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ABSTRACT 

The aim of this paper is to optimize the classification performance with the arithmetic 

optimization algorithm, one of the swarm-based intelligent algorithms, by using the 

multilayer perceptron model, which is an artificial neural network architecture. Model 

training is provided by IRIS flower data, which is widely used. arithmetic optimization 

algorithm is a metaheuristic optimization method inspired by basic arithmetic functions 

consisting of discovery and exploitation phases. The multilayer perceptron model is 

structured to consist of input, hidden, and output layers and is trained to classify the types of 

flowers in the IRIS dataset. The model’s performance was evaluated using statistical metrics 

such as accuracy, recall, and F1 score. Simulations were carried out using the MATLAB 

package program. When the results were examined, the average accuracy rate of the model 

was measured as 96.7%. The recall rate was 96.0% and the F1 score was 96.3%. These results 

show that hybridizing metaheuristic algorithms to artificial intelligent network models can 

produce effective and efficient results in complex datasets. 
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1. INTRODUCTION 

Machine learning and optimization techniques have become 

powerful tools for tackling complex challenges. In this setting, 

optimization involves the process by which a system meets a 

goal within certain rules and limitations. It includes the entire 

process of setting up the necessary input protocols to ensure the 

desired output operations within the established framework of 

rules and boundaries. Artificial neural networks (ANNs), a type 

of machine learning algorithm, offer numerous architectural 

possibilities for optimizing problems. Multi-layer perceptron 

(MLP), one such architecture, are used for data classification. 

Optimization algorithms for training MLP have been developed 

to guide the supervision process [1]. The MLP architecture 

provides several benefits, such as a wide range of applications 

and a structure that is easy to adapt. This architecture can 

address various types of problems, including classification and 

regression. It offers an effective framework for learning non-

linear, complex problems, reveals hidden patterns in data 

clusters, and can be smoothly integrated with other deep 

learning layers, like evolutionary neural networks, allowing for 

the creation of more intricate and comprehensive model 

structures [2]. Due to these benefits, the MLP is used as a 

versatile and powerful tool. However, the MLP architecture 

also has certain drawbacks. Primarily, it does not ensure an 

optimal solution, which is a fundamental limitation of this 

structure. Especially in complex problem domains, there is a 

risk of straying from the global optimum. Additionally, the 

model's performance heavily relies on the correct selection of 

algorithm settings, a process that requires experience and 

expertise. Furthermore, operating MLP with multilayered 

structures and large data clusters incurs a high computational 

cost, posing a challenge, particularly in resource-limited 

applications. These drawbacks can directly affect the 

applicability and efficiency of a model [3]. Nonetheless, there 

has been a relative increase in MLP-related applications in 

recent years [4]. 

 

Metaheuristic algorithms are a type of optimization method 

used in the framework of MLP. These algorithms are known for 

their broad search strategies, which are not limited to particular 

problems, allowing them to tackle complex optimization issues. 

Unlike traditional heuristics, metaheuristic algorithms are 

crafted to thoroughly explore vast solution spaces. They are 

favoured over conventional mathematical programming 

because they can pinpoint optimal areas within the search 

space, handle large-scale problems, and function with greater 

efficiency. These techniques are beneficial as they employ 

multiple initial solutions, do not require derivative information, 

and do not demand continuity. By approaching the problem as 

a hidden structure, they prove effective in finding solutions in 

unexplored search regions [5]. 

 

In recent times, there has been a significant rise in the 

exploration of metaheuristic algorithms. Noteworthy instances 

of these algorithms include the genetic algorithm (GA) [6], ant 

colony optimization (ACO) [1], artificial bee colony (ABC) [7], 

grey wolf optimization (GWO) [8], harris hawks optimization 

(HHO) [9], particle swarm optimization (PSO) [10], and the 

hunger games algorithm (HGS) [11]. In the realm of 

engineering, the application of metaheuristic algorithms, which 

provide more adaptable and creative solutions, has become 

increasingly common. While these algorithms do not promise a 

conclusive solution, they are adapting at examining a wider 

array of possibilities and achieving better outcomes. 

Particularly, nature-inspired optimization algorithms can 

deliver quicker and more accurate solutions than conventional 

methods.  Despite the considerable benefits of metaheuristic 

algorithms, they also have certain drawbacks. Firstly, these 

algorithms are not guaranteed to discover the optimal solution; 

they often produce only near-optimal results [12]. Moreover, 

the effectiveness of these algorithms heavily depends on the 

parameters used, which can be difficult to fine-tune. The 

substantial computational cost is another significant limitation, 

especially for large-scale issues. Additionally, in some cases, 

algorithms might get stuck in local optima within the solution 

space and fail to achieve the global optimum. These aspects are 

important drawbacks to consider when using metaheuristic 

algorithms. Metaheuristic algorithms are commonly employed 

in MLP architecture [13]. 

 

In this paper, the IRIS dataset from the UCI repository was 

processed using the AOA and trained through the MLP 

architecture, achieving high performance [14], [15]. AOA is 

renowned for its simplicity and effectiveness, utilizing 

mathematical operations to optimize solutions. It aims to find 

the global optimum by employing swarm intelligence during 

problem-solving, which is particularly advantageous for 

complex and high-dimensional datasets [16]. AOA has been 

applied to real-world challenges, such as maximum power point 

tracking, pattern recognition, and image segmentation [17], as 

well as in post-earthquake analysis for detecting structural 

damage in reinforced concrete structures. It has also been used 

to analyse energy production variations in solar panels [18], 

model biological components, and classify and segment 

medical parts [19]. Despite its benefits, AOA's limited 

discovery ability and tendency to become trapped in local 

optima have been identified as areas needing improvement. 

Consequently, various hybridization studies have been 

conducted based on the No Free Lunch theorem [20]. One such 

study found that an AOA-based ANN algorithm performed well 

in classification and prediction tasks. Particularly in 

classification studies, hybrid methods demonstrated high 

performance criteria. The arithmetic optimization algorithm 

was combined with Lévy random steps (LRS) to enhance linear 

search capabilities and avoid local search traps, leading to more 

optimal results and improved performance of traditional 

engineering solutions [21]. 

 

 The primary aim of this paper is to develop a MLP model 

using a metaheuristic algorithm. Specifically, it seeks to 

optimize the MLP model with the AOA to improve 

classification performance and conduct a statistical evaluation 

of the results. The outcomes will be presented through an 

analysis of the proposed method using metrics such as 

accuracy, recall rate, and F1 scores. The Iris dataset was 

employed in this study, as it is a balanced and well-structured 

dataset frequently used in classification problems, providing an 

appropriate platform for assessing the performance of AOA.  
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The paper is organized into four main sections. Initially, the 

Introduction discusses the use and advantages of metaheuristic 

algorithms in MLP architecture. The Literature Review section 

examines the types of these algorithms and the applications of 

the AOA in previous studies. The third section, Method and 

Application, outlines the process of optimizing the MLP with 

the Iris dataset using AOA. Finally, in the Results and 

Discussion section, the performance of AOA on the MLP is 

evaluated using statistical metrics, and the results are 

summarized. 

2. ARITHMETIC OPTIMIZATION ALGORITHM  

Developed by Abualigah et al. [22], AOA is a swarm-based 

metaheuristic optimization method inspired by mathematical 

arithmetic concepts. AOA effectively executes the stages of 

exploration and exploitation by emulating the distribution 

properties of the fundamental arithmetic operations: addition, 

subtraction, multiplication, and division. The optimization 

process of AOA comprises the initialization, exploration, and 

exploitation phases. In the initial phase, the algorithm's basic 

parameters are introduced alongside the candidate solution set. 

During the exploration phase, the objective is to 

comprehensively scan the search space and avoid entrapment in 

local optima. At this stage, the positions of the search agents are 

updated using the multiplication ("×") and division ("÷") 

operators; multiplication enhances the diversity of solutions, 

while division increases solution precision. In the exploitation 

phase, the aim is to refine the solutions obtained during 

exploration. At this stage, existing solutions are made more 

precise using the addition ("+") and subtraction ("−") operators, 

thereby narrowing the search focus. Similar to other 

metaheuristic algorithms, AOA initiates the optimization 

process with a randomly generated set of candidate solutions. 

These candidate solutions are iteratively evaluated and refined 

through specific optimization rules and an objective function. 

AOA is capable of solving optimization problems without 

requiring derivative calculations, thus offering a broad range of 

applications. This systematic structure enables AOA to balance 

global and local search, enhancing its effectiveness in the 

problem-solving process. 

 

 

At the initial stage, the x matrix is created. The purpose of x 

is to indicate the population that the AOA algorithm initially 

randomly generated (1). In the matrix N, when indicating the 

candidate solutions or population size n, can express how many 

dimensions each solution has. 

 

X =  

[
 
 
 
 

  

   x1,1        …   x1,j

   x2,1       …     x2,j
 

x1,n−1    x1,n

…    x2,n

   ⋮  ⋮    ⋮  
      xN−1,1

 xN,1
 

…
…

xN−1,j

xN,j    

    
 ⋮    ⋮
…

xN,n−1
 
xN−1,n

xN,n ]
 
 
 
 

          (1) 

 

The optimization process commences with an initial set, and 

the algorithm endeavours to generate superior solutions by 

enhancing the population in each iteration [22]. During each 

iteration, the most optimal candidate solution within the 

population is regarded as the best or near-optimal solution 

identified thus far, and the algorithm continues by preserving 

this solution. Through this process, the population's information 

is enriched, leading to the discovery of more effective solutions. 

Prior to the initiation of the AOA, decisions regarding 

exploration and exploitation were informed by the outcome of 

the Mathematical Optimizer Accelerated (MOA) function, as 

determined by the Eq. 2 [22]. 

 

MOA (C_Iter) = min + C_Iter × (
max − min

itermax
)           (2) 

 

MOA (C_Iter), represents the functional outcome in the 

iteration. C_Iter refers to the current iteration between 1 and the 

maximum number of iterations (itermax). The least value of 

MOA is represented by 𝑚𝑖𝑛 notation, and the maximum value 

is indicated by  max notation. 

 

MOP(C_Iter) = 1 −
C_Iter

1
α

itermax

1
α

                                          (3) 

 

where Math Optimizer Probobaply (MOP) is a coefficient, 

itercurrent pecifies the number of iterations. itermax  epresents 

the maximum number of iterations of the algorithm. α is a fixed 

parameter that determines the sensitivity of exploitation [22].

                                                xi,j(CIter + 1){
best(xj) ÷ (MOP) × ((ubj − lbj) × μ + Lj) ,    rand2 < 0,5

best(xj) × (MOP ) × ((Uj − Lj) × μ + Lj) ,   otherwise
               (4)

 

The exploitation phase constitutes a pivotal component of the 

AOA, facilitating an in-depth exploration of the local regions 

within the solution space. During this phase, the sensitivity of 

the solution is heightened by steering candidate solutions 

towards the most optimal solution available. This process 

involves updates executed through mathematical formulas 

predicated on arithmetic operations, thereby ensuring a 

concentrated focus on the local area. Concurrently, a degree of 

randomness is preserved to avert convergence to a local 

optimum. Consequently, the exploitation phase enables the 

algorithm to further refine the optimal solution [23]. 

 

 

3. MULTI LAYER PERCEPTRON 

MLP is a type of feedforward artificial neural network 

comprising three layers: the input, hidden, and output layers. 

The input layer serves as the initial stage of the model, 

responsible for receiving the data properties into the network. 

Following the input layer is the hidden layer, which processes 

the information and performs nonlinear transformations. The 

output layer, succeeding the hidden layer, generates the 

network's output and prediction values. In this study, the iris 

dataset was structured according to the MLP architecture. The 

input layer consists of sensors that define the characteristics of 

the iris dataset, the hidden layer comprises sensors weighted to 

optimize the nonlinear problem structure, and the output layer 

is designed to classify iris flower species. In MLP, each neuron 
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is connected to all neurons in the preceding layer, with these 

connections referred to as synapses. These synapses transmit 

information between layers, assigning specific weights to 

inputs. The output of a neuron is calculated by multiplying the 

inputs it receives by weights, with a bias added to this total. The 

resulting value is conveyed to the next layer in hidden layers, 

typically through a nonlinear activation function such as 

Sigmoid. In the output layer, activation functions such as 

sigmoid, softmax, or linear are employed depending on the 

problem [24]. The sigmoid function converts input values into 

outputs in the range (0, 1). 

 

f(sj) = sigmoid(sj) =
1

[1+e
−sj]

, j = 1,2, … , h            (5) 

 

ok = ∑ wjk
h
j=1 f(sj) − θ′

k , k = 1,2, … ,m           (6) 

 

Mean Squared Error (MSE) is a metric used to evaluate the 

performance of statistical models. MSE is calculated by 

averaging the squares of the differences between the observed 

values and the values predicted by the model. In this way, it 

quantitatively expresses how close the model’s predictions are 

to the actual values [25].  

 

MSE =
1

n
∑ (Yi − Ŷi)

2n
i=1                                    (7) 

 

where 𝑛,number of data points, 𝑌𝑖, observed value and, 𝑌̂𝑖 : 

estimated value. 

 

Conversely, cross-validation statistical metrics offer insights 

into a model's accuracy, consistency, and ability to generalize. 

These metrics are derived from the confusion matrix, which is 

a table used to evaluate the performance of a classification 

algorithm. A confusion matrix provides a visual and summary 

representation of how well a classification algorithm performs 

[26]. 

 
Table I. Confusion matrix. 

 Predicted Class 

Actual Class 
TP FN 

FP TN 

 

Table I is called confusion matrix. In the matrix, true positive 

(TP) is when the model successfully predicts a positive 

outcome, which matches the actual positive result. A true 

Negative (TN) occurs when the model correctly forecasts a 

negative outcome, consistent with the actual negative result. A 

false positive (FP), also known as a Type I error, arises when 

the model incorrectly predicts a positive outcome, while the 

actual result is negative. Conversely, a false negative (FN), or 

Type II error, happens when the model inaccurately predicts a 

negative outcome, despite the actual result being positive. 

Accuracy is the simplest performance measure, indicating the 

ratio of correct predictions to the total number of observations, 

calculated as; 

 

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
               (8) 

 

Precision is the ratio of correctly predicted positive outcomes 

to all predicted positive outcomes, expressed as  

 

Precision =  
TP

(TP + FP)
                        (9) 

 
Recall represents the ratio of correctly predicted positive 

outcomes to all actual positive outcomes, given by 

 

Recall =  
TP

(TP + FN)
                        (10) 

 

The F1 Score, which is the harmonic mean of Precision and 

Recall, accounts for both false positives and false negatives. 

Although it may not be as straightforward as accuracy, the F1 

Score is often more advantageous, especially when there is an 

imbalance in class distribution.  

 

F1 Score =  2 ∗
(Recall ∗ Precision)

(Recall + Precision)
               (11) 

 

MLP is trained using supervised learning, with the 

backpropagation algorithm frequently employed in this 

process. The model's prediction error is propagated backward 

from the output layer to the input layer, and the weights are 

adjusted based on this error signal. During this process, 

hyperparameters such as the learning rate and momentum 

significantly influence the learning speed and stability of the 

model. The performance of the MLP is contingent upon factors 

such as the number of layers, the number of neurons within each 

layer, the quality of the training data, and the training 

parameters. While an increased number of hidden layers 

enhances the model's capacity to learn complex relationships, it 

also poses a risk of overfitting. Consequently, the MLP is 

utilized as a robust modelling tool, particularly in complex data 

analysis requiring supervised learning, due to its ability to learn 

nonlinear functions and its feedforward architecture. 

4. CONSEQUENCES OF AOA BASED MLP 

AOA-MLP pseudocode is importmant point the assessment 

of optimization procees. 

 

ALGORITHM: AOA-based MLP Training for Classification 

INPUT:     

- Dataset (ınput, Output)     

- Network architecture (input_size, hidden_size, output_size)     

- AOA parameters (N: population size, M_Iter)     

- Search bounds (LB, UB) for weights/biases 

OUTPUT:     

- Optimized MLP weights/biases, Classification accuracy, 

Convergence curve 

BEGIN 

1. DATA PREPROCESSING:    

- Load and normalize the dataset    

- Encode labels    

- Split into training and validation sets 

2. NETWORK INITIALIZATION:    

- Define the MLP architecture    

- Calculate the total dimension    

- Set search bounds [-10, 10] 

 3. AOA INITIALIZATION:    
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- Initialize population X of size N    

- Set parameters: MOP_Max=1, MOP_Min=0.2, 

Alpha=5, Mu=0.499    

- Initialize Best_Position and Best_Fitness    

- Initialize the convergence curve 

4. FITNESS FUNCTION:    

FUNCTION MLP_Fitness(solution):        

- Extract weights and biases        

- Construct the network        

- Forward propagate data        

- Calculate Mean Squared Error (MSE)        

- Return MSE    

END FUNCTION 

5. MAIN OPTIMIZATION LOOP:    

FOR iteration = 1 to M_Iter:        

a. Calculate MOP and MOA        

b. FOR each agent i:           

FOR each dimension j:              

- Generate r1, r2, r3              

IF r1 < MOA:                 

IF r2 > 0.5:                    

X_new[i,j] = Best_Position[j] / (MOP + eps) × ((UB - LB) 

× Mu + LB)                 

ELSE:                    

X_new[i,j] = Best_Position[j] × MOP × ((UB - LB) × Mu + 

LB)                 

END IF              

ELSE:                 

IF r3 > 0.5:                    

X_new[i,j] = Best_Position[j] - MOP × ((UB - LB) × Mu + 

LB)                 

ELSE:                    

X_new[i,j] = Best_Position[j] + MOP × ((UB - LB) × Mu + 

LB)                 

END IF              

END IF           

END FOR           

- Apply constraints           

- Evaluate fitness           

- Update positions and fitness        

END FOR        

c. Update the convergence curve    

END FOR 

6. EVALUATION:    

- Extract optimal parameters    

- Test the network    

- Calculate accuracy, precision, recall, and F1-score 

7. OUTPUT:    

- Display accuracy    

- Plot convergence    

- Show metrics    

- Return parameters 

END ALGORITHM 

 

In this paper, the MLP model was optimized using the AOA 

and applied to the IRIS dataset for classification purposes. The 

intuitive superstructure of the AOA facilitated a more effective 

determination of MLP weights, resulting in significant 

improvements in the model's classification performance. The 

network architecture comprises an input layer, a hidden layer, 

and an output layer. Given the characteristics of the iris flower 

dataset, the input layer is configured with four nodes, while the 

output layer contains three nodes. The hidden layer is composed 

of nine nodes, determined using the 4*2+1 formula. This 

configuration was identified as the most appropriate 

architecture following a process of trial and error. The findings 

indicate that the MLP model optimized with AOA demonstrates 

high performance in metrics such as accuracy, recall rate, and 

F1 score as seen from Fig. 1 to Fig. 4. This suggests that AOA 

provides a more robust and flexible alternative to traditional 

optimization methods. Consequently, the integration of 

metaheuristic algorithms like AOA with artificial neural 

networks holds the potential to enhance success in classification 

problems. 

 

Fig.1. Converge curve of AOA. 

Fig. 1 shows the change in the MSE value, which measures 

the performance of the AOA algorithm, according to the 

number of iterations. The convergence curve shows that the 

algorithm converges rapidly in the first 40 iterations or so and 

remains at a stably low error value until the 200th iteration. 

 

Fig. 2. Boxplot of AOA. 

Box plot of MSE values obtained from different runs of the 

AOA method in Fig. 2 the box shows the median, interquartile 

distribution, and outliers. This graph is intended to evaluate the 

reliability and stability of the algorithm's error distribution. As 

can be seen in the graph, although there are no extreme values, 

the median value is closer to the first card, the proximity of the 

values to the optimal point can be considered as an advantage. 
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Fig. 3. Validation confusion matrix. 

When Fig. 3 is examined, the complexity matrix of the 

validation dataset obtained for Model 1. It shows the 

comparison between the actual classes (-1, 0, 1) and the 

predicted classes. High percentages on the diagonal reflect the 

correct classification performance of the model, while cells 

outside the diagonal reveal confusion between classes. In 

addition, positive predictive value (PPV) and false discovery 

rate (FDR) metrics are presented at the bottom. 

 

Fig. 4. Validation ROC curve. 

The model's performance was assessed using metrics such as 

accuracy, recall, specificity, precision, and F1-score, along with 

the MSE rate and cross-validation. These metrics were derived 

from the confusion matrix. In experiments conducted on the 

IRIS dataset, the model's MSE was found to be 0.1194, with an 

average accuracy rate of 96.7%. The recall rate stood at 96.0%, 

and the F1 score was 96.3%. These results indicate that the 

model excels in accurately identifying positive classes and 

overall classification. Upon reviewing these figures, a low MSE 

value, derived from statistical measures, indicates a minimal 

error rate. The F1 score, which represents the harmonic mean, 

is notably high, suggesting that the model exhibits strong 

generalizability in cross-validation. This is due to the high 

accuracy rate observed between the MSE ratio and the F1 score. 

Moreover, MLP model, optimized with AOA, achieved a 

higher accuracy rate with fewer iterations compared to 

traditional training algorithms. This suggests that the training 

process has become more efficient, thereby reducing 

computational costs. 

5. CONCLUSION 

In this paper, the efficacy of artificial intelligence-based 

methodologies in addressing classification problems is 

demonstrated through the integration of MLP model, a machine 

learning algorithm, with the AOA. By leveraging physics-based 

metaheuristic algorithms, the model exhibits a more flexible 

and adaptable structure compared to conventional methods. The 

advantages of this study include the flexibility of the proposed 

method and its ease of adaptation to various problem types. 

Furthermore, the model's overall structure indicates its potential 

applicability to diverse datasets and real-world challenges. 

Among the study's limitations, it is posited that the model's 

success is contingent upon the algorithm's parameter settings, 

which may increase computational time. There is a potential 

issue of convergence to local optima; however, the algorithm's 

flexibility allows for further enhancement. For future research, 

it is recommended to evaluate the proposed model on different, 

more complex, and larger datasets and to develop hybrid 

models with other optimization algorithms. Additionally, 

assessing the model's performance in real-world problem-

solving scenarios could enhance the method's generalizability 

and effectiveness. 
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