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ABSTRACT 
Heart failure remains a leading cause of morbidity and mortality worldwide, necessitating advanced 
tools for early risk prediction. This study presents an interactive, machine learning-driven web 
application designed to predict heart failure outcomes using clinical data. Leveraging the heart failure 
clinical records dataset (n=299), the application integrates a comprehensive suite of fifteen diverse 
predictive models, encompassing traditional/statistical-based algorithms, instance-based and 
probabilistic methods, various tree-based and ensemble techniques, and neural networks within an 
intuitive Shiny framework. Key features include exploratory data analysis (correlation matrices, feature 
importance), model training, and real-time risk prediction with customizable patient parameters. The 
system employs stratified cross-validation (10-fold) for robust evaluation and achieves impressive 
performance, with top-performing models exhibiting test set Area Under Curve  values exceeding 0.85, 
alongside high scores in accuracy, sensitivity, specificity, and F1-score. By combining clinical variables 
such as ejection fraction, serum creatinine, and follow-up time, the tool demonstrates how interactive 
machine learning platforms can enhance clinical decision-making. The open-source R-Shiny 
implementation provides immediate visual feedback, model interpretability features, and a template for 
extending predictive analytics to other medical domains. This work bridges the gap between statistical 
modeling and clinical application, offering both a prognostic tool and an educational resource for data-
driven cardiology.  

 
Keywords: Heart Failure Prediction, Machine Learning, Clinical Decision Support, R-Shiny. 

 
 

1. INTRODUCTION 
Heart-failure (HF) is a chronic and progressive 
cardiovascular disease where the heart is unable 
to pump enough blood to meet the body’s needs 
[1]. Affecting millions globally, HF represents 
a significant health challenge associated with 
high morbidity and mortality rates, severely 
diminishing patients’ quality of life and 
imposing a substantial burden on healthcare 
systems [2]. Early diagnosis, accurate prognosis 
prediction, and the determination of effective 
treatment strategies are critically important in 
managing HF patients. However, the complex 
pathophysiology of HF and the variability of the 
disease among individuals can make precise 
diagnosis and prognosis challenging using 
traditional clinical methods. 
 

In-recent years, the increasing availability of 
large datasets in medicine and advancements in 
computing technologies have opened up 
significant opportunities for applying machine 
learning (ML) techniques in healthcare. ML 
algorithms can analyse complex medical data, 
such as clinical findings, laboratory results, and 
imaging data, to uncover hidden patterns and 
relationships, providing valuable insights for 
tasks like disease diagnosis, predicting patient 
prognosis, and identifying risk factors that may 
influence disease progression. Particularly in 
the field of HF, ML models hold the potential to 
analyze patient data to predict the presence of 
the disease, forecast patient survival 
probability, and pinpoint risk factors. 
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A review of the literature clearly indicates a 
significant increase in the number of scientific 
publications addressing both ML and HF over 
the years. As illustrated in Figure 1, research 
interest in this area has grown considerably, 
especially in recent years. This trend vividly 
demonstrates the increasing acceptance and 
potential of ML techniques in HF research.  
 

 
 

Figure 1. Trend of publications in HF and ML 
research 

 
The literature frequently reveals the use of 
various ML algorithms for different prediction 
and classification tasks related to HF. These 
algorithms play a significant role in 
understanding, diagnosing, and predicting the 
prognosis of the disease.  
 
A substantial portion of ML studies related to 
HF has focused on predicting the presence of 
the disease or forecasting patients’ survival 
probability. For instance, [3] predicted the risk 
of death in HF patients using RF and Binary 
Particle Swarm Intelligence methods. [4], on the 
other hand, analysed the performance of 
Ensemble ML methods for predicting the 
survival of patients diagnosed with HF. 
Similarly, [5] proposed an ML-based approach 
to detect the survival status of HF patients. [6] 
also conducted an application using 
classification-based ML algorithms for 
predicting the survival of HF patients. Among 
more recent work, [7] developed time-adaptive 
ML models to predict the severity of HF with 
Reduced Ejection Fraction. 
 

Researchers have employed a variety of ML 
algorithms in HF studies, including Linear 
Regression (LR) [4], [8–10], Support Vector 
Machine (SVM) [6, 7, 11], Decision Tree (DT) 
[12], Random Forest (RF) [13], Artificial 
Neural Network (ANN) [14-15], and Naïve 
Bayes (NB) [16]. The performance of these 
algorithms is typically evaluated using standard 
metrics such as accuracy, precision, recall, F1-
score, and Area Under the Curve (AUC) [7], 
[10], [17–19]. Some studies have aimed to 
compare the performance of different 
algorithms on the same dataset. For example, 
[9], [20] conducted a comparison of different 
ML classification algorithms for cardiovascular 
disease prediction.  [10] examined the 
performance comparison of various ML 
algorithms in the early diagnosis of HF. [21] 
presented a comprehensive study evaluating the 
performance of different types of ML methods 
categorized into Tree, Meta, and Function 
categories for HF prediction. The use of web-
based analytical tools [22] and ML applications 
shows significant potential not only in heart 
failure prediction but also in other health 
domains, such as estimating COVID-19 
mortality [23] in Turkey. 
 
While the datasets used vary, many studies have 
preferred publicly available datasets such as the 
Kaggle or University of California Irvine ML 
Repository. Nevertheless, some research has 
been conducted on specific clinical datasets. 
 
Studies within the existing literature clearly 
demonstrate the strong potential of ML in the 
field of HF. However, the relative performance 
of different algorithms on specific datasets and 
their potential for clinical application remain an 
active area of research.  
 
This study aims to contribute to the field by 
deeply analyzing the performance of various 
ML models, including or in comparison with 
previously used algorithms, on a specific 
dataset. In particular, comparing the strengths 
and weaknesses of different model types can 
help in making more informed choices for the 
development of future clinical decision support 
systems. Therefore, specifically aims to 
compare the performance of different ML 
models in predicting heart failure outcomes and 
to evaluate their potential for integration into 
clinical decision support systems. Utilizing a 
relevant and up-to-date dataset, we will train, 
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test, and compare various ML algorithms based 
on established performance metrics. The 
findings from this research are expected to 
contribute to the development of ML-based 
decision support systems [24], thereby 
facilitating more effective management of HF 
patients. 
 
2. MATERIAL AND METHOD 
In this study, ML models were used to predict 
the occurrence of deaths in patients with HF. 
Details of the dataset used, algorithms applied, 
and the developed R-Shiny platform are 
described below. 
 
2.1. Dataset 
The Heart Failure Clinical Records Dataset 
comprises clinical information from 299 
patients with HF. It contains 12 clinical features 
and the target variable, “DEATH_EVENT”. 
The features included in the dataset are; age, 
anaemia status (anaemia), creatinine 
phosphokinase level 
(creatinine_phosphokinase), diabetes status 
(diabetes), left ventricular ejection fraction 
(ejection_fraction), high blood pressure status 
(high_blood_pressure), platelet count 
(platelets), serum creatinine level 
(serum_creatinine), serum sodium level 
(serum_sodium), sex, smoking status 
(smoking), and follow-up time (time). The 
target variable, DEATH_EVENT, is a binary 
variable (yes/no) indicating whether the patient 
passed away during the follow-up period. 
 
Prior to model development, a comprehensive 
exploratory data analysis was conducted to 
understand the distribution of each feature and 
the relationships between them. As part of this 
analysis, the pairwise Pearson correlation 
coefficients among all independent clinical 
features were calculated and are presented as a 
heatmap in Figure 2. This visualization allowed 
for the identification of potential linear 
relationships between variables, which is 
crucial for understanding the underlying 
structure of the dataset and for addressing issues 
such as multicollinearity in subsequent 
predictive modeling. For instance, the Figure 
highlights a notable moderate positive 
correlation between “sex” and “smoking” 
(r=0.45), suggesting a potential gender-specific 
association with smoking status within this 
patient cohort. Other weaker correlations, such 
as the slight positive association between ‘age’ 

and “serum_creatinine” (r=0.16) or the weak 
negative correlation between “age” and “time” 
(r=-0.22), were also observed. While these 
correlations do not imply causation, they 
provide valuable insights into the 
interdependencies of the clinical parameters and 
informed the subsequent stages of feature 
selection and model building, ensuring 
robustness and interpretability of the derived 
models. 
 

 
Figure 2. Feature correlation matrix 

 
As illustrated in Figure 3, the RF feature 
importance analysis highlights time as the most 
influential predictor of death events in HF 
patients, with an importance score that 
markedly exceeds all other variables. This 
finding suggests that the duration of patient 
follow-up is a critical determinant of mortality 
risk, likely reflecting survival time as a proxy 
for event occurrence. Serum creatinine and 
ejection fraction emerge as the second and third 
most important predictors, reinforcing their 
established roles as indicators of renal 
dysfunction and cardiac performance, 
respectively, both of which are key prognostic 
factors in HF. Variables such as age, platelets, 
creatinine phosphokinase, and serum sodium 
show moderate predictive value, implying their 
supplementary relevance. Conversely, features 
including high blood pressure, anaemia, 
smoking, sex, and diabetes contribute 
minimally, indicating limited independent 
prognostic utility after controlling for more 
dominant clinical factors. Thus, the Figure 
provides a data-driven hierarchy of risk factors 
that corroborates clinical expectations and 
enhances our understanding of variable 
importance in HF prognosis. 
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Figure 3. RF feature importance graph 

 
2.2. Machine Learning Algorithms 
In this study, various ML algorithms were 
compared to predict death events due to HF. 
The selected algorithms represent different 
learning approaches. The 15 different ML 
algorithms evaluated are listed below: 
 
LR was introduced by David Cox in 1958 as a 
method to model binary outcomes using the 
logistic function, building on earlier work by 
Joseph Berkson in the 1940s who coined the 
term “logit” [25]. It models the log-odds of a 
binary response as a linear function of predictor 
variables, and it remains foundational in 
epidemiology and biomedical sciences. 
 
Linear Discriminant Analysis (LDA) was 
developed by Ronald A. Fisher in 1936 as a 
method to find a linear combination of features 
that best separates two or more classes. It is 
widely used in pattern recognition and statistics 
for dimensionality reduction and classification 
[26].  
 
QDA is an extension of LDA that emerged later 
as statisticians generalized discriminant 
analysis to relax the assumption of equal 
covariance matrices [27]. 
 
K-Nearest Neighbor (KNN) was first described 
by Evelyn Fix and Joseph Hodges in 1951 as a 
non-parametric method for pattern 
classification [28]. It gained prominence after 
Thomas Cover and Peter Hart formalized its 
statistical properties in 1967 [29]. 
 
NB classifiers stem from Bayes’ Theorem 
proposed by Thomas Bayes in the 18th century. 
The “naive” assumption of conditional 
independence was formalized and applied in 
pattern recognition and information retrieval 

starting in the 1950s, with early notable 
applications in text classification by Maron in 
1961 [30]. 
 
DT gained traction through the Classification 
and Regression Trees (CART) framework 
developed by Leo Breiman, Jerome Friedman, 
Richard Olshen, and Charles Stone [31]. The 
CART methodology popularized recursive 
partitioning for classification and regression 
tasks. 
 
RF was introduced by Leo Breiman in 2001 as 
an ensemble learning method that aggregates 
predictions of multiple decision trees to 
improve accuracy and reduce overfitting [32]. 
 
BT Bagging, short for Bootstrap Aggregating, 
was introduced by Leo Breiman in 1996 as a 
method that enhances the stability and 
predictive accuracy of ML algorithms by 
reducing variance through the aggregation of 
multiple bootstrapped models. This ensemble 
technique is particularly effective when applied 
to high-variance models such as decision trees 
because it combines the predictions of several 
models trained on different subsets of the data 
to improve overall performance and mitigate 
overfitting [33]. 
 
Fast Random Forest (FRF) is a fast 
implementation of RF introduced by Marvin N. 
Wright and Andreas Ziegler in 2017, optimized 
for high-dimensional data and genome-wide 
association studies [34]. 
 
Gradient Boosting Machine (GBM), the 
concept of boosting was introduced by [35] and 
further advanced by [36]. The specific 
formulation of gradient boosting was developed 
by [37], which generalized boosting algorithms 
using gradient descent techniques. 
 
SVM was developed by Vladimir Vapnik and 
Alexey Chervonenkis in the 1960s, and 
popularized in the 1990s through Vapnik’s 
extensive work [38]. The introduction of kernel 
functions, including the Radial Basis Function, 
extended its applicability to non-linear 
problems. 
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ANN, the foundational idea of artificial neural 
networks was introduced by Warren McCulloch 
and Walter Pitts in 1943. The modern, 
multilayer perceptron model and 
backpropagation algorithm were popularized by 
[39]. 
 
XGBoost, short for “Extreme Gradient 
Boosting” was introduced by Tianqi Chen and 
Carlos Guestrin in 2016 as a scalable and 

regularized gradient boosting framework 
optimized for efficiency and predictive 
performance [40]. 
 
GLMNET was introduced by Hui Zou and 
Trevor Hastie in 2005 as a regularization 
technique that combines the strengths of L1 
(Lasso) and L2 (Ridge) penalties to handle 
correlated predictors [41]. 
 

 
Table 1. Evaluation metrics 

Metric Definition Formula 
Accuracy The ratio of correctly classified instances (both positive 

and negative) to the total number of instances. 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

Sensitivity (Recall) The proportion of actual positive cases (patients who 
passed away) that were correctly identified by the model. 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Specificity The proportion of actual negative cases (patients who did 
not pass away) that were correctly identified by the model. 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

Precision The proportion of predicted positive cases that are actually 
positive. 

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

F1 Score The harmonic mean of Precision and Sensitivity, serving 
as a balanced measure of model performance, especially in 
imbalanced datasets. 

2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 
2.3. R-Shiny Application Description 
The structure and workflow of the R-Shiny-
based application are illustrated in Figure 4. As 
depicted, the system initiates with dataset 
loading and preprocessing, and then branches 
into multiple functional tabs, each dedicated to 
a specific aspect of the machine learning 
pipeline, including data exploration, model 
training, evaluation, prediction, and 
interpretability. 

 
Figure 4. Workflow of R-Shiny based application 

3. RESULTS AND DISCUSSION 
For model training and performance evaluation, 
the dataset was split into two parts: 90% for 
training and 10% for testing. This split ensures 
that the models are tested on an independent 
dataset they have not seen during training, 
allowing for a more accurate estimation of their 
generalization capabilities. A fixed random 
seed value was used to reduce variations in  
results caused by randomness in data splitting 
and model training. 
 
During the model training phase, 10-fold cross-
validation was applied to estimate model 
performance more reliably and to optimize the 
algorithms’ tuning parameters. In cross-
validation, the training portion of the dataset 
was divided into 10 equal parts; in each 
iteration, one part was held out for validation 
while the remaining nine parts were used for 
training. This process was repeated 10 times, 
and the average performance was recorded. The 
optimal tuning parameters for the models were 
determined by selecting the combination that 
yielded the highest Area Under the ROC Curve 
(AUC) value from the cross-validation results. 
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The performance of the trained ML models was 
evaluated on the independent test dataset using 
various metrics. These metrics provide 
information about the models’ prediction 
accuracy and classification abilities: 
 
Upon analyzing the experimental results, it is 
evident that the ML models exhibited varying 
levels of success in predicting the HF death 

event. The evaluation conducted on the 
independent test dataset (Table 2) revealed that 
several models demonstrated superior overall 
performance. Specifically, GLM, LDA, GBM, 
SVM Linear, and GLMNET achieved the 
highest overall performance metrics, with 
Accuracy (96.6%) and F1_Score (97.6%) 
reaching and, respectively.

 
Table 2. Performance Evaluation Of Different Ml Models 

Algorithm Accuracy Sensitivity Specificity F1_score 
LR 0.966 1 0.889 0.976 
LDA 0.966 1 0.889 0.976 
GLMNET 0.966 1 0.889 0.976 
GBM 0.966 1 0.889 0.976 
SVM Linear 0.966 1 0.889 0.976 
XGBoost 0.931 1 0.778 0.952 
RF 0.931 1 0.778 0.952 
FRF 0.931 1 0.778 0.952 
SVM Radial 0.897 0.95 0.778 0.927 
BT 0.897 0.95 0.778 0.927 
DT 0.862 0.85 0.889 0.895 
NB 0.828 0.95 0.556 0.884 
NN 0.828 0.75 1 0.857 
QDA 0.793 0.95 0.444 0.864 
KNN 0.586 0.8 0.111 0.727 

A particularly significant finding for these top-
performing models is their Sensitivity value of 
1.00 on the test set, indicating that they correctly 
identified  
 
all the death cases in the test dataset. This 
highlights their substantial potential for 
identifying high-risk patients in a clinical 
setting. Other robust models, such as RF, FRF, 
and XGBoost, also performed strongly, with 
Accuracy (93.1%) and F1_Score 95.2%. These 
models also achieved a Sensitivity of 1.00, 
though their Specificity (77.8%) was slightly 
lower than that of the leading group. 
 
The interpretable nature of the LR model, as 
shown by its equation (Equation 1) and 
coefficient plot (Figure 5), provided clear 
insights into the direction and magnitude of the 
relationship between individual clinical factors 
and the log-odds of death, largely aligning with 
clinical understanding of HF prognostic 
indicators. 
 
 
 
 
 

The LR Coefficients plot: 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑝𝑝)  =  9.23 +  0.041 ∗  𝑎𝑎𝑎𝑎𝑎𝑎 − 0.05 ∗
 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  0.206 ∗  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 0.077 ∗
 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 0.003 ∗
 ℎ𝑖𝑖𝑖𝑖ℎ_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  0.667 ∗
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  − 0.058 ∗
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +  −0.485 ∗  𝑠𝑠𝑠𝑠𝑠𝑠  −
0.041 ∗  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 0.019 ∗  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡              (1) 
 

 
Figure 5. LR coefficient plot 
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This plot scientifically visualizes the estimated 
coefficients of the LR model, quantifying the 
linear association between each clinical feature 
and the log-odds of the HF death event, holding 
other variables constant. Features with positive 
coefficients, represented by bars extending to 
the right (notably serum creatinine and 
diabetes), indicate an increased log-odds, and 
thus an increased probability, of mortality as 
their values increase. Conversely, features with 
negative coefficients, shown by bars extending 
to the left (such as sex and ejection fraction), 
suggest a decreased log-odds of death with 
increasing values or different categories, 
highlighting their protective or inverse 
relationship with mortality risk in this model. 
Features with coefficients close to zero, 
indicated by bars near the central axis, 
demonstrate a minimal linear impact on the log-
odds of death when considered alongside other 
predictors in the model. This visual 
representation is crucial for interpreting the 
model’s internal structure, revealing which 
clinical factors are most strongly associated 
with the outcome and in what direction, thereby 
contributing to the scientific understanding of 
feature-outcome relationships within this 
specific linear framework. 
 
Figure 6 illustrates the constructed DT model, 
which clearly identifies key clinical features and 
their respective thresholds in predicting patient 
outcome. The tree’s root node initiates with 
“time”, indicating that patients with a follow-up 
time less than 74 days (time<74) enter a distinct 
risk pathway. Within this subgroup, 
“ejection_fraction” emerges as the next crucial 
predictor: patients with 
“ejection_fraction>=33” exhibit a remarkably 
low mortality rate of 6% (representing 54% of 
the total dataset), suggesting this as the lowest-
risk cohort. Conversely, for those with 
“ejection_fraction<33”, the “serum_creatinine” 
level becomes decisive; patients with 
“serum_creatinine>=1.4” face a high mortality 
rate of 65% (comprising 9% of the dataset), 
identifying this as a particularly high-risk group 
characterized by shorter follow-up, reduced 
ejection fraction, and elevated serum creatinine. 
Intriguingly, patients with a follow-up time of 
74 days or more (time>=74), constituting 26% 
of the dataset, show a high mortality rate of 
81%. This highly interpretable structure allows 
clinicians to rapidly identify specific patient 
subgroups based on these key clinical 

parameters and their thresholds, facilitating 
more informed prognostic assessments. 
 

 
Figure 6. Visual representation of the DT model 

for predicting death event 
 
Regarding computational efficiency, the 
training duration analysis (Figure 7) showed 
that ensemble methods like XGBoost, Ranger, 
and RF generally required longer training times 
compared to simpler models such as LR, LDA, 
and KNN. This suggests a trade-off between 
model complexity/training time and 
performance, which is a crucial consideration 
for practical deployment. 
 

 
Figure 7. Model training duration 

 
The developed R-Shiny application serves as a 
practical tool to leverage these trained models 
in a clinical context. Figure 8 provides an 
overview of the R-Shiny application’s user 
interface, specifically showcasing the “Data 
Explorer” tab which facilitates initial data 
inspection and preliminary feature review. 
Beyond data exploration, the application 
integrates various functionalities such as model 
training, detailed model analytics, and model 
comparison. The “Risk Predictor” functionality, 
for instance, allows users to input specific 
patient clinical data and obtain instantaneous 
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risk predictions from multiple models. This 
feature demonstrates the potential of integrating 
these ML models into a clinical decision 
support system, offering healthcare 
professionals an additional resource to aid in 
risk assessment and decision-making by 
providing predictions based on diverse 
algorithmic perspectives. 
 

 
Figure 8. R-Shiny application user interface 

 
4. CONCLUSION  
This study successfully demonstrated the robust 
potential of various ML models in predicting 
heart failure outcomes, particularly death 
events, by leveraging the Heart Failure Clinical 
Records Dataset. My interactive, ML-driven 
web application, developed within the intuitive 
R-Shiny framework, served as a comprehensive 
platform for evaluating fifteen diverse 
predictive algorithms, encompassing 
traditional/statistical-based methods, instance-
based and probabilistic methods, various tree-
based and ensemble techniques, and neural 
networks. 
The experimental results revealed that several 
models, including GLM, LDA, GBM, SVM 
Linear, and GLMNET, exhibited superior 
overall performance on the independent test 
dataset, achieving an Accuracy of 96.6% and an 
F1_Score of 97.6%. A particularly significant 
finding was the Sensitivity of 1.00 for these top-
performing models, indicating their exceptional 
ability to correctly identify all death cases 
within the test set. This highlights their 
substantial promise for pinpointing high-risk 
patients in clinical environments. Other robust 
models like RF, Ranger, and XGBoost also 
showed strong performance with 93.1% 

Accuracy and 95.2% F1_Score, alongside 
perfect Sensitivity. 
The application’s key features, such as 
exploratory data analysis (including correlation 
matrices and feature importance), model 
training, and real-time risk prediction, illustrate 
the practical utility of integrating these models 
into clinical decision support systems. The 
interpretability provided by models like LR and 
DT offers valuable insights into the 
relationships between clinical factors and 
mortality risk, corroborating existing medical 
understanding. 
 
In conclusion, this work bridges the gap 
between statistical modeling and clinical 
application, providing both a prognostic tool 
and an educational resource for data-driven 
cardiology. The findings from this research are 
expected to contribute to the development of 
ML-based decision support systems, thereby 
facilitating more effective management of HF 
patients. 
 
For future studies on this research topic, several 
key areas warrant further investigation. From a 
quantitative research perspective, future work 
should involve validating these models on 
larger and more diverse datasets, ideally from 
multiple institutions or different geographic 
regions, to enhance their generalizability and 
external validity. This expansion would provide 
more robust evidence of model performance 
across varied patient populations. Conducting 
prospective studies in actual clinical settings 
will also be crucial to evaluate the real-world 
impact and effectiveness of this interactive ML 
platform in improving patient outcomes and 
aiding healthcare professionals in their 
decision-making processes, which involves 
integrating the tool into clinical workflows and 
assessing its utility in a live environment. 
Additionally, quantitative research could focus 
on the economic impact of using such decision 
support systems, evaluating potential cost 
savings related to early prediction and 
optimized treatment strategies, and exploring 
the integration of real-time data from wearable 
health devices or continuous monitoring 
systems to enhance predictive accuracy and 
enable more dynamic risk assessments. 
Conversely, qualitative research is also vital. 
This includes understanding the perspectives of 
healthcare professionals regarding the usability, 
trustworthiness, and overall acceptability of 
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ML-based clinical decision support tools 
through interviews and focus groups, which 
could explore barriers and facilitators to 
adoption. Further qualitative research could 
delve into the ethical considerations 
surrounding the deployment of AI in clinical 
settings, particularly concerning data privacy, 
algorithmic bias, and accountability in decision-
making. Finally, understanding the specific 
training and educational requirements for 
clinicians to effectively utilize and interpret ML 
model outputs is another crucial qualitative 
research area. By addressing these quantitative 
and qualitative research avenues, the field can 
further advance the integration of ML into real-
world clinical practice for heart failure 
management. 
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