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Abstract: In this paper, the new weighted inequalities were derived by β-distance which is similar to the given 

inequality for the potential operator defined in [1]. The results presented here would provide extensions of those 

given in earlier works. 
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İzotropik Olmayan Potansiyel Teorik Eşitsizlik 

Özet: Bu yazıda, [1] 'de tanımlanan potansiyel operatör için verilen eşitsizliğe benzer β-mesafesi ile türetilen 

yeni ağırlıklı eşitsizlikler elde edilmiştir. Burada sunulan sonuçlar daha önceki çalışmalarda ki verilenleri 

destekler. 

Anahtar Kelimeler: Adams iz eşitsizliği, Stummel sınıfı, Morrey uzayları, izotropik olmayan mesafe. 

 

1. INTRODUCTION 

The following inequality has been obtained by D. Adams [1]; 

Let V  be a non negative function in the Morrey space   pnL n >,1,  R . 

For   np
pn

pqCu n <<1,=,0


  
R , the following inequality is valid; 
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where  nL R1,  is Morrey space. 

Morrey spaces , ,pL , were introduced by Morrey in 1938 in connection with certain problems in 

elliptic partial differential equations and calculus of variations [7]. Later, Morrey spaces found important 

applications to Navier Stokes and Schrödinger equations, elliptic problems with discontinuous 

coefficients and potential theory. An exposition of the Morrey spaces can be found in the book [5]. 
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Morrey spaces were widely studied during last decades, including the study of classical operators 

of harmonic analysis such as maximal, singular and potential operators. 

Definition 1.1 Let  <1 p , n 0 . We define the Morrey space ,  n

pL R, , as the set of 

finite normed locally integrable functions 
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Note that if 1=p ,  nL R1,  Morrey space is defined as follows; 
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According to the definition of ,pL , the parameter p  describes the local integrability, while   

describes the global integrability. Unlike ,pL  with 1>p , it is not the case that we can characterize 1,L  

in terms of the Littlewood-Paley decomposition. For this reason, the singular integral operators like the 

Riesz transforms are not bounded on 1,L . Nevertheless , this space can be compared with other function 

spaces. This is what we do in the present paper. 

This paper aims at using  -distance establish an imbedding similar to (1), assuming more general 

hypotheses on the function V . 

Firstly, we define a non isotropic distance or  -distance in n  dimensional Euclidean space 
nR . 

It is well known that the families of integral operators with positive kernels have many 

applications in different problems, in the theory of differantial equation, harmonic analysis etc. Integral 

operators depending on difference between the variables have princibal aplications. For multidimensional 

case, this type of kernels are functions of euclidean distance between two points. 

Let   ,
2

1
,,,,= 21 kn    nk ,1,2,=   and n  21= . For 
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is the non-isotropic distance or  -distance x  and y , given in [2], ([10][13]) , [17]. 

For any positive t , it is easy to see that this distance has the following properties of homogeneity
,   
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This equality gives us that the non-isotropic  -distance is the order of a homogeneous function 
n


. 

Thus the non-isotropic  -distance has the following properties: 

 

 

),(3.

.=2.

.0,0,0,=,=0=1.














yxkyx

xtxt

xx

n



 

 

where 

n

k



 














min

1
1

2= ,  n ,,,min= 21min  . 

Here we consider  -spherical coordinates by the following formulas: 
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  (5) 

where   221 ,,,0 n  and  20 1  n . 

By using  -spherical coordinates, we get that nx






2

= . 

Firstly, we will define the  ball  rxB ,  generated by the  distance. For a positive r  and 

any 
nx R , the open  -ball with radius r  and a center x  as 

    .<:=, ryxrxB
    

2. PRELIMINARY RESULTS 

In this section, we introduce Morrey space  nL R

1,  and 


pS , we give some results relating them. 

The Stummel class pS  was introduced by Ragusa and Zamboni [8]. This class is a class of functions 

related to local behavior of mapping by generalized fractional integral operators and the generalized 
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Morrey spaces are classes of functions related to local behavior of Hardy-Littlewood maximal 

function.Now, we introduce 
pS  class depending on  -distance as follows. 

Definition 2.1 Let ,<<1 np  
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 nL R

1,  Morrey space is defined as follows. 

 

Definition 2.2 Morrey space  nL R

1,  generated by  -distance; 
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where pn > .  

The next lemma gives a relation between the space 


pS  and 


1,L . 

Lemma 2.1 If V  belongs to  nL R

1, , then V  belongs to 


pS , and  
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Conversely, if V  belongs to 


pS  and   nrr






2

: , then V  belongs to 
 

 n

n
pn

L R




2
1, 

. 

Proof. About the first part, we have 
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The second part is obvious, indeed 
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Lemma 2.2 Let 


pSV  . Then there exists a positive constant  nCC dd =  such that  
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then, we get the conclusion.  

The following definition gives a generalization of 


pS . 

Definition 2.3 Let     0,0,:  be a non-decreasing continuous function with 

  0=lim
0

t
t




. We say that RR nV :  belongs to the class 


,pS  if and only if there exists a non 

decreasing function     0,0,:  with   0=lim
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r
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In order to show that a function 


pSV   belongs to an appropriate 


,pS , we give the following 

lemma. 

 

Lemma 2.3 Let 


pSV   such that  :0,1    
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 , where  t  is the 

Stummel modulus generated by  -distance of V . Then 
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where  
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Proof. Using Lemma 2.2, we can obtain 
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The last series converges observing that 
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3. MAIN RESULTS 

 

In this section ,under the more general hypotheses for function V , we will obtain embeddings 

like (1) using  -distance. 

Firstly, we need the following definitions: 

Let f  and h  be measurable functions such that  nlocLf R1  and 0h , we set the fractional 

integral generated by  -distance of order p  as 
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and we get generalized fractional integral generated by  -distance; 
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The important properties of the fractional integrals, their generalizations were studied by many authors. 

We refer to papers [6][13], [17]. 

Theorem 3.1 Let 


,pSV   with  t  and  t  as in Definition 2.3. Then, for any  0,1 , 

there exists a non-decreasing positive function  tG  such that 
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for all  nCf R 0
 ,where  rB .,  is   ball with radius r  containing the support of .f  Also 
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Proof. For 0>  and 1<<0  , we obtain, 
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a choice which makes the two terms on the right hand side of (13) equal. 

From (13), we obtain  
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Finally, using Fubini’s theorem  
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So (11) was obtained. 

(12) is easily seen to be equivalent to 
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Lemma 3.1 Let     0,0,:h  such that 
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for all  nCf R 0 .  

Proof. Using the Hölder inequality, we get 
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where  ryB ,  .sptf   

Corollary 3.1 Under the hypotheses of Theorem 1 and for all  nCu R 0 , letting 
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where  ryB ,  sptu .  

Proof. Using Lemma 2.1 and Theorem 3.1, we have the following inequality 



 

 

335 Yildirim et al. / Cumhuriyet Sci. J., Vol.39-2 (2018) 325-338 

    .|| 1 uInCu  
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Now we give an example of a function 


pSf  , 0f . But for 2> n , we choose .1,



Lf   

Example 3.1 Let  yB  be the characteristic function of B  and  
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where   0,B  the  ball centered in 0  and radius 
3= e . We obtain that the function  
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So, we have proved (ii). 

Now, for 2> n , we prove that the function .1,
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 Remark 3.2 Throughout this study, if we choose ,
2

1
==...== 21 n then we have the conclusions 

of [8].  
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