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Artificial neural network, The aim of this paper is to optimize the classification performance with the arithmetic
Multilayer perceptrons, optimization algorithm, one of the swarm-based intelligent algorithms, by using the
Optimization multilayer perceptron model, which is an artificial neural network architecture. Model

training is provided by IRIS flower data, which is widely used. arithmetic optimization
algorithm is a metaheuristic optimization method inspired by basic arithmetic functions
consisting of discovery and exploitation phases. The multilayer perceptron model is
structured to consist of input, hidden, and output layers and is trained to classify the types of
flowers in the IRIS dataset. The model’s performance was evaluated using statistical metrics
such as accuracy, recall, and F1 score. Simulations were carried out using the MATLAB
package program. When the results were examined, the average accuracy rate of the model
was measured as 96.7%. The recall rate was 96.0% and the F1 score was 96.3%. These results
show that hybridizing metaheuristic algorithms to artificial intelligent network models can
produce effective and efficient results in complex datasets.
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1. INTRODUCTION

Machine learning and optimization techniques have become
powerful tools for tackling complex challenges. In this setting,
optimization involves the process by which a system meets a
goal within certain rules and limitations. It includes the entire
process of setting up the necessary input protocols to ensure the
desired output operations within the established framework of
rules and boundaries. Artificial neural networks (ANN5), a type
of machine learning algorithm, offer numerous architectural
possibilities for optimizing problems. Multi-layer perceptron
(MLP), one such architecture, are used for data classification.
Optimization algorithms for training MLP have been developed
to guide the supervision process [1]. The MLP architecture
provides several benefits, such as a wide range of applications
and a structure that is easy to adapt. This architecture can
address various types of problems, including classification and
regression. It offers an effective framework for learning non-
linear, complex problems, reveals hidden patterns in data
clusters, and can be smoothly integrated with other deep
learning layers, like evolutionary neural networks, allowing for
the creation of more intricate and comprehensive model
structures [2]. Due to these benefits, the MLP is used as a
versatile and powerful tool. However, the MLP architecture
also has certain drawbacks. Primarily, it does not ensure an
optimal solution, which is a fundamental limitation of this
structure. Especially in complex problem domains, there is a
risk of straying from the global optimum. Additionally, the
model's performance heavily relies on the correct selection of
algorithm settings, a process that requires experience and
expertise. Furthermore, operating MLP with multilayered
structures and large data clusters incurs a high computational
cost, posing a challenge, particularly in resource-limited
applications. These drawbacks can directly affect the
applicability and efficiency of a model [3]. Nonetheless, there
has been a relative increase in MLP-related applications in
recent years [4].

Metaheuristic algorithms are a type of optimization method
used in the framework of MLP. These algorithms are known for
their broad search strategies, which are not limited to particular
problems, allowing them to tackle complex optimization issues.
Unlike traditional heuristics, metaheuristic algorithms are
crafted to thoroughly explore vast solution spaces. They are
favoured over conventional mathematical programming
because they can pinpoint optimal areas within the search
space, handle large-scale problems, and function with greater
efficiency. These techniques are beneficial as they employ
multiple initial solutions, do not require derivative information,
and do not demand continuity. By approaching the problem as
a hidden structure, they prove effective in finding solutions in
unexplored search regions [5].

In recent times, there has been a significant rise in the
exploration of metaheuristic algorithms. Noteworthy instances
of these algorithms include the genetic algorithm (GA) [6], ant
colony optimization (ACO) [ 1], artificial bee colony (ABC) [7],
grey wolf optimization (GWO) [8], harris hawks optimization
(HHO) [9], particle swarm optimization (PSO) [10], and the
hunger games algorithm (HGS) [11]. In the realm of

engineering, the application of metaheuristic algorithms, which
provide more adaptable and creative solutions, has become
increasingly common. While these algorithms do not promise a
conclusive solution, they are adapting at examining a wider
array of possibilities and achieving better outcomes.
Particularly, nature-inspired optimization algorithms can
deliver quicker and more accurate solutions than conventional
methods. Despite the considerable benefits of metaheuristic
algorithms, they also have certain drawbacks. Firstly, these
algorithms are not guaranteed to discover the optimal solution;
they often produce only near-optimal results [12]. Moreover,
the effectiveness of these algorithms heavily depends on the
parameters used, which can be difficult to fine-tune. The
substantial computational cost is another significant limitation,
especially for large-scale issues. Additionally, in some cases,
algorithms might get stuck in local optima within the solution
space and fail to achieve the global optimum. These aspects are
important drawbacks to consider when using metaheuristic
algorithms. Metaheuristic algorithms are commonly employed
in MLP architecture [13].

In this paper, the IRIS dataset from the UCI repository was
processed using the AOA and trained through the MLP
architecture, achieving high performance [14], [15]. AOA is
renowned for its simplicity and effectiveness, utilizing
mathematical operations to optimize solutions. It aims to find
the global optimum by employing swarm intelligence during
problem-solving, which is particularly advantageous for
complex and high-dimensional datasets [16]. AOA has been
applied to real-world challenges, such as maximum power point
tracking, pattern recognition, and image segmentation [17], as
well as in post-earthquake analysis for detecting structural
damage in reinforced concrete structures. It has also been used
to analyse energy production variations in solar panels [18],
model biological components, and classify and segment
medical parts [19]. Despite its benefits, AOA's limited
discovery ability and tendency to become trapped in local
optima have been identified as areas needing improvement.
Consequently, various hybridization studies have been
conducted based on the No Free Lunch theorem [20]. One such
study found that an AOA-based ANN algorithm performed well
in classification and prediction tasks. Particularly in
classification studies, hybrid methods demonstrated high
performance criteria. The arithmetic optimization algorithm
was combined with Lévy random steps (LRS) to enhance linear
search capabilities and avoid local search traps, leading to more
optimal results and improved performance of traditional
engineering solutions [21].

The primary aim of this paper is to develop a MLP model
using a metaheuristic algorithm. Specifically, it seeks to
optimize the MLP model with the AOA to improve
classification performance and conduct a statistical evaluation
of the results. The outcomes will be presented through an
analysis of the proposed method using metrics such as
accuracy, recall rate, and F1 scores. The Iris dataset was
employed in this study, as it is a balanced and well-structured
dataset frequently used in classification problems, providing an
appropriate platform for assessing the performance of AOA.
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The paper is organized into four main sections. Initially, the
Introduction discusses the use and advantages of metaheuristic
algorithms in MLP architecture. The Literature Review section
examines the types of these algorithms and the applications of
the AOA in previous studies. The third section, Method and
Application, outlines the process of optimizing the MLP with
the Iris dataset using AOA. Finally, in the Results and
Discussion section, the performance of AOA on the MLP is
evaluated using statistical metrics, and the results are
summarized.

2. ARITHMETIC OPTIMIZATION ALGORITHM

Developed by Abualigah ez al. [22], AOA is a swarm-based
metaheuristic optimization method inspired by mathematical
arithmetic concepts. AOA effectively executes the stages of
exploration and exploitation by emulating the distribution
properties of the fundamental arithmetic operations: addition,
subtraction, multiplication, and division. The optimization
process of AOA comprises the initialization, exploration, and
exploitation phases. In the initial phase, the algorithm's basic
parameters are introduced alongside the candidate solution set.
During the exploration phase, the objective is to
comprehensively scan the search space and avoid entrapment in
local optima. At this stage, the positions of the search agents are
updated using the multiplication ("x") and division ("+")
operators; multiplication enhances the diversity of solutions,
while division increases solution precision. In the exploitation
phase, the aim is to refine the solutions obtained during
exploration. At this stage, existing solutions are made more
precise using the addition ("+") and subtraction ("—") operators,
thereby narrowing the search focus. Similar to other
metaheuristic algorithms, AOA initiates the optimization
process with a randomly generated set of candidate solutions.
These candidate solutions are iteratively evaluated and refined
through specific optimization rules and an objective function.
AOA is capable of solving optimization problems without
requiring derivative calculations, thus offering a broad range of
applications. This systematic structure enables AOA to balance
global and local search, enhancing its effectiveness in the
problem-solving process.

best(x;) + (MOP) x ((ubj _1by) x p+ L]-), rand2 < 0,5

Xij(Crrer + 1)

The exploitation phase constitutes a pivotal component of the
AOA, facilitating an in-depth exploration of the local regions
within the solution space. During this phase, the sensitivity of
the solution is heightened by steering candidate solutions
towards the most optimal solution available. This process
involves updates executed through mathematical formulas
predicated on arithmetic operations, thereby ensuring a
concentrated focus on the local area. Concurrently, a degree of
randomness is preserved to avert convergence to a local
optimum. Consequently, the exploitation phase enables the
algorithm to further refine the optimal solution [23].

best(xj) X (MOP) x ((Uj _ L]-) XU+ L]-), otherwise

At the initial stage, the x matrix is created. The purpose of x
is to indicate the population that the AOA algorithm initially
randomly generated (1). In the matrix N, when indicating the
candidate solutions or population size n, can express how many
dimensions each solution has.

X11 X1, X1n-1 X1,n
X2‘1 X2,j . X2’n
X= : : : : : (D)
XN-1,1 XN-1,j XN-1,n
XN1 o XN XN,n-1 XN,n

The optimization process commences with an initial set, and
the algorithm endeavours to generate superior solutions by
enhancing the population in each iteration [22]. During each
iteration, the most optimal candidate solution within the
population is regarded as the best or near-optimal solution
identified thus far, and the algorithm continues by preserving
this solution. Through this process, the population's information
is enriched, leading to the discovery of more effective solutions.
Prior to the initiation of the AOA, decisions regarding
exploration and exploitation were informed by the outcome of
the Mathematical Optimizer Accelerated (MOA) function, as
determined by the Eq. 2 [22].

MOA (C_Iter) = min + C_Iter X (

max — min)

2

itermax

MOA (C_Iter), represents the functional outcome in the
iteration. C_Iter refers to the current iteration between 1 and the
maximum number of iterations (itery,,,). The least value of
MOA is represented by min notation, and the maximum value
is indicated by max notation.

1
C_Itera

MOP(C_Iter) = 1 — —— (3)

itermax®

where Math Optimizer Probobaply (MOP) is a coefficient,
itercyrrent pecifies the number of iterations. iter,,,, epresents
the maximum number of iterations of the algorithm. a is a fixed
parameter that determines the sensitivity of exploitation [22].

4)

3. MULTI LAYER PERCEPTRON

MLP is a type of feedforward artificial neural network
comprising three layers: the input, hidden, and output layers.
The input layer serves as the initial stage of the model,
responsible for receiving the data properties into the network.
Following the input layer is the hidden layer, which processes
the information and performs nonlinear transformations. The
output layer, succeeding the hidden layer, generates the
network's output and prediction values. In this study, the iris
dataset was structured according to the MLP architecture. The
input layer consists of sensors that define the characteristics of
the iris dataset, the hidden layer comprises sensors weighted to
optimize the nonlinear problem structure, and the output layer
is designed to classify iris flower species. In MLP, each neuron
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is connected to all neurons in the preceding layer, with these
connections referred to as synapses. These synapses transmit
information between layers, assigning specific weights to
inputs. The output of a neuron is calculated by multiplying the
inputs it receives by weights, with a bias added to this total. The
resulting value is conveyed to the next layer in hidden layers,
typically through a nonlinear activation function such as
Sigmoid. In the output layer, activation functions such as
sigmoid, softmax, or linear are employed depending on the
problem [24]. The sigmoid function converts input values into
outputs in the range (0, 1).

_ 1

f(s;) = sigmoid(s;) = [1+e‘si]'j =12,...h )

ok = Xty Wi f(s;) — 0, k=12,...,m (6)

Mean Squared Error (MSE) is a metric used to evaluate the
performance of statistical models. MSE is calculated by
averaging the squares of the differences between the observed
values and the values predicted by the model. In this way, it
quantitatively expresses how close the model’s predictions are
to the actual values [25].

MSE = =X, (Y; — 7)) (7

where n,number of data points, Y;, observed value and, Y; :
estimated value.

Conversely, cross-validation statistical metrics offer insights
into a model's accuracy, consistency, and ability to generalize.
These metrics are derived from the confusion matrix, which is
a table used to evaluate the performance of a classification
algorithm. A confusion matrix provides a visual and summary
representation of how well a classification algorithm performs
[26].

Table 1. Confusion matrix.

Predicted Class
TP FN
FP TN

Actual Class

Table I is called confusion matrix. In the matrix, true positive
(TP) is when the model successfully predicts a positive
outcome, which matches the actual positive result. A true
Negative (TN) occurs when the model correctly forecasts a
negative outcome, consistent with the actual negative result. A
false positive (FP), also known as a Type I error, arises when
the model incorrectly predicts a positive outcome, while the
actual result is negative. Conversely, a false negative (FN), or
Type II error, happens when the model inaccurately predicts a
negative outcome, despite the actual result being positive.
Accuracy is the simplest performance measure, indicating the
ratio of correct predictions to the total number of observations,
calculated as;

(TP + TN)

Accuracy = ———————
y (TP + FP + FN + TN)

®)

Precision is the ratio of correctly predicted positive outcomes
to all predicted positive outcomes, expressed as

. TP
Precision = aP+TP) 9)

Recall represents the ratio of correctly predicted positive
outcomes to all actual positive outcomes, given by

TP

Recall =
(TP + FN)

(10)

The F1 Score, which is the harmonic mean of Precision and
Recall, accounts for both false positives and false negatives.
Although it may not be as straightforward as accuracy, the F1
Score is often more advantageous, especially when there is an
imbalance in class distribution.

(Recall * Precision)

F1 Score = 2 * (11)

(Recall + Precision)

MLP is trained using supervised learning, with the
backpropagation algorithm frequently employed in this
process. The model's prediction error is propagated backward
from the output layer to the input layer, and the weights are
adjusted based on this error signal. During this process,
hyperparameters such as the learning rate and momentum
significantly influence the learning speed and stability of the
model. The performance of the MLP is contingent upon factors
such as the number of layers, the number of neurons within each
layer, the quality of the training data, and the training
parameters. While an increased number of hidden layers
enhances the model's capacity to learn complex relationships, it
also poses a risk of overfitting. Consequently, the MLP is
utilized as a robust modelling tool, particularly in complex data
analysis requiring supervised learning, due to its ability to learn
nonlinear functions and its feedforward architecture.

4. CONSEQUENCES OF AOA BASED MLP

AOA-MLP pseudocode is importmant point the assessment
of optimization procees.

ALGORITHM: AOA-based MLP Training for Classification
INPUT:
- Dataset (input, Output)
- Network architecture (input_size, hidden_size, output _size)
- AOA parameters (N: population size, M_Iter)
- Search bounds (LB, UB) for weights/biases
OUTPUT:
- Optimized MLP weights/biases, Classification accuracy,
Convergence curve
BEGIN
1. DATA PREPROCESSING:
- Load and normalize the dataset
- Encode labels
- Split into training and validation sets
2. NETWORK INITIALIZATION:
- Define the MLP architecture
- Calculate the total dimension
- Set search bounds [-10, 10]
3. AOA INITIALIZATION:
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- Initialize population X of size N
- Set parameters: MOP_Max=1,
Alpha=5, Mu=0.499
- Initialize Best Position and Best Fitness
- Initialize the convergence curve
4. FITNESS FUNCTION:
FUNCTION MLP_Fitness(solution):
- Extract weights and biases
- Construct the network
- Forward propagate data
- Calculate Mean Squared Error (MSE)
- Return MSE
END FUNCTION
5. MAIN OPTIMIZATION LOOP:
FOR iteration = 1 to M_Iter:
a. Calculate MOP and MOA
b. FOR each agent i:
FOR each dimension j:
- Generaterl, r2, r3
IF rl < MOA:
IFr2>0.5:
X newl[ij] = Best_Position[j] / (MOP + eps) % ((UB - LB)
x Mu + LB)
ELSE:
X newli,j] = Best_Position[j] x MOP x ((UB - LB) x Mu +
LB)
END IF
ELSE:
IFr3>0.5:
X new(i,j] = Best Position[j] - MOP x ((UB - LB) X Mu +
LB)
ELSE:
X newli,j] = Best_Position[j] + MOP x ((UB - LB) X Mu +
LB)
END IF
END IF
END FOR
- Apply constraints
- Evaluate fitness
- Update positions and fitness
END FOR
c¢. Update the convergence curve
END FOR
6. EVALUATION:
- Extract optimal parameters
- Test the network
- Calculate accuracy, precision, recall, and F1-score
7. OUTPUT:
- Display accuracy
- Plot convergence
- Show metrics
- Return parameters

END ALGORITHM

MOP_Min=0.2,

In this paper, the MLP model was optimized using the AOA
and applied to the IRIS dataset for classification purposes. The
intuitive superstructure of the AOA facilitated a more effective
determination of MLP weights, resulting in significant
improvements in the model's classification performance. The
network architecture comprises an input layer, a hidden layer,

and an output layer. Given the characteristics of the iris flower
dataset, the input layer is configured with four nodes, while the
output layer contains three nodes. The hidden layer is composed
of nine nodes, determined using the 4*2+1 formula. This
configuration was identified as the most appropriate
architecture following a process of trial and error. The findings
indicate that the MLP model optimized with AOA demonstrates
high performance in metrics such as accuracy, recall rate, and
F1 score as seen from Fig. | to Fig. 4. This suggests that AOA
provides a more robust and flexible alternative to traditional
optimization methods. Consequently, the integration of
metaheuristic algorithms like AOA with artificial neural
networks holds the potential to enhance success in classification
problems.

Convergence curve
T T T
i
049 [——hoa] ]

0.485 - ]

w048 1]
2]
0475 ‘ :

047 1 ‘ ]

0.465 - ‘ g

\ . . s . . . . . \

20 40 60 80 100 120 140 160 180 200
Iteration

Fig.1. Converge curve of AOA.

Fig. 1 shows the change in the MSE value, which measures
the performance of the AOA algorithm, according to the
number of iterations. The convergence curve shows that the
algorithm converges rapidly in the first 40 iterations or so and
remains at a stably low error value until the 200th iteration.

AOA Boxplot
0.55 - | -
|
0.5 |
0.45 - R
T
|
0.4 | B
|
|
0.35 : 4
|
|
0.3 F | E
1
1
AOA

Fig. 2. Boxplot of AOA.

Box plot of MSE values obtained from different runs of the
AOA method in Fig. 2 the box shows the median, interquartile
distribution, and outliers. This graph is intended to evaluate the
reliability and stability of the algorithm's error distribution. As
can be seen in the graph, although there are no extreme values,
the median value is closer to the first card, the proximity of the
values to the optimal point can be considered as an advantage.
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Validation Confusion Matrix for Model 1

True Class

FDR 9.4% 4.3%

Predicted Class

Fig. 3. Validation confusion matrix.

When Fig. 3 is examined, the complexity matrix of the
validation dataset obtained for Model 1. It shows the
comparison between the actual classes (-1, 0, 1) and the
predicted classes. High percentages on the diagonal reflect the
correct classification performance of the model, while cells
outside the diagonal reveal confusion between classes. In
addition, positive predictive value (PPV) and false discovery
rate (FDR) metrics are presented at the bottom.

Validation ROC Curve for Model 1 (Fine Tree)
T T T T

0.4 - I - A

True Positive Rate
\

-1 (AUC = 1)

-1 Model Operating Point

| 0 (AUC = 0.946)

0.2 f - ® 0 Model Operating Point .

/ - 1 (AUC = 0.951)

P 1 Model Operating Point

Macro-average (AUC = 0.9792)

Macro-average Model Operating Point

Micro-average (AUC = 0.9792)

®  Micro-average Model Operating Point

Weighted-average (AUC = 0.9792)

®  Weighted-average Model Operating Point
:

- °

-0.2

L L L 1
o 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 4. Validation ROC curve.

The model's performance was assessed using metrics such as
accuracy, recall, specificity, precision, and F1-score, along with
the MSE rate and cross-validation. These metrics were derived
from the confusion matrix. In experiments conducted on the
IRIS dataset, the model's MSE was found to be 0.1194, with an
average accuracy rate of 96.7%. The recall rate stood at 96.0%,
and the F1 score was 96.3%. These results indicate that the
model excels in accurately identifying positive classes and
overall classification. Upon reviewing these figures, a low MSE
value, derived from statistical measures, indicates a minimal

error rate. The F1 score, which represents the harmonic mean,
is notably high, suggesting that the model exhibits strong
generalizability in cross-validation. This is due to the high
accuracy rate observed between the MSE ratio and the F1 score.
Moreover, MLP model, optimized with AOA, achieved a
higher accuracy rate with fewer iterations compared to
traditional training algorithms. This suggests that the training
process has become more efficient, thereby reducing
computational costs.

5. CONCLUSION

In this paper, the efficacy of artificial intelligence-based
methodologies in addressing classification problems is
demonstrated through the integration of MLP model, a machine
learning algorithm, with the AOA. By leveraging physics-based
metaheuristic algorithms, the model exhibits a more flexible
and adaptable structure compared to conventional methods. The
advantages of this study include the flexibility of the proposed
method and its ease of adaptation to various problem types.
Furthermore, the model's overall structure indicates its potential
applicability to diverse datasets and real-world challenges.
Among the study's limitations, it is posited that the model's
success is contingent upon the algorithm's parameter settings,
which may increase computational time. There is a potential
issue of convergence to local optima; however, the algorithm's
flexibility allows for further enhancement. For future research,
it is recommended to evaluate the proposed model on different,
more complex, and larger datasets and to develop hybrid
models with other optimization algorithms. Additionally,
assessing the model's performance in real-world problem-
solving scenarios could enhance the method's generalizability
and effectiveness.
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