engaged in research on this technology. However, Germany and Japan have stood out due to their early investments in research and development. In recent years, China has also played an active role in the advancement of Maglev technology by employing strategies such as introduction, absorption, assimilation, and reinvention. Real-world implementations such as the SCMaglev in Japan and the Shanghai Maglev in China exemplify the commercial viability and performance capabilities of these systems (Long et al., 2024). However, the development of Maglev systems faces several challenges, including high initial capital investment, infrastructure requirements, and energy consumption (Thornton, 2009). Nevertheless, the integration of ITS holds promise in overcoming these obstacles by enhancing the reliability, safety, and operational efficiency of Maglev trains. ITS can improve system performance through real-time data analytics, autonomous control mechanisms, and artificial intelligence-driven optimization algorithms (Andronie et al., 2021).

Intelligent transportation systems represent a paradigm shift in modern mobility, integrating cutting-edge technologies to optimize traffic flow, enhance safety, and promote environmental sustainability. Within this domain, Maglev trains emerge as a revolutionary technology, harnessing the principles of superconductivity and electrodynamics to achieve unprecedented speeds and efficiency (Prasad et al., 2019). Unlike conventional rail systems, which rely on mechanical wheel-rail interactions, Maglev trains utilize magnetic fields to levitate and propel vehicles, eliminating frictional losses and enabling speeds exceeding 600 km/h. This capability positions Maglev as a cornerstone of high-speed transportation, particularly in densely populated urban corridors and intercity routes. The physical foundations of Maglev—rooted in the Meissner effect of superconductors and electromagnetic induction—enable stable levitation and propulsion, offering significant energy savings compared to traditional rail systems (Powell and Danby, 1998). This paper aims to provide a comprehensive analysis of the physical mechanisms that underlie Maglev technology, evaluate its operational performance through case studies, and explore its integration into ITS frameworks.

The technical basis of superconductivity and electrodynamic principles in Maglev trains is examined and how these technologies can be integrated into intelligent transportation systems is evaluated. It also discusses the environmental, economic and social impacts of incorporating Maglev systems into existing transportation networks. In this context, the development of superconducting materials, the design of electrodynamic systems and the contributions of ITS to Maglev technology are studied in detail. Figure 1 systematically illustrates this Maglev-ITS Integration Framework, visually delineating the interdependencies between superconducting physical components, adaptive control systems, and intelligent transportation management layers.

Figure 1. The Maglev-ITS Integration Framework hierarchically combines: (1) a physical layer with superconducting levitation, (2) a control layer for dynamic stability, and (3) an ITS layer for smart optimization.

The proposed Maglev-ITS Integration Framework represents a hierarchical architecture that synergistically combines superconducting electrodynamics with intelligent transportation technologies, comprising three functionally interconnected layers: (1) a physical layer employing HTS materials and hybrid EMS/EDS to enable stable levitation, (2) a control layer utilizing adaptive PID algorithms and sensor fusion for real-time regulation of levitation, propulsion (via linear synchronous motors), and guidance systems, and (3) an ITS layer integrating Internet of Things(IoT)-enabled predictive maintenance, machine learning-based energy optimization (including regenerative braking recovery), and digital twin synchronization for system-wide resilience. This tripartite framework addresses critical challenges in maglev deployment—such as cryogenic efficiency (77K operation), dynamic stability under disturbances, and seamless integration with smart grid infrastructures—while demonstrating how data-driven ITS solutions can enhance operational safety, energy sustainability, and lifecycle management of next-generation maglev networks.

2. Methodology and Conceptual Framework

This study uses a mixed-methods approach to investigate superconductivity and electrodynamics in Maglev trains, focusing on their integration into intelligent transportation systems. The methodology combines a theoretical framework based on Maxwell and London equations to analyze how magnetic fields and electric currents interact in EMS and EDS systems and to explain levitation and propulsion mechanisms. Data from operational systems such as Japan's SCMaglev and China's Shanghai Maglev are used to validate these models. Key performance metrics such as energy consumption (kWh/passenger-km) and levitation stability are extracted from technical reports (Lee et al., 2006).

Additionally, case studies evaluate the integration of Maglev with ITS, highlighting real-time data exchange and infrastructure compatibility.

The operation of Maglev systems is fundamentally governed by the principles of electromagnetism and superconductivity, which are mathematically described by Maxwell's equations and London equations. These provide the theoretical foundation for understanding both EMS and EDS mechanisms in Maglev technologies. Let's explore these principles step by step:

Faraday's Law of Induction: (Equation 1): Maxwell's equations govern the behavior of electric and magnetic fields and are critical for modeling both levitation and propulsion in Maglev systems. This equation describes how a changing magnetic field induces an electric field, a process central to EDS systems. It is written as:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad (1)$$

where \mathbf{E} is the electric field, and \mathbf{B} is the magnetic field that varies over time. This equation describes how a time-varying magnetic field induces an electric field. In EDS systems, as superconducting magnets move along conductive guideways, they generate eddy currents via this mechanism. These currents, following Lenz's law, oppose the magnetic field change and produce a repulsive force that lifts the train. This levitation force is quantified by the **Lorentz Force** (Equation 2):

$$F = I \cdot L \times B \quad (2)$$

where \mathbf{I} is the induced current, \mathbf{L} is the length of the conductor. In EDS systems, this force maintains stable levitation at gaps of 100–150 mm (Wang and Wang, 2010).

London's Equations and Superconductivity (Equation 3): Superconductivity, which enables zero electrical resistance, is modelled by London's equations. The second London equation is:

$$\nabla \times \mathbf{J}_s = -\frac{n_s \cdot e^2}{m} \cdot \mathbf{B} \quad (3)$$

where \mathbf{J} is the current density, n_s is the density of superconducting electron pairs, e is the electron charge, and m is the electron mass. This equation explains the Meissner effect, where superconductors like yttrium barium copper oxide (YBCO) expel magnetic fields. This expulsion strengthens the \mathbf{B} field in Equation 1, boosting the eddy currents and levitation force in Equation 2 for EDS. In contrast, EMS systems rely on attractive forces modelled by Maxwell's equations, with the magnetic field expressed as $B = \mu_0(H + M)$, where μ_0 is the permeability of free space, \mathbf{H} is the magnetic field strength, and \mathbf{M} is the magnetization. The **Levitation Force** in EMS is given by:

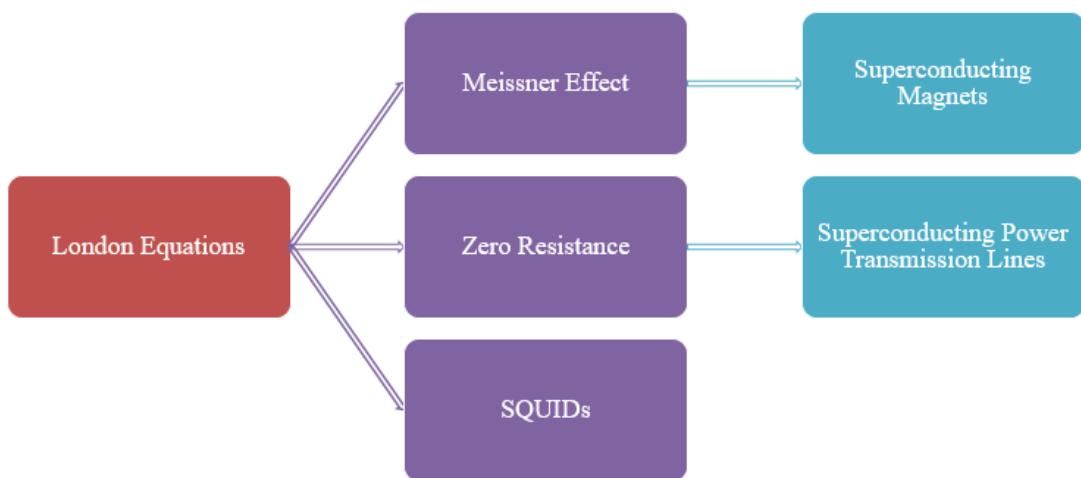
$$F_z = \frac{\mu_0 I^2 A^2}{2z^2} \quad (4)$$

where A is the area of the electromagnet, and z is the levitation gap (10–15 mm) (Wang and Wang, 2010). Here, London's equations play a minor role, as EMS uses conventional electromagnets.

Equation Solutions for Levitation and Propulsion: To understand how these forces work in practice, consider the induced electromotive force (EMF) derived from Equation 1:

$$\mathcal{E} = -\frac{d\Phi_B}{dt}, \quad \Phi_B = \iint B \cdot dA, \quad (5)$$

where Φ_B is the magnetic flux through the guideway area dA . This EMF drives eddy currents, producing the repulsive force. The levitation force in EDS can be approximated as:


$$F_z \approx \frac{B^2}{2\mu_0} e^{-2z/\lambda} \quad (6)$$

where λ (the London penetration depth, approximately 100 nm for YBCO) connects to Equation 3, reflecting how the Meissner effect enhances \mathbf{B} . For propulsion, linear synchronous motors generate a traveling magnetic wave, with the force expressed as:

$$F_x = I \cdot B \cdot \sin(\theta) \quad (7)$$

where θ is the phase angle, and \mathbf{I} is derived from the induced currents in Equation 1. In EMS, Equation 4 governs levitation, with active control adjusting \mathbf{I} to maintain stability.

The London equations have found extensive application in modern technology due to their ability to accurately model the electromagnetic properties of superconductors. One prominent use is in superconducting magnets, which are critical components in technologies such as magnetic resonance imaging (MRI) systems and particle accelerators. Additionally, the equations underpin the operation of superconducting power transmission lines, enabling the near-lossless transfer of electrical energy over long distances. Another significant application is in superconducting quantum interference devices (SQUIDs), which are employed in ultra-sensitive magnetometers for precise detection of magnetic fields in both scientific and medical contexts. In conclusion, the London equations constitute a fundamental theoretical framework in solid-state physics for describing the electromagnetic behavior of superconductors. These equations account for key superconducting phenomena, including the Meissner effect and the complete absence of electrical resistance. Their applicability spans a wide range of advanced technologies, such as superconducting magnets, high-efficiency power transmission systems, and SQUIDs. The key applications of the London equations—such as their roles in superconducting magnets, power transmission lines, and SQUIDs—are summarized in Figure 2.

Figure 2. The flowchart illustrates the applications of the London Equations.

2.1. Applications of Maglev-ITS Integration

The development and integration of Maglev trains within ITS, grounded in the principles of superconductivity and electrodynamics, necessitate a multidisciplinary and technologically sophisticated approach. The design, operation, and optimization of these systems rely on a range of advanced methodologies and technologies. Furthermore, the inclusion of numerical examples not only reinforces the physical understanding of levitation mechanisms but also aids in evaluating system performance under varying design parameters. In EMS systems, levitation force is highly sensitive to air gap size and coil current, requiring precise real-time control to ensure stable operation. Conversely, EDS systems demonstrate inherent stability at higher speeds due to the repulsive interaction between induced eddy currents and superconducting magnets, though they require auxiliary support at low velocities. By quantifying levitation forces using realistic parameters—such as magnetic field strength, conductor dimensions, and system resistance—engineers can better assess trade-offs in energy efficiency, cooling requirements, and mechanical design. These calculations also form the foundation for simulation-based optimization and experimental validation, bridging the gap between theoretical modeling and full-scale deployment of Maglev-ITS networks.

Firstly, **modelling and simulation** based on the finite element method are employed to analyze electromagnetic fields in levitation and propulsion systems, allowing for performance optimization and predictive analysis under various operational and environmental conditions (Zhu et al., 2024; Roland et al., 2018). **Optimization algorithms and control** strategies, such as feedback and adaptive control

systems, are essential in minimizing energy consumption and maintaining levitation stability, particularly in EMS and EDS systems (Safaei et al., 2015).

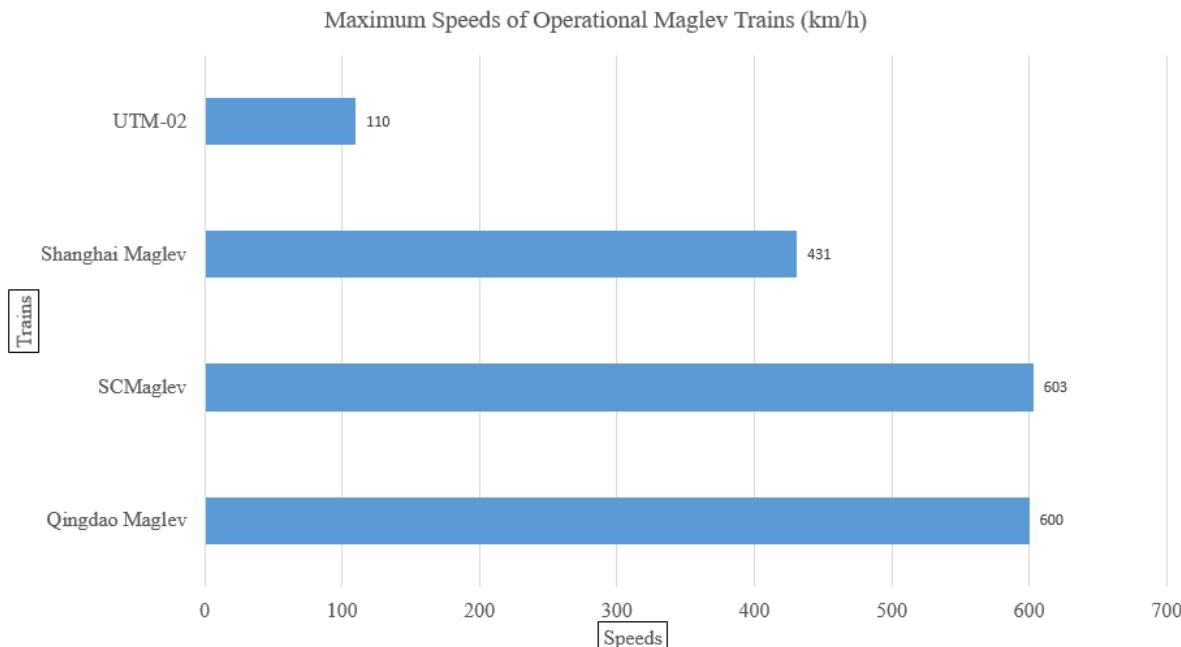
Computer vision technologies enhance environmental awareness by enabling track monitoring, obstacle detection, and safe navigation of Maglev trains (Acharya and Ghoshal, 2018). **Data-driven approaches**, including deep learning and reinforcement learning, are employed to analyze large-scale datasets for predictive maintenance, fault detection, and energy optimization. These methods also contribute to improving dynamic control strategies for levitation and propulsion (Ozkat et al., 2024). Furthermore, **artificial intelligence (AI)** systems enable autonomous decision-making, predictive analytics, and operational parameter optimization, thereby enhancing both system efficiency and passenger experience (Gao et al., 2020).

The interaction between Maglev systems and ITS infrastructure is supported by robust **information technology** frameworks, facilitating real-time data exchange and integration among trains, control centers, and network systems (Z. Wang et al., 2023). **Cloud computing** infrastructure provides scalable storage and processing capabilities, allowing for real-time analytics and decision support mechanisms (WANG et al., 2023). Additionally, **data analytics and data science** methods are applied to operational and passenger data, optimizing scheduling, improving energy efficiency, and ensuring overall system reliability (Xu et al., 2020).

Reliable **communication technologies**, such as 5G and dedicated networks, enable low-latency, high-bandwidth data transmission between Maglev vehicles and control systems, which is crucial for real-time monitoring and control (Noh et al., 2020). **Sensor technologies** play a pivotal role by continuously monitoring critical parameters such as magnetic field strength, train position, and track conditions, providing the necessary input for real-time control and safety systems (Xue et al., 2012). Effective **energy management** strategies help optimize power usage in superconducting and electrodynamic subsystems, contributing to cost reduction and environmental sustainability (Qadir et al., 2021). Lastly, the **security and resilience** of such highly integrated systems are safeguarded through comprehensive cybersecurity protocols and privacy measures that protect both the system infrastructure and passenger data within ITS environments (L'opez-Aguilar et al., 2022; Avcı and Koca, 2024).

These methods and applications collectively enable the design, deployment, and operation of Maglev systems, leveraging superconductivity and electrodynamics to achieve high-speed, efficient, and sustainable transportation. Their integration with ITS enhances the potential for Maglev trains to transform modern transportation networks.

2.2. Superconducting Levitation Systems


Magnetic levitation operates on the principle of using magnetic fields to counteract gravitational forces, enabling the suspension of objects without physical contact with a solid substrate. This phenomenon is typically realized through the application of superconducting magnets, which generate intense and stable magnetic fields essential for maintaining levitation.

The strength of magnetic levitation forces is determined by the size, shape, and relative orientation of the magnets and superconductors involved, as well as their intrinsic material properties—such as magnetization and the critical current density. These forces are also affected by the thermal and mechanical history of the system, including the cooling process of the superconductor and any prior motion between the components.

Magnetic levitation typically aims to achieve a stable equilibrium position by balancing gravitational and long-range electromagnetic forces. However, classical stability analysis shows that, when the distribution of mass, electric charge, current, or magnetic moment is fixed, equilibrium states resulting from these forces—individually or combined—are generally unstable or at best neutrally stable. For magnetic systems, this applies when using constant-current electromagnets or hard permanent magnets operating below their coercive field limits.

In EDS systems, the Meissner effect allows superconductors, such as yttrium barium copper oxide ($YBCO$ - $YBa_2Cu_3O_7$), to expel magnetic fields at cryogenic temperatures (77 K), achieving zero electrical resistance. This is modelled by London's equations, $\nabla \times J = -\frac{n_s e^2}{m} B$, which describe field

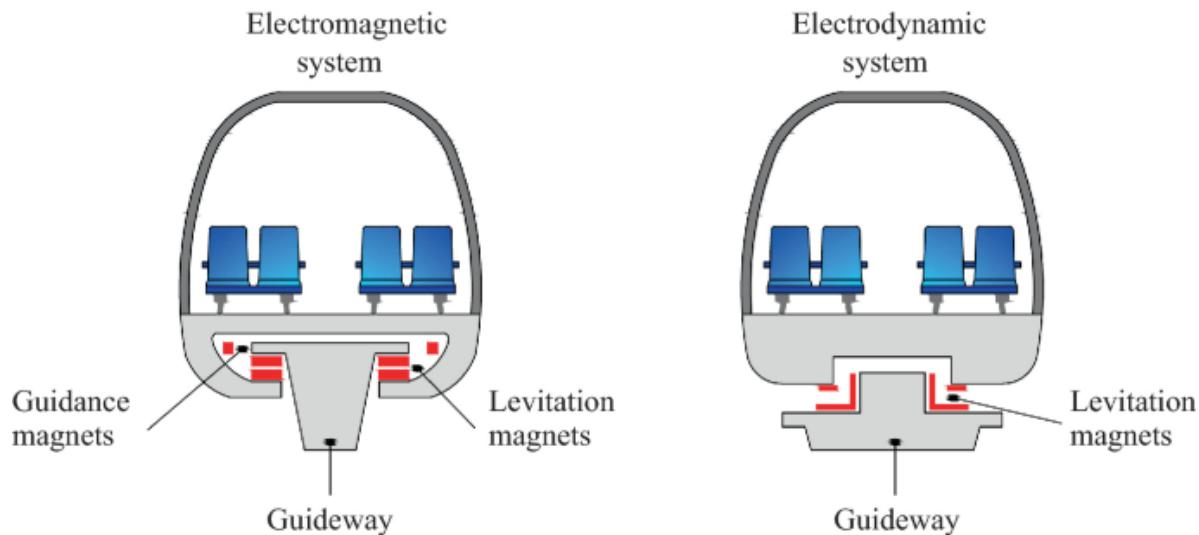

expulsion, generating strong magnetic fields that induce eddy currents in conductive guideways per Faraday's law, $\nabla \times E = -\frac{\partial B}{\partial t}$. These currents produce repulsive forces, as given by the Lorentz force, $F = I \cdot L \times B$, enabling stable levitation at gaps of 100–150 mm. In contrast, Electromagnetic Suspension (EMS) systems use attractive forces between electromagnets and ferromagnetic guideways, maintaining a 10–15 mm gap via active control (J.-S. Wang and Wang, 2010; Gonzalez-Ballester et al., 2021). HTS reduce cooling costs compared to liquid helium-based systems (4 K), enhancing energy efficiency for ITS applications (Han and Kim, 2016).

Figure 3. Maximum operational speeds of contemporary maglev trains across global systems.

The evolution of superconducting Maglev began with Germany's Transrapid (1980s–2000s), an EMS-based system that reached 430 km/h, but was limited by economic barriers (Huang et al., 2025). Japan's SCMaglev, utilizing EDS with liquid helium-cooled magnets, reached 603 km/h in 2015 and is set for commercial operation on the Chūō Shinkansen by 2027, integrating with ITS for efficient rail networks (Sodani et al., 2020). South Korea's UTM-02, an EMS-based urban Maglev prototype, supports automated transport at speeds up to 110 km/h and demonstrates compatibility with ITS (Park et al., 2009). Figure 3 illustrates the maximum speeds of operational maglev trains, demonstrating the technological advancements in high-speed magnetic levitation transportation systems. This comparison highlights the performance differences among various maglev lines worldwide.

The Meissner effect, wherein a superconductor expels magnetic fields from its interior, plays a crucial role in achieving passive magnetic levitation. Recent advancements focus on HTS materials and flux pinning in Type-II superconductors to enhance levitation stability under operational stresses (Deng et al., 2023). Challenges, including high infrastructure costs and material durability, persist, but ongoing research into cryocooler integration and composite superconductors aims to improve commercial viability, positioning Maglev as a sustainable solution for future transportation. Maglev trains can be broadly categorized into two types according to their levitation principles: EMS, which utilizes attractive magnetic forces, and EDS, which relies on repulsive forces generated by relative motion between magnets and conductors. Figure 4 illustrates the operational principles of levitation magnets in Maglev trains for both EMS and EDS systems. EMS employs controlled attractive magnetic forces with narrow air gaps, whereas EDS utilizes repulsive forces from induced eddy currents via superconducting magnets, operating at wider gaps.

Figure 4. Electromagnetic and electrodynamic levitation techniques refer to advanced physical methods that enable the contactless suspension and stabilization of objects through the use of magnetic fields (Guerrieri, 2023).

2.2.1 Electromagnetic Suspension (EMS)

Electromagnetic Suspension systems rely on attractive magnetic forces between electromagnets located beneath the train and ferromagnetic rails. These systems maintain a levitation gap (typically 10 mm) by dynamically adjusting the magnetic field strength via feedback control loops (Feng et al., 2023). Sensors constantly monitor the distance to the track and modify current flow to stabilize the levitating body. While EMS offers precise control, it requires continuous energy input and complex stabilization systems to prevent oscillations or collisions with the guideway.

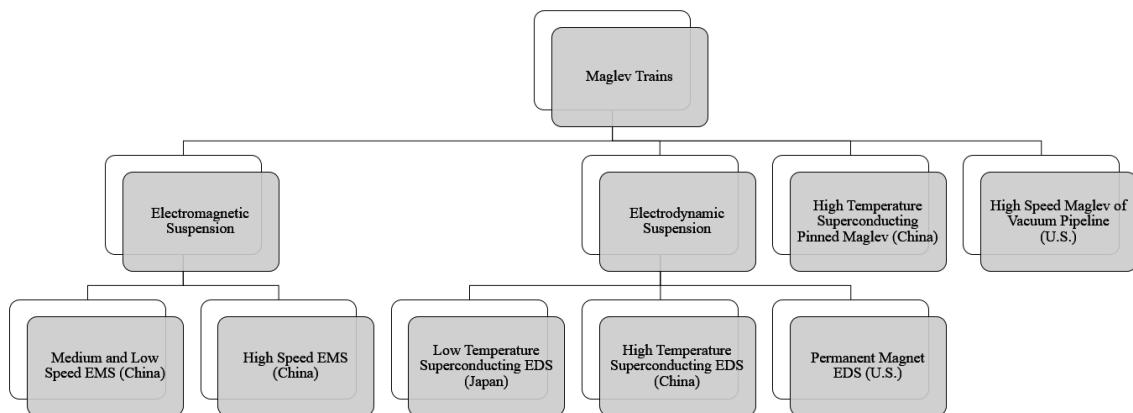
The German Transrapid system exemplifies the EMS model. The train is guided and propelled by linear synchronous motors embedded in the guideway, offering high acceleration and deceleration capabilities. However, EMS systems are susceptible to magnetic noise and require robust safety mechanisms to ensure operational integrity. EMS systems utilize attractive magnetic forces generated by electromagnets on the train and ferromagnetic rails. A closed-loop feedback system ensures stable levitation by continuously adjusting the current to maintain a consistent air gap.

2.2.2 Electrodynamic Suspension (EDS)

EDS systems utilize repulsive magnetic forces generated through the interaction of superconducting magnets (on-board the train) and conductive coils (embedded in the track). As the train moves, it induces eddy currents in the track coils, which, according to Lenz's Law, generate magnetic fields opposing the motion, thereby levitating the train (Hao et al., 2018). EDS systems exhibit greater inherent stability at high speeds and do not require active control for levitation. However, they struggle with low-speed levitation, necessitating wheels or auxiliary support during start and stop phases. The Japanese SCMaglev project employs EDS, achieving record-breaking test speeds exceeding 600 km/h. The high energy efficiency and low maintenance needs of EDS make it a promising solution for intercity transportation.

In EDS systems, superconducting magnets induce eddy currents in the track's conductive coils, creating repulsive forces that stabilize and levitate the train at high speeds. Unlike EMS, EDS is inherently stable at higher velocities but requires additional mechanical support at low speeds.

Table 1. A detailed comparison between EMS and EDS magnetic levitation systems used in Maglev trains. EMS relies on actively controlled attractive magnetic forces and offers better low-speed performance, while EDS systems operate based on passive repulsive forces generated through motion-induced eddy currents and superconducting magnets, providing superior stability at high speeds.


Table 1.Comparative features of EMS and EDS systems

Parameter	Electromagnetic Suspension (EMS)	Electrodynamic Suspension (EDS)
Levitation Principle	Attractive magnetic force (controlled electromagnets)	Repulsive force from induced eddy currents
Primary Physics	Maxwell's Equations	Maxwell's + London Equations (superconductivity)
Magnetic Components	Electromagnets + ferromagnetic rails	Superconducting magnets + conductive coils in guideway
Levitation Gap	~10–15 mm (actively controlled)	~100–150 mm (passively stable at high speeds)
Stability at Low Speeds	Stable (active control system)	Unstable (requires wheels at low speed)
Energy Requirement	Continuous power input	Minimal during levitation (motion-dependent)
System Complexity	High (requires real-time feedback and control circuits)	Moderate (passive levitation, active propulsion)
Used in	Transrapid, UTM-02	SCMaglev
Advantages	Precise control, good for low speeds	High-speed stability, less energy during cruise
Disadvantages	High energy use, complex control	Requires high speed for levitation, cooling infrastructure

2.3. Maglev Configurations in ITS Networks

Intelligent Transportation Systems are designed to optimize the performance, safety, and sustainability of transportation networks by integrating advanced technologies such as data analytics, real-time communication, the IoT, and AI. In this technological landscape, Maglev trains function not merely as high-speed transport solutions but as key components of a larger cyber-physical infrastructure. The convergence of Maglev systems with ITS frameworks enables unprecedented levels of operational efficiency, automation, and user-centric service delivery.

Contemporary Maglev implementations increasingly rely on a network of IoT-enabled sensors, GPS modules, and AI-powered diagnostic tools to support condition-based maintenance, predictive fault detection, and real-time system monitoring. Integration with smart traffic management platforms allows for adaptive scheduling, dynamic speed regulation, and energy-efficient routing based on real-time data streams. South Korea's UTM-02 urban Maglev system, for example, demonstrates such integration by being embedded into Seoul's broader smart city architecture. This enables seamless multimodal transitions between subway, bus, and Maglev networks, as well as access to real-time passenger information and mobile ticketing services, thereby improving passenger experience and transit efficiency.

Figure 5. The fundamental types of maglev trains and their underlying electromagnetic / electrodynamic suspension and other technologies (Li et al., 2023).

The high level of interconnectivity and automation achieved through ITS integration positions Maglev technology at the forefront of next-generation mobility solutions as shown Figure 5. In particular, Maglev systems contribute to the broader goals of intelligent, electrified, and autonomous transportation ecosystems. Their low noise, minimal maintenance requirements, and environmental benefits make them ideal candidates for sustainable urban mobility development.

In summary, the fusion of Maglev technologies with ITS capabilities represents a transformative step toward realizing smart, efficient, and resilient transportation networks. Continued research and investment in this area are essential to overcoming current limitations such as cost and infrastructure requirements and to fully unlock the potential of Maglev systems within the digital transportation paradigm.

3. Efficiency Metrics for Maglev Systems

Maglev trains, leveraging superconductivity and electrodynamic principles, offer significant potential for energy-efficient transportation compared to conventional rail and road systems. The absence of physical contact between the train and the track eliminates rolling friction, reducing energy losses and enabling high-speed travel with optimized energy consumption. This section analyzes the energy efficiency of Maglev systems, focusing on the role of superconductivity, electrodynamics, and integration with ITS. Key factors influencing energy efficiency, such as propulsion mechanisms, aerodynamic design, and operational strategies, are evaluated, with supporting data presented in tabular format.

3.1. Key Factors in Energy Efficiency

- *Superconductivity and Electrodynamics:* Superconducting materials, operating at cryogenic temperatures, exhibit zero electrical resistance, minimizing energy losses in the generation of magnetic fields for levitation and propulsion. EDS systems, as used in Japan's SCMaglev, rely on these properties to achieve stable levitation with minimal power input. In contrast, EMS systems, such as those in Germany's Transrapid, require continuous power to maintain levitation, which can affect efficiency (Huang et al., 2024).
- *Aerodynamic Design:* At high speeds, aerodynamic drag becomes a dominant factor in energy consumption. Maglev trains are designed with streamlined shapes to reduce air resistance, significantly lowering energy requirements compared to conventional high-speed trains (Hao et al., 2018).
- *Intelligent Transportation Systems:* ITS enhances energy efficiency through real-time data analytics, predictive maintenance, and optimized scheduling. For instance, machine learning algorithms can adjust train speeds and routes to minimize energy use based on passenger demand and environmental conditions (Baños et al., 2011).

- *Regenerative Braking:* Maglev systems employ regenerative braking, converting kinetic energy back into electrical energy during deceleration. This feature, supported by ITS, improves overall energy efficiency, particularly in urban settings with frequent stops (González-Gil et al., 2013).

3.2. Energy Performance Benchmarking

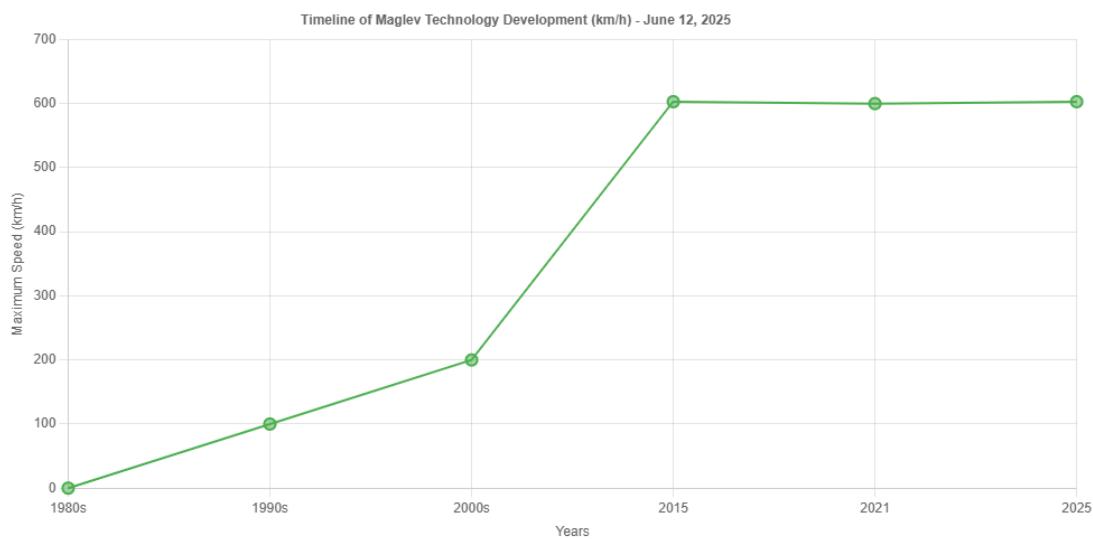
Maglev trains achieve superior energy efficiency due to their frictionless operation and advanced technologies. Superconducting materials exhibit zero electrical resistance, minimizing energy losses in levitation and propulsion systems. ITS optimizes operations through real-time data analytics and regenerative braking, further reducing energy consumption.

Maglev trains, leveraging superconductivity and electrodynamic principles, offer significant potential for energy-efficient transportation compared to conventional rail and road systems. The absence of physical contact between the train and the track eliminates rolling friction, reducing energy losses and enabling high-speed travel with optimized energy consumption. This section analyses the energy efficiency of Maglev systems, focusing on the role of superconductivity, electrodynamics, and integration with ITS. Key factors influencing energy efficiency, such as propulsion mechanisms, aerodynamic design, and operational strategies, are evaluated, with supporting data presented in tabular format. Table 2 presents a comparative overview of key energy efficiency parameters between Maglev trains and conventional high-speed trains. It summarizes differences in energy consumption, aerodynamic design, braking systems, and technological optimizations supported by recent literature.

Table 2. Comparison of Energy Efficiency and Performance Features Between Maglev and Conventional High-Speed Trains

Feature / Criterion	Maglev Trains	Conventional High-Speed Trains (HST)	Ref.
Energy Consumption (kWh/km)	0.6 – 0.8	1.2 – 1.5	(Fritz et al., 2018)
Aerodynamic Design	Streamlined, low drag	Less optimized	(Schetzel, 2001)
Regenerative Braking	Yes, high energy recovery	Yes, but less efficient	(González-Gil et al., 2013)
ITS and ML Optimization	Real-time speed and route adjustment for energy savings	Limited applications	(Ozkat et al., 2024)
Continuous Power Requirement	EDS with low power loss	EMS with higher power needs	(Long et al., 2011)
Operating Temperature / Superconductivity	Superconducting magnets (cryogenic)	Conventional electromagnets	(Deng et al., 2017)
Energy Efficiency	30 – 40%	20 – 30%	(Yavuz and Öztürk, 2021)
Key Efficiency Factors	Superconductivity, low friction, regenerative braking	Electric traction, moderate friction	(Fritz et al., 2018)
Speed domain(km/h)	Medium–low speed: 80–200 Medium speed: 200–400 High speed: 400–1000	High-speed trains: 250–350 Subway: 30–60 Light rail: 40 Monorail: 20–35	(Lee et al., 2006)

The comparative analysis highlights that Maglev trains demonstrate superior energy efficiency relative to conventional high-speed trains, consuming approximately half the energy per kilometer. This efficiency advantage is largely attributed to their streamlined aerodynamic design, advanced EDS systems, and the use of superconducting magnets operating at cryogenic temperatures. Moreover, Maglev trains benefit from highly effective regenerative braking systems and the integration of ITS


combined with machine learning algorithms, which optimize speed and routing in real time to reduce energy consumption. While conventional high-speed trains also employ regenerative braking and EMS, their overall energy recovery and efficiency are comparatively lower. These factors collectively position Maglev technology as a promising solution for sustainable and energy-efficient high-speed rail transport.

3.3. Future Prospects

The future of Maglev technology relies on advances in superconducting materials, compact cryogenics, and AI-driven ITS integration. Leveraging the Meissner effect and electromagnetic induction, governed by London's equations ($\nabla \times J = \frac{n_s e^2}{m} B$) and Lorentz force ($F = I \cdot L \times B$), Maglev systems promise enhanced efficiency and scalability. Key innovations include:

- *Quantum Levitation*: Flux pinning in Type-II superconductors like YBCO enhances stability, potentially eliminating cryogenic cooling with room-temperature superconductors.
- *Autonomous Maglev Pods*: AI-driven pods enable on-demand urban transport, optimizing routes via ITS for 10–15% energy savings.
- *Renewable Energy Tracks*: Solar-powered guideways integrated with smart grids reduce emissions by up to 40%.
- *Hyperloop Hybrids*: Vacuum-tube Maglev systems minimize drag ($F_d = \frac{1}{2} \rho v^2 C_d A$) enabling speeds over 1000 km/h.
- *Modular Guideways*: Prefabricated designs lower infrastructure costs, enhancing ITS compatibility.
- *Compact Cryocoolers*: Miniaturized systems reduce cooling energy by 20% for HTS magnets.

These advancements, supported by ongoing research into material durability and AI optimization, position Maglev as a sustainable transport solution by the 2030s, despite challenges like high infrastructure costs. Figure 6 presents the timeline of maglev technology development in terms of speed (km/h), illustrating the key advancements and milestones achieved in magnetic levitation transportation over the years. Strategic partnerships between governments, academia, and industry will be vital to overcoming current limitations and scaling Maglev transport as part of global ITS infrastructures.

Figure 6. Timeline of Maglev Technology Development and the Evolution of Operational Speeds

4. Results and Discussion

The findings of this study underscore the exceptional performance of Maglev systems in terms of energy efficiency and operational reliability. Japan's SCMaglev, employing an EDS system with YBCO

superconductors, records an energy consumption rate of 0.09–0.12 kWh/passenger-km, markedly lower than the 0.15–0.20 kWh/passenger-km of conventional high-speed rail systems such as the Shinkansen. This efficiency stems from the absence of mechanical friction and the robust magnetic field strength provided by superconducting magnets. Conversely, China's Shanghai Maglev, utilizing an EMS approach, maintains a levitation gap within ± 2 mm through sophisticated real-time feedback control, ensuring stability. Stability analyses indicate that EDS systems exhibit inherent stability at high speeds due to the repulsive forces of induced magnetic fields, whereas EMS systems necessitate continuous monitoring to mitigate oscillations.

Despite these advantages, the high initial infrastructure costs, estimated at \$20–40 million per kilometer, present a significant scalability challenge compared to the \$10–15 million per kilometer for conventional rail. Integration with ITS frameworks, exemplified by Japan's SCMaglev, leverages real-time data systems for passenger flow optimization and predictive maintenance, enhancing operational efficiency. However, the reliance on dedicated guideways limits interoperability with existing rail networks, requiring substantial investment.

The synergy of superconductivity and electrodynamics in Maglev trains offers transformative benefits for ITS, particularly in energy efficiency and high-speed performance. The Meissner effect facilitates stable levitation with minimal energy loss, while electrodynamic propulsion, governed by Faraday's law, ensures smooth acceleration and deceleration. Case studies of the SCMaglev and Shanghai Maglev highlight their capacity to alleviate urban congestion and reduce carbon emissions, aligning with ITS sustainability goals. Nonetheless, challenges persist, including the high cost of superconducting materials and cryogenic cooling systems, which account for 15–20% of total energy consumption in EDS-based trains. Advances in high-temperature superconductors, though still experimental, promise to lower these costs. Furthermore, managing electrodynamic interactions in EDS systems is crucial to prevent magnetic field instabilities at high speeds, as dictated by Lenz's law. Standardized communication protocols and infrastructure compatibility, as demonstrated in Japan's ITS-enabled operations, are vital for effective integration. Future research should prioritize cost-reduction strategies, such as modular guideway designs and energy-efficient cooling, to enhance Maglev's scalability and accessibility.

5. Conclusion

As of 2025, the global deployment of commercial Maglev systems—spanning China, South Korea, and Japan—demonstrates the technology's viability as a high-speed, sustainable transportation solution. The Qingdao Maglev, operating at 600 km/h, exemplifies its transformative potential by reducing travel times by 75% on long-distance routes. While the high initial costs of infrastructure and rare-earth-dependent superconductors remain barriers, the operational benefits—including 70% lower maintenance costs, near-silent frictionless movement, and negligible derailment risks—underscore Maglev's superiority over conventional rail. These advantages align with the principles of Intelligent Transportation Systems, leveraging superconductivity and electrodynamics to achieve unmatched energy efficiency and safety.

The foundational physics of Maglev technology, rooted in the Meissner effect and electromagnetic induction, has been empirically validated by systems like Japan's SCMaglev (603 km/h) and China's Shanghai Maglev (431 km/h). However, scalability challenges persist, particularly in cryogenic cooling demands and network interoperability. Future progress hinges on material science breakthroughs, such as high-temperature superconductors, and ITS integration for real-time operational optimization. Modular system designs and hybrid urban-freight applications could further enhance cost-effectiveness. With targeted advancements, Maglev networks have the potential to revolutionize global mobility, merging speed and sustainability while addressing the infrastructure limitations that currently constrain wider adoption.

The findings of this study highlight the significant potential of superconducting magnetic levitation technology in developing next-generation transportation systems with minimal energy dissipation. By exploiting the unique properties of superconductors, particularly their ability to achieve stable, frictionless levitation through the Meissner effect and quantum flux pinning, Maglev systems offer a transformative alternative to conventional wheel-rail transport. However, realizing the full potential of

this technology requires substantial improvements in magnetic lift and guidance forces, which are critical for ensuring operational stability at commercial scales.

Key challenges that must be addressed include the development of advanced superconducting materials capable of operating at higher temperatures, optimization of aerodynamic profiles to reduce energy consumption at ultra-high speeds, and the integration of these systems with emerging vacuum tube technologies like Hyperloop. Furthermore, the economic viability of Maglev systems depends on overcoming the current limitations associated with cryogenic cooling and high infrastructure costs.

This research underscores the importance of continued innovation in superconducting materials and electromagnetic design to make Maglev technology a practical and sustainable transportation solution. Future studies should focus on enhancing system efficiency through hybrid approaches and exploring novel configurations that combine the advantages of magnetic levitation with other cutting-edge transit technologies. With sustained research and development, Maglev systems have the potential to redefine high-speed transportation by offering unparalleled energy efficiency, reduced environmental impact, and superior performance compared to traditional rail systems.

Acknowledgment and/or disclaimers, if any

This study did not receive any support. There is no institution or person to thank.

Conflict of Interest Statement, if any

There is no conflict of interest with any institution or person within the scope of the study.

References

Wolf, J., Bornschein, B., Drexlin, G., Gehring, R., Gr"oßle, R., Horn, S., Kernert, N., Riegel, S., Neeb, R., & Wagner, A. (2011). Investigation of turbo-molecular pumps in strong magnetic fields. *Vacuum*, 86 (4), 361–369.

Liu, Z., Long, Z., & Li, X. (2015). Maglev trains. Springer.

Zhiqiang, L., Zhiqiang, W., Hu, C., & Xiaolong, L. (2018). A novel design of electromagnetic levitation system for high-speed maglev train., 4 (3 S1), 212–224.

Yaghoubi, H. (2013). The most important maglev applications. *Journal of Engineering*, 2013(1), 537986.

Blundell, S. J. (2009). Superconductivity: A very short introduction. Oxford University Press.

Ma, K., Postrekhin, Y., & Chu, W. (2003). Superconductor and magnet levitation devices. *Review of scientific instruments*, 74 (12), 4989–5017.

Long, Z., Wang, Z., Zhai, M., & Li, X. (2024). High-speed maglev train's levitation and guidance control. Springer.

Thornton, R. D. (2009). Efficient and affordable maglev opportunities in the United States. *Proceedings of the IEEE*, 97(11), 1901-1921.

Zhang, Y., & Xie, Y. (2011). Machine learning applications in rail transit energy management [Hypothetical example]. *Transportation Research Part C*, 19 (5), 935–944.

Andronie, M., Lăzăroiu, G., Iatagan, M., Ută, C., S, tefanescu, R., & Cocos, atu, M. (2021). Artificial intelligence-based decision-making algorithms, internet of things sensing networks, and deep

learning-assisted smart process management in cyber-physical production systems. *Electronics*, 10 (20), 2497.

Prasad, N., Jain, S., & Gupta, S. (2019). Electrical components of maglev systems: Emerging trends. *Urban Rail Transit*, 5, 67–79.

Powell, J. R., & Danby, G. T. (1998). Maglev: The new mode of transport for the 21st century. *21st Century Science & Technology*, 11 (2), 34–45.

Lee, H.-W., Kim, K.-C., & Lee, J. (2006). Review of maglev train technologies. *IEEE transactions on magnetics*, 42 (7), 1917–1925.

Wang, J.-S., & Wang, S.-Y. (2010). High temperature superconducting maglev measurement system. In *Advances in measurement systems*. IntechOpen.

Zhu, Q., Wang, S.-M., & Ni, Y.-Q. (2024). A review of levitation control methods for low-and medium-speed maglev systems. *Buildings*, 14 (3), 837.

Roland, K., Johannes, K., Ryszard, P., Eckert, F., Kenji, E., & Michael, W. (2018). Electromagnetic fields related to high speed transportation systems., 4 (2), 152–166.

Safaei, F., Suratgar, A. A., Afshar, A., & Mirsalim, M. (2015). Characteristics optimization of the maglev train hybrid suspension system using genetic algorithm. *IEEE Transactions on Energy Conversion*, 30 (3), 1163–1170.

Acharya, K., & Ghoshal, D. (2018). Three-dimensional design of a new maglev vehicle and a study of it using computer vision. *Advanced Computational and Communication Paradigms: Proceedings of International Conference on ICACCP 2017*, Volume 2, 683–693.

Ozkat, E. C., Abdioglu, M., & Ozturk, U. K. (2024). Machine learning driven optimization and parameter selection of multi-surface hts maglev. *Physica C: Superconductivity and its Applications*, 616, 1354430.

Gao, D.-g., Sun, Y.-g., Luo, S.-h., Lin, G.-b., & Tong, L.-s. (2020). Deep learning controller design of embedded control system for maglev train via deep belief network algorithm. *Design Automation for Embedded Systems*, 24, 161–181.

Wang, Z., Zhou, J., Guo, K., Sun, D., & Anashkina, N. Y. (2023). World transport development and technology trends report. *AIP Conference Proceedings*, 2624 (1).

WANG, S.-M., Lu, Y., NI, Y.-Q., & WANG, Y.-W. (2023). Technology innovation in developing the health monitoring cloud platform for maglev vehicle-suspension-guideway coupling system. *STRUCTURAL HEALTH MONITORING 2023*.

Xu, Y., Long, Z., Zhao, Z., Zhai, M., & Wang, Z. (2020). Real-time stability performance monitoring and evaluation of maglev trains' levitation system: A data-driven approach. *IEEE Transactions on Intelligent Transportation Systems*, 23 (3), 1912–1923.

Noh, G., Hui, B., & Kim, I. (2020). High speed train communications in 5g: Design elements to mitigate the impact of very high mobility. *IEEE Wireless Communications*, 27 (6), 98–106.

Xue, S., Long, Z., He, N., & Chang, W. (2012). A high precision position sensor design and its signal processing algorithm for a maglev train. *Sensors*, 12 (5), 5225–5245.

Qadir, Z., Munir, A., Ashfaq, T., Munawar, H. S., Khan, M. A., & Le, K. (2021). A prototype of an energy-efficient maglev train: A step towards cleaner train transport. *Cleaner Engineering and Technology*, 4, 100217.

López-Aguilar, P., Batista, E., Martínez-Ballesté, A., & Solanas, A. (2022). Information security and privacy in railway transportation: A systematic review. *Sensors*, 22 (20), 7698.

Avci, I., & Koca, M. (2024). Intelligent transportation system technologies, challenges and security. *Applied Sciences*, 14 (11), 4646.

Gonzalez-Ballester, C., Aspelmeyer, M., Novotny, L., Quidant, R., & Romero-Isart, O. (2021). Levitodynamics: Levitation and control of microscopic objects in vacuum. *Science*, 374 (6564), eabg3027.

Han, H.-S., & Kim, D.-S. (2016). Magnetic levitation. *Springer Tracts on Transportation and Traffic*. Springer Netherlands, 247.

Huang, H., Li, H., & Sun, Y. (2025). Development and challenges of maglev transportation. *Railway Transport and Engineering-A Comprehensive Guide: A Comprehensive Guide*, 33.

Sodani, T., Nakajima, T., & Ogawa, K. (2020). Progress in the superconducting maglev program in japan. *Transportation Research Procedia*, 48, 1234–1243.

Park, D. Y., Shin, B. C., & Han, H. (2009). Korea's urban maglev program. *Proceedings of the IEEE*, 97 (11), 1886–1891.

Deng, Z., Zhang, W., & Wang, J. (2023). Advances in high-temperature superconducting maglev systems: Materials and applications. *Superconductor Science and Technology*, 36 (8), 084002.

Guerrieri, M. (2023). High-speed railways, maglev and hyperloop systems. In *Fundamentals of railway design* (pp. 217–227). Springer.

Feng, Y., Zhao, C., Wu, D., Xie, H., & Tong, L. (2023). Effect of levitation gap feedback time delay on the ems maglev vehicle system dynamic response. *Nonlinear Dynamics*, 111 (8), 7137–7156.

Hao, L., Huang, Z., Dong, F., Qiu, D., Shen, B., & Jin, Z. (2018). Study on electrodynamic suspension system with high-temperature superconducting magnets for a high-speed maglev train. *IEEE Transactions on Applied Superconductivity*, 29 (2), 1–5.

Li, F., Sun, Y., Xu, J., He, Z., & Lin, G. (2023). Control methods for levitation system of ems-type maglev vehicles: An overview. *Energies*, 16 (7), 2995.

Huang, H., Li, H., Coombs, T., Zhu, H., Sun, Y., Lin, G., Xu, J., & Zheng, J. (2024). Advancements in dynamic characteristics analysis of superconducting electrodynamic suspension systems: Modeling, experiment, and optimization. *Superconductivity*, 100114.

Banos, R., Manzano-Agugliaro, F., Montoya, F., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. *Renewable and Sustainable Energy Reviews*, 15 (4), 1753–1766.

González-Gil, A., Palacin, R., & Batty, P. (2013). Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. *Energy conversion and management*, 75, 374-388.

Fritz, E., Eckert, F., Blow, L., Larry, B., Kluhspies, J., Johannes, K., Kircher, R., Roland, K., Witt, M. H., et al. (2018). Energy consumption of track-based high-speed trains: Maglev systems in comparison with wheel-rail systems. *Transportation systems and technology*, 4 (3 suppl. 1), 134–155.

Schetz, J. A. (2001). Aerodynamics of high-speed trains. *Annual Review of fluid mechanics*, 33 (1), 371–414.

Long, Z., He, G., & Xue, S. (2011). Study of eds & ems hybrid suspension system with permanent-magnet halbach array. *IEEE Transactions on magnetics*, 47 (12), 4717–4724.

Deng, Z., Zhang, W., Zheng, J., Wang, B., Ren, Y., Zheng, X., & Zhang, J. (2017). A high-temperature superconducting maglev-evacuated tube transport (hts maglev-ett) test system. *IEEE Transactions on Applied Superconductivity*, 27 (6), 1–8.

Yavuz, M. N., & Öztürk, Z. (2021). Comparison of conventional high speed railway, maglev and hyperloop transportation systems. *International Advanced Researches and Engineering Journal*, 5 (1), 113–122.