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Abstract 

Nonlinear oscillations of a mass with serial linear and nonlinear stiffness on a frictionless surface is consid-

ered. Equation of motion of the considered system is obtained. For analysing of the system, relatively new 

perturbation method that is named Multiple Scales Lindstedt Poincare (MSLP) and classical multiple scales 

(MS) methods are used. Both approximate solutions are compared with the numerical solutions for weakly 

and strongly nonlinear systems. For weakly nonlinear systems, both approximate solutions are in excellent 

agreement with numerical simulations. However, for strong nonlinearities, MS method is not give reliable 

results while MSLP method can provide acceptable solutions with numerical solutions. 

Keywords: Multiple Scales Lindstedt Poincare (MSLP) method, Nonlinear Oscillation, Nonlinear Stiffness, 

Perturbation Methods. 

   

  
1. Introduction 

To find exact analytical solution of the physical systems is 

usually impossible for most of the time. For this reason, ap-

proximate analytical methods are developed for solving 

mathematical models corresponding to physical problems. 

Perturbation methods are used efficiently for finding ap-

proximate analytical solutions in many physical problems 

[1, 2, 3]. Perturbation methods are valid for weakly nonlin-

ear systems due to the assumption of small parameters. To 

overcome this deficiency, methods, such as linearized per-

turbation method [4], the Lindstedt-Poincare method with 

modified frequency expansion [5], the parameter expand-

ing method [6] and homotopy perturbation [7] were devel-

oped within time. 

A relatively new method which gives valid solutions for 

both weak and strong nonlinear systems [8-13] has been 

developed. The method is called Multiple Scales Lindstedt 

Poincare (MSLP) which is combination of multiple scales 

and Lindstedt Poincare tecniques.  

In this work, MSLP method is applied to system of a mass 

with serial linear and nonlinear stiffness for the first time. 

Approximate analytical solutions are obtained via MS and 

MSLP methods. The obtained solutions are compared with 

numerical integration solutions. It has been found that the 

MSLP method provides acceptable solutions for strong 

nonlinearities, while MS solutions are not suitable for the 

strong nonlinearities.  

Finally, for the case of free vibration of a system of a mass 

with serial linear and nonlinear stiffness, some works are 

mentioned [14-17]. Telli and Kopmaz [14] applied Lind-

stedt Poincare and harmonic balance methods to above 

mentioned system. Both solutions are compared with nu-

merical results. It is found that numerical and obtained an-

alytical solutions are in very good agreement for weak non-

linearities. Linearized harmonic balance method is applied 

to the governing equation of motion by Lai and Lim [15]. 

Although the method has the ability to generate highly ac-

curate frequencies, applications are limited to conservative 

systems. Conversely, MSLP is employed in a broader range 

of vibration problems with simpler calculations. Hoseini et 

al. [16] and Bayat et al. [17] employed homotopy analysis 

and He’s variational approach methods to the same prob-

lem respectively. In their method, frequencies, although 

with acceptable accuracy, are not given in closed functional 

forms. 
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2. Material and Methods 

2.1. A Nonlinear Oscillation of a Mass Attached to 

Linear and Nonlinear Springs in Series 

In this section, free vibration of a system of mass with serial 

linear and nonlinear stiffness is examined. First, the equa-

tion of motion is produced for the mentioned nonlinear sys-

tem. Multiple Scales (MS) and Multiple Scale Lindstedt 

Poincare (MSLP) are applied to solve the nonlinear system. 

2.2. Equation of Motion 

In Figure 1, a system that includes a mass attached to linear 

and nonlinear springs in series is shown.  

 

Figure 1. Nonlinear free vibration of a system of mass with 

serial linear and nonlinear stiffness on a frictionless contact 

surface. 

The stiffness coefficients of the springs are 
1k and 

2k re-

spectively. The nonlinear spring includes cubic nonlineari-

ties. The relationship between the force and the deflection 

of the nonlinear spring is as follows. 
3 3

2 2 3 3 3F k x k x x k x k x          (1) 

where  

3k


        (2) 

in which  is coefficient of nonlinear portion of second 

spring force and 
3k is coefficient of linear portion of this 

nonlinear spring force. The cubic nonlinear characteristic 

determines that hardening/softening behaviour. If 0  , 

the spring shows a hardening behaviour. Likewise, it is in-

dicated that softening spring for the case 0  . Parameter 

  is employed as a perturbation in this system.  

The displacements between the connection point of the 

spring and mass are defined by 
1y  and

2y . In Figure 1, the 

displacements of the springs are expressed by 
1y and 

 2 1y y  respectively. In this case, the displacement of 

mass m  will be  1 2 1 2y y y y   . The equation of motion 

of the single-degree-of-freedom system will be found with 

Lagrangian  L . First, the system's potential and kinetic en-

ergy will be written as follows respectively. 

 
22

1 1 2 2 1

1 1

2 2
V k y k y y      (3) 

2

2

1

2
T my      (4) 

Lagrange's equation is written to obtain the equation of mo-

tion of the system. 

i

i i

d L L
Q

dt q q

  
  

  
, 1,2i       (5) 

where 
iq and 

iQ express respectively general coordinates of 

system and the sum of the forces acting on these coordi-

nates. Because it is a conservative system which will be 

solved, Equation (5) must be equal to zero [18]. 

0
i i

d L L

dt y y

  
  

  
    (6) 

The quantity T V is called the Lagrangian L . 

L T V        (7) 

Substituting into Equation (6) and the following equations 

are obtained. 

 1 1 2 2 1 0k y k y y        (8)   

 2 2 2 1 0my k y y         (9) 

From Equation(8), the relation between 1y with 2y  are ob-

tained as follows. 

2

1 2

1 2

k
y y

k k



     (10)   

Equation (10) is written instead in Equation(9). 

1 2

2 2

1 2

0
k k

my y
k k

 


     (11)   

where the dots denote the derivation with respect to time. 

Equation of motion is obtained as follows 

 

2 2 0eqmy k y      (12)   

where 1 2

1 2

eq

k k
k

k k

 
  

 
 is equivalent stiffness of the springs. 

The nonlinear spring force in Equation (1) is substituted 

into Equations (8) and (9) and equation of motion is ob-

tained as follows  

   
3

1 1 3 2 1 3 2 1 0k y k y y k y y        (13) 

   
3

2 3 2 1 3 2 1 0my k y y k y y        (14) 

The new variables v  and u   are defined as follows. 

1y v  , 

2 1y y u       (15) 

Inserting the new variables into Equations (13) and(14) one 

has 
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3

1 3 3 0k v k u k u       (16) 

  3

3 3 0m u v k u k u        (17) 

Solving Eq. (16) for v  yields 
3v u u         (18) 

where  

3

1

k

k
        (19) 

Equation (18) is derivatived twice with respect to time and 

substituted into Equation(17). One finds 

 2 2 3

3 31 3 6 0mu u muu k u k u          (20) 

After algebraic manipulations, Equation (20) yields 

 2 2 2 2 3

0 01 3 6 0u u uu u u           (21) 

where 

1








, 

 
2 3

0
1

k

m






   (22) 

and 
0  is natural frequency of the system. 

2.3. Multiple Scales (MS) method 

Slow and fast time scales are  

0T t , 
1T t ,

2

2T t     (23) 

Using 

2

0 1 2 ...
d

D D D
d

 

    , 

 
2

2 2 2

0 0 1 1 0 22
2 2 ...

d
D D D D D D

d
  


      (24) 

Substituting the expansions  

     2

0 0 1 2 1 0 1 2 2 0 1 2, , , , , , ...u u T T T u T T T u T T T      

      (25) 

The equations are separated for each order 

 

   

2 2

0 0 0 0

0 0 0 0

1 : 0

0 , 0 0

O D u u

u a D u

 

 
    (26) 

 

 

    

2 2 2 2

0 1 0 1 0 1 0 0 0 0

2 2 3

0 0 0 0 0

1 0 1 1 0

: 2 3

6

0 0, 0 0

O D u u D D u u D u

u D u u

u D u D u

  

 

   

 

  

  (27) 

 2 2 2

0 2 0 2 0 1 1: 2O D u u D D u     2

1 0 2 02D D D u 

 2 2 2

0 1 0 0 0 0 1 0 1 03 2 2u u D u u D u D D u    
 

 

   
2 2 2

1 0 0 0 0 0 0 1 1 0 0 0 16 2 3u D u u D u D u D u u u     
 

 (28) 

The solution of first order is 

  0 0

0 1 2,
i T

u A T T e cc


       (29)

   

where 

1

2

iA ae        (30) 

In terms of real amplitude and phase, the first order solution 

is 

    0 1 2 0 0 1 2, cos ,u a T T T T T     (31) 

Initial conditions are applied for first order, one has

  00a a ,  0 0      (32) 

 

The secularities are eliminated in the right side of Equa-

tion (27) 

 

 2 2

0 1 02 3 3 0i D A A A          (33) 

Substituting the polar form, real and imaginary parts are 

separated 

 2a a T                                          (34)

 
 2

0 1 0 2

3 3

8
a T T


  


                    (35) 

The solution at order   is 

 
0 0 0 033

1

1 9

8

i T i T
u Be A e cc

 
      (36) 

where 

1

2

iB be       (37) 

This solution is rewritten for real amplitudes and phases 

 
 

 3

1 0 0 0 0

1 9
cos cos 3 3

32
u b T a T


   


     (38) 

Substituting initial conditions for  O   

 
  3

0

1 9
0

32
b a


   ,  0 0      (39) 

At  2O  , Equations (38) and (31) are inserted into equa-

tion (28) and secular terms are eliminated 
2

0 1 1 0 22 2i D B D A i D A     

 
 

 2 2 2 2 3

0 0 0

3 1 9
12 6 1

8
AAB A A


   


   

 2 2 2 2

0 0 0 1 0 13 3 6 12 0A B i A D A i AAD A           

      (40) 

If Equations (30), (32), (37) and (39) are used above, one 

finally has 

0a a ,
  3

0

1 9

32
b a


  , 

   2 4

0 1 0 0 2

3 3 3 3

8 256
a T a T

 
   

 
      (41) 

The final solution with original variables is 

 

 
     

0 0

3 2

0 0 0

cos

1 9
cos 3 3 cos

32

u a t

a t t O

 

 
    

 


      

      (42) 
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2.4. Multiple Scales Lindstedt Poincare (MSLP) 

method 

 

The time transformation 

t        (43) 

is applied to the equation (21). 

   2 2 '' 2 '2 2 3

01 3 6 0u u uu u u          (44) 

where prime is derivative with respect to new transformed 

time variable  . Fast and slow time scales are defined 

0 ,T t     
1 ,T t  

2 2

2T t     (45) 

 

Using 

2

0 1 2 ...
d

D D D
d

 

     

 
2

2 2 2

0 0 1 1 0 22
2 2 ...

d
D D D D D D

d
  


      (46) 

and substituting the expansions  

     2

0 0 1 2 1 0 1 2 2 0 1 2, , , , , , ..u u T T T u T T T u T T T       (47) 

 
2 2 2

0 1 2...           (48) 

into (44) yields after separation 

 

  2 2 2

0 0 01 : 0O D u u   , 

 0 00u a ,   0 0 0 0D u      (49) 

 

  2 2 2 2

0 1 1 0 1 0 1 0: 2O D u u D Du u       

 
22 2 2 2 2 3

0 0 0 0 0 0 0 03 6u D u u D u u        

 1 0 0u  ,    0 1 1 0 0 0D u D u     (50) 

 

  

 

   

2 2 2 2 2

0 2 2 0 1 1

2 2

1 0 2 0 1 1 2 0

2 2 2 2

0 0 1 0 1 0 0 1 0 0

22 2 2

1 0 0 0 0 0 0 1 1 0 0 0 1

: 2

2

3 2 2

6 2 3

O D u u D D u

D D D u u u

u D u D D u u u D u

u D u u D u D u D u u u

   

  

 

  

  

   

   
 

    
 

(51) 

 

The solution of first order is 

  0

0 1 2,
iT

u A T T e cc      (52) 

where 

1

2

iA ae       (53) 

For real amplitude and the phase, the solutions is as follows 

  0 1 2 0 1 2( , )cos ,u a T T T T T     (54) 

Applying the initial conditions  

  00a a ,  0 0       (55) 

Equation (52) is substituted into equation (50) and secular 

terms are eliminated 
2 2 2 2 2

1 1 02 3 3 0i D A A A A A A           (56) 

According to the MSLP method, 
1 0D A   is selected firstly 

and solved. If frequency correction is real number, this 

choice is acceptable. If 
1   is complex, this choice is not 

correct. Because, it isn't suitable for physical solutions. 

Thus, 
1 0D A   is selected and in this case

1 will be a real 

number.  

1 0D A        (57) 

which implies  2a a T ,  2T   and 
1  is solved. 

   2 2 2 2 2

1 0 0

3
3

4
AA a          (58) 

The solution at order  is 

 

 
 

 

0 0

2 2

0 33

1 2

2 2

0 3

0 02

9

8

9
cos cos 3 3

32

iT iT
u Be A e cc

b T a T

  



  
 




  


   

               (59) 

where 

1

2

iB be       (60) 

The initial conditions is applied for Equation(59), one has 

 
 2 2

0 3

02

9
0 ,

32
b a

  




    0 0    (61) 

At the last order, substitution of (52) and (59) into the right 

hand side of (51) and secularities are eliminated 

 2 2 2

2 2 02 3 3i D A A AAB          

 2 2 2

03 3 A B    

 
2 2

2
2 2 30

0 2

3 3
9 0

8
A A

  
  



  
   

 
  (62)  

According to the MSLP, 
2 0D A   is selected firstly. This 

choice is admissible because 
2  is real for this choice. Af-

ter algebraic manipulations, equation (62) yields 

0a a , 
 2 2

0 3

02

9
,

32
b a

  




   0   , 

2 2 2 4 4

40 0

2 02

30 27 3

128
a

    




 
    (63) 

The frequency is  

 2 2 2 2 2

0 0 0

2 2 2 4 4

2 40 0

02

3

4

30 27 3

128

a

a

    

    




   

  
 
 

                              (64) 

 

Frequency is solved 
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2 4

2 2 0 0

2 2 2 4

0 0

1 1
12

2 2 128 96 27

a
z z

a a


 

   
   

 
  (65) 

where 
2 2 4

0 0

2 2 2 4

0 0

128 96 30

128 96 27

a a
z

a a

  

   

  


 
    

The final solution is 

 

 

 
      

0

2 2

0 3 2

02

cos

9
cos 3 cos

32

u t

a t

a

Ot



 



  






  (66) 

 

3. Results and Discussion 

In this section, approximate analytical solutions of classical 

MS method and MSLP method are contrasted with numer-

ical integration solution obtained by integrating directly the 

nonlinear ordinary differential equation numerically using 

the Runge–Kutta method, a built-in function in MATHE-

MATICA. 

 

To verify the results, time histories of the MS and MSLP 

methods are compared with the numerical simulations. 

 

In all comparisons,
0 1a  , 1m   and

 1 30.1 50, 5k k     are selected. In Figure 2, approxi-

mate solutions are compared with numerical simulations 

for weakly nonlinear systems. For this choice 0.5   is 

selected first. The Figure illustrates that approximate solu-

tions are in excellent agreement with numerical simula-

tions. In Figures 3 and 4, the effect of cubic nonlinearity is 

amplified by increasing  . In Figure 3, separations are ob-

served. MSLP is better aligned with numerical solutions for 

5  . Finally, in Figure 4, 25  is selected. For this 

strong nonlinear case, While MSLP and numerical soluti-

ons have a good agreement, approximate frequency of MS 

solution is very different from the numerical solution. 

To further show the accuracy of present (MSLP) method, a 

comparison of angular frequencies obtained by different 

methods is presented in Table 1 for weak and strong non-

linearities. In Table 1, approximate frequency of the present 

(MSLP) method and the existing results are in excellent 

agreement with numerical results for weak nonlinearities. 

Apart from the approximate results obtained by Telli and 

Kopmaz [14], approximate frequency of MSLP method and 

existing results have excellent agreement with numerical 

for strong nonlinear systems. 

 

 

 
Figure 2. Comparison of approximate solutions and numer-

ical solution for  1 30.5, 0.1 50, 5k k      

 

 
Figure 3. Comparison of approximate solutions and numer-

ical solution for  1 35, 0.1 50, 5k k      

 

 
Figure 4. Comparison of approximate solutions and numer-

ical solution for  1 325, 0.1 50, 5k k      
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4. Conclusions    

MS and MSLP method from the combination of MS and 

Lindstedt Poincare methods are applied to system with free 

vibration of a mass with serial linear and nonlinear stiffness 

on a frictionless surface. The time histories of MS and 

MSLP methods are compared with numerical solutions. 

Although the solution of MSLP and numerical are in 

excellent agreement, MS solution is not valid for strong 

nonlinear systems. Approximate frequency of MSLP 

method and previous results are contrasted with numerical 

solutions. The comparison shows that the results of MSLP 

is valid on a wide range of system parameters considered. 

In addition, the MSLP is appropriate not only for 

conservative systems but also for non-conservative 

systems. 
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