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Abstract 

 

Soft set theory constitutes a mathematically rigorous and algebraically expansive framework for representing and 

analyzing systems permeated by epistemic uncertainty, vagueness, and parameter-contingent variability—

hallmarks of foundational problems in decision sciences, engineering, economics, and information theory. 

Within this algebraic landscape, we formally introduce and investigate a novel binary operation—termed the soft 

intersection–plus product—defined on soft sets whose parameter sets are structured as groups. The operation is 

rigorously developed within an axiomatic framework that guarantees compatibility with generalized notions of 

soft subsethood and soft equality, thereby maintaining the algebraic integrity of the induced structure. A 

meticulous algebraic analysis is carried out to establish key structural attributes of the operation, including 

closure, associativity, commutativity, idempotency, and distributivity over other soft set operations, as well as its 

behavior with respect to identity and absorbing elements, and its interaction with the null and absolute soft sets. 

Our findings reveal that the soft intersection–plus product not only conforms to the algebraic constraints imposed 

by group-parameterized domains but also induces a well-behaved and internally coherent algebraic system over 

the soft set space. Two principal contributions emerge from this investigation: (i) the integration of the proposed 

product enhances the internal algebraic cohesion of soft set theory by embedding it within a formally consistent, 

axiom-preserving framework; and (ii) it serves as a foundational component for the development of a 

generalized soft group theory. Beyond its abstract significance, the proposed operation offers a robust 

mathematical basis for the design of soft computational models governed by algebraic principles, with 

prospective applications in multi-criteria decision-making, algebraic classification frameworks, and uncertainty-

aware data analysis across group-parameterized semantic environments. As such, the formal apparatus 

developed herein not only expands the theoretical frontier of soft algebra but also affirms its relevance in both 

pure mathematics and applied analytical disciplines. 

 

Keywords Soft sets; Soft subsets; Soft equalities; Soft intersection–plus product. 

1. Introduction 

A wide spectrum of mathematically sophisticated frameworks has been developed to model and analyze 

phenomena governed by uncertainty, vagueness, and indeterminacy—conditions frequently encountered across 

domains such as engineering, economics, social sciences, and medical diagnostics. Despite their conceptual 

richness, classical paradigms such as fuzzy set theory and probabilistic models exhibit fundamental 

epistemological and algebraic limitations. Specifically, fuzzy set theory, as formulated by Zadeh (1965), relies 

on the subjective assignment of membership functions, while probabilistic frameworks presuppose the existence 

of repeatable experiments and well-defined distributional structures—assumptions that are often untenable in 

real-world environments marked by epistemic ambiguity or non-replicability.  

In response to these constraints, Molodtsov (1999) introduced soft set theory as an axiomatically minimal yet 

structurally flexible formalism, wherein uncertainty is represented via parameter dependence rather than 

probabilistic likelihoods or fuzzy grades. Since its inception, the algebraic structure of soft set theory has been 
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significantly enriched. Foundational operations such as union, intersection, and AND/OR-products were first 

introduced by Maji et al. (2003) and subsequently reconceptualized by Pei and Miao (2005) from an 

information-theoretic standpoint to facilitate applications in relational and multivalued settings. Ali et al. (2009) 

advanced this operational schema by defining restricted and extended variants of core operations, thereby 

increasing the granularity and expressive precision of soft algebraic systems. A broad corpus of subsequent 

investigations—including Yang (2008), Feng et al. (2010), Jiang et al. (2010), Ali et al. (2011), Neog and Sut 

(2011), Fu (2011), Ge and Yang (2011), Singh and Onyeozili (2012a,2012b,2012c, 2012d), Zhu and Wen 

(2013), Onyeozili and Gwary (2014), and Sen (2014) have further clarified semantic ambiguities, introduced 

generalized equality relations, and defined novel binary soft products, thereby deepening the formal algebraic 

infrastructure of soft set theory. More recently, significant progress has been achieved through the introduction 

of a wide array of novel operations rigorously analyzed within formal algebraic frameworks. Notable among 

these are contributions by Eren and Çalışıcı (2019), Stojanović (2021), Sezgin et al. (2023a,2023b), Sezgin and 

Aybek (2023), Sezgin and Dağtoros (2023), Sezgin and Demirci (2023), Sezgin and Çalışıcı (2024), Sezgin and 

Yavuz (2023a, 2023b; 2024), Sezgin and Çağman (2024, 2025), Sezgin and Sarıalioğlu (2024a, 2024b), and 

Sezgin and Şenyiğit (2025) whose work have established a robust, extensible, and internally consistent algebraic 

landscape for soft set theory. 

One pivotal axis of this development has been the formalization and generalization of soft subsethood and soft 

equality. The foundational notion of soft subsets introduced by Maji et al. (2003) was extended by Pei and Miao 

(2005) and Feng et al. (2010), while Qin and Hong (2010) introduced soft congruences that embedded 

equivalence relations into the soft set universe. Jun and Yang (2011) refined the theoretical landscape with the 

introduction of J-soft equalities and associated distributive identities, and Liu et al. (2012) developed the notions 

of L-soft subsets and L-equalities, thereby revealing the breakdown of classical distributive laws within 

generalized soft contexts. Feng and Li (2013) provided a systematic typology of soft subsets under L-equality 

and demonstrated associativity, commutativity, and distributivity properties within certain quotient structures 

that yield commutative semigroup behavior. Broader generalizations—such as g-soft, gf-soft, and T-soft 

equalities—have been explored by Abbas et al. (2014, 2017), Al-shami (2019), and Al-shami and El-Shafei 

(2020), introducing congruence-theoretic and lattice-enriched interpretations of soft algebraic systems. 

A significant redefinition of the theoretical foundation was undertaken by Çağman and Enginoğlu (2010), who 

eliminated inconsistencies in the original formulation and established a coherent operational calculus. Parallel 

research streams have investigated soft binary products over algebraic structures. For example, the soft 

intersection–union product has been extended to rings (Sezer, 2012), semigroups (Sezgin, 2016), and groups 

(Muştuoğlu et al., 2016), leading to the construction of algebraic entities such as soft union rings, semigroups, 

and groups. Conversely, the soft union–intersection product has been systematically explored within group-

theoretic (Kaygısız, 2012), semigroup-theoretic (Sezer et al., 2015), and ring-theoretic (Sezgin et al., 2017) 

frameworks, with the algebraic properties of the resulting structures shown to depend critically on the presence 

of identity and inverse elements in the parameter domain. 

Building upon this foundational corpus, the present study introduces a novel binary operation—the soft 

intersection–plus product—defined over soft sets indexed by parameter sets possessing group-theoretic structure. 

The operation is rigorously axiomatized and subjected to exhaustive algebraic analysis. We formally establish its 

closure, associativity, commutativity, idempotency, and distributivity, and examine its interactions with identity 

and absorbing elements. Furthermore, we verify its compatibility with generalized soft subsethood and soft 

equality, ensuring that it integrates seamlessly into the broader algebraic apparatus of soft set theory. A 

comparative evaluation is also undertaken with respect to previously defined soft binary operations, with 

particular attention to expressive capacity and algebraic coherence across soft subset classifications. In addition, 

the behavior of the product in relation to the null and absolute soft sets is explicitly characterized. Our theoretical 

findings demonstrate that the soft intersection–plus product satisfies key axiomatic properties and enables the 

coherent aggregation of soft information across group-structured parameter domains. This construction provides 

a principled generalization of classical group-theoretic ideas to the soft set context and lays the algebraic 

groundwork for a generalized soft group theory founded on rigorously defined binary operations. The remainder 

of the paper is organized as follows: Section 2 presents essential preliminaries and foundational algebraic 
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definitions. Section 3 introduces the soft intersection–plus product and develops its algebraic theory in detail. 

Section 4 consolidates the principal results and outlines avenues for future research aimed at deepening the 

algebraic formalism of soft sets and extending their applications in abstract algebra and uncertainty 

quantification. 

2. Preliminaries 

This section presents a rigorous and systematic re-articulation of the foundational definitions and algebraic 

postulates that serve as the formal substratum for the theoretical framework elaborated in the subsequent 

sections. Soft set theory, originally introduced by Molodtsov (1999), was conceived as a parameterized 

formalism for modeling systems characterized by epistemic uncertainty and contextual indeterminacy. However, 

the initial formulation lacked the algebraic precision required for robust theoretical development. In response, 

the axiomatic refinement proposed by Çağman and Enginoğlu (2010) marked a pivotal advancement, rectifying 

inherent structural inconsistencies and introducing a logically coherent and algebraically tractable framework. 

Their reformulation not only endowed the theory with enhanced formal integrity but also significantly extended 

its applicability to a broad spectrum of mathematical and computational domains, including algebraic systems, 

decision theory, and soft computation. The present study adopts this refined axiomatic model as its foundational 

basis. Consequently, all ensuing algebraic constructions, operational definitions, and theoretical generalizations 

are rigorously developed within the logical boundaries established by this enhanced formulation. This adherence 

ensures internal consistency, structural fidelity, and full alignment with contemporary standards in the algebraic 

theory of soft systems. Throughout the remainder of this manuscript, all references to soft sets, soft operations, 

and their associated algebraic behaviors are to be interpreted in the context of this revised formalism unless 

explicitly stated otherwise. 

 

Definition 2.1. (Çağman and Enginoğlu, 2010) Let 𝐸 be a parameter set, 𝑈 be a universal set, 𝑃(𝑈) be the power 

set of 𝑈, and ℋ ⊆ 𝐸. Then, the soft set 𝒻ℋ  over 𝑈 is a function such that 𝒻ℋ : 𝐸 → 𝑃(𝑈), where for all 𝑤 ∉ ℋ, 

𝒻ℋ(𝑤) = ∅. That is,  

 

𝒻ℋ = {(𝑤, 𝒻ℋ(𝑤)): 𝑤 ∈ 𝐸} 

 

From now on, the soft set over 𝑈 is abbreviated by 𝒮𝒮. 

 

Definition 2.2. (Çağman and Enginoğlu, 2010) Let 𝒻ℋ  be an 𝒮𝒮. If 𝒻ℋ(𝑤) = ∅ for all 𝑤 ∈ 𝐸, then 𝒻ℋ  is called 

a null ЅЅ and indicated by ∅𝐸, and if 𝒻ℋ(𝑤) = 𝑈, for all 𝑤 ∈ 𝐸, then 𝒻ℋ  is called an absolute ЅЅ and indicated 

by 𝑈𝐸. 

 

Definition 2.3. (Çağman and Enginoğlu, 2010) Let 𝒻ℋ  and ℊℵ be two 𝒮𝒮s. If 𝒻ℋ(𝑤) ⊆ ℊℵ(𝑤), for all 𝑤 ∈ 𝐸, 

then 𝒻ℋ  is a soft subset of ℊℵ and indicated by 𝒻ℋ ⊆̃ ℊℵ. If 𝒻ℋ(𝑤) = ℊℵ(𝑤), for all 𝑤 ∈ 𝐸, then 𝒻ℋ  is called 

soft equal to ℊℵ, and denoted by 𝒻ℋ = ℊℵ. 

 

Definition 2.4. (Çağman and Enginoğlu, 2010) Let 𝒻ℋ  and ℊℵ be two 𝒮𝒮s. Then, the intersection of 𝒻ℋ  and ℊℵ 

is the 𝒮𝒮 𝒻ℋ ∩̃ ℊℵ, where (𝒻ℋ ∩̃ ℊℵ)(𝑤) = 𝒻ℋ(𝑤) ∩ ℊℵ(𝑤), for all 𝑤 ∈ 𝐸. 

 

Definition 2.5. (Çağman and Enginoğlu, 2010) Let 𝑓ℋ be an 𝒮𝒮. Then, the complement of 𝑓ℋ denoted by 𝑓ℋ
c
, is 

defined by the soft set 𝑓ℋ
c: 𝐸 → 𝑃(𝑈) such that 𝑓ℋ

𝑐(𝑒) = 𝑈\𝑓ℋ(𝑒) = (𝑓ℋ(𝑒))
′
, for all 𝑒 ∈ 𝐸.  

 

Definition 2.6. (Sezgin et al., 2025b) Let 𝒻𝐾  and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾  is called a soft S-subset of ℊℵ, 

denoted by 𝒻𝐾 ⊆̃𝑆 ℊℵ, if for all 𝑤 ∈ 𝐸, 𝒻𝐾(𝑤) = ℳ and ℊℵ(𝑤) = 𝒟, where ℳ and 𝒟 are two fixed sets and 

ℳ ⊆ 𝒟. Moreover, two ЅЅs 𝒻𝐾  and ℊℵ are said to be soft S-equal, denoted by 𝒻𝐾 =𝑆 ℊℵ, if 𝒻𝐾 ⊆̃𝑆 ℊℵ and 

ℊℵ ⊆̃𝑆 𝒻𝐾 . 
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It is obvious that if 𝒻𝐾 =𝑆 ℊℵ, then 𝒻K and ℊℵ are the same constant functions, that is, for all 𝑤 ∈ 𝐸, 𝒻𝐾(𝑤)= 

ℊℵ(𝑤) = ℳ, where ℳ is a fixed set . 

 

Definition 2.7. (Sezgin et al., 2025b) Let 𝒻𝐾  and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾  is called a soft A-subset of ℊℵ, 

denoted by 𝒻𝐾 ⊆̃𝐴 ℊℵ, if, for each 𝒶, 𝒷 ∈ 𝐸, 𝒻𝐾(𝒶) ⊆ ℊℵ(𝒷). 

 

Definition 2.8. (Sezgin et al., 2025b) Let 𝒻𝐾  and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾  is called a soft S-complement of ℊℵ, 

denoted by 𝒻𝐾 =𝑆 (ℊℵ)𝑐, if, for all 𝑤 ∈ 𝐸, 𝒻𝐾(𝑤) = ℳ and ℊℵ(𝑤) = 𝒟, where ℳ and 𝒟 are two fixed sets and 

ℳ = 𝒟′. Here, 𝒟′ = 𝑈\𝒟. 

 

From now on, let 𝐺 be a group, and 𝑆𝐺(𝑈) denotes the collection of all 𝒮𝒮s over 𝑈, whose parameter sets are 𝐺; 

that is, each element of 𝑆𝐺(𝑈) is an 𝒮𝒮 parameterized by 𝐺. 

 

Definition 2.9. (Sezgin and Durak, 2025) Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, the soft union-difference product 

𝒻𝐺⨂𝑢/𝑑ℊ𝐺 is defined by 

(𝒻𝐺⨂𝑢/𝑑ℊ𝐺)(𝑥) = ⋃ (𝒻𝐺 (𝑦)\ℊ𝐺(𝓏))

𝑥=𝑦𝓏

, 𝑦, 𝓏 ∈ 𝐺 

for all 𝑥 ∈ 𝐺. 

 

For additional information on ЅЅs, we refer to Aktas and Çağman (2007), Alcantud et al. (2024), Ali et al. 

(2015), Ali et al. (2022), Atagün et al. (2019), Atagün and Sezgin (2015),  Atagün and Sezer (2015), Atagün 

and Sezgin (2017), Atagün and Sezgin (2018), Atagün and Sezgin (2022), Feng et al. (2008), Gulistan and 

Shahzad (2014), Gulistan et al. (2018), Jana et al. (2019), Karaaslan (2019), Khan et al. (2017), Mahmood et 

al. (2015), Mahmood et al. (2018), Manikantan et al. (2023), Memiş (2022), Özlü and Sezgin (2020), Riaz et 

al. (2023), Sezer and Atagün (2016), Sezer et al. (2017), Sezer et al. (2013), Sezer et al. (2014), Sezgin et al. 

(2019a, 2019b), Sezgin and İlgin (2024a, 2024b), Sezgin et al. (2022), Sezgin and Onur (2024), Sezgin et al. 

(2024a,2024b), Sezgin and Orbay (2022), Sezgin et al. (2025a), Sun et al. (2008), Tunçay and Sezgin (2016), 

Ullah et al. (2018). 

3. Soft Intersection-Plus Product of Groups 

In this section, we introduce and formally define a novel binary operation on soft sets—termed the soft 

intersection–plus product—which is constructed over parameter domains endowed with an intrinsic group-

theoretic structure. The operation is subjected to a comprehensive algebraic investigation aimed at delineating its 

fundamental structural properties, including closure, associativity, commutativity, idempotency, and its 

adherence to generalized soft equality and soft subsethood relations. Particular emphasis is placed on examining 

the product's behavior within established soft inclusion hierarchies and its structural alignment with the broader 

algebraic taxonomy of soft operations. The analysis is further enriched by a comparative study of the product's 

interactions with preexisting soft binary operations, thereby illuminating its integrability and algebraic coherence 

within the existing operational lattice. To substantiate the theoretical exposition, a series of illustrative examples 

is constructed, each tailored to expose nontrivial operational dynamics and reveal nuanced algebraic phenomena 

inherent in the proposed formulation. Collectively, these findings affirm that the soft intersection–plus product is 

structurally sound, algebraically expressive, and capable of serving as a core constituent in the algebraic 

generalization and deepening of soft set theory. 

 

Definition 3.1. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s over 𝑈. Then, the soft intersection-plus product 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 is defined 

by  

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦) + ℊ𝐺(𝓏)) =

𝑥=𝑦𝓏

⋂ ((𝒻𝐺 (𝑦))
′

∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

, 𝑦, 𝓏 ∈ 𝐺 

for all 𝑥 ∈ 𝐺. 
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Note here that since 𝐺 is a group, there always exist 𝑦, 𝓏 ∈ 𝐺 such that = 𝑦𝓏, for all 𝑥 ∈ 𝐺. Let the order of the 

group 𝐺 be n, that is, |𝐺| = 𝑛. Then, it is obvious that there exist n distinct representations combinations for each 

𝑥 ∈ 𝐺 such that 𝑥 = 𝑦𝓏, where 𝑦, 𝓏 ∈ 𝐺. Besides, for more on plus (+) operation of sets, we refer to Sezgin et 

al. (2023c). 

 

Note 3.2. The soft intersection-plus product is well-defined in 𝑆𝐺(𝑈). In fact, let 𝒻𝐺 , ℊ𝐺 , ℴ𝐺 , 𝓀𝐺 ∈  𝑆𝐺(𝑈) such 

that (𝒻𝐺 , ℊ𝐺) = (ℴ𝐺 , 𝓀𝐺). Then, 𝒻𝐺 = ℴ𝐺  and ℊ𝐺 = 𝓀𝐺, implying that 𝒻𝐺(𝑥) = ℴ𝐺(𝑥) and ℊ𝐺(𝑥) = 𝓀𝐺(𝑥) for 

all 𝑥 ∈ 𝐺. Thereby, for all 𝑥 ∈ 𝐺, 

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                               = ⋂ (ℴ𝐺 
𝑐(𝑦) ∪ 𝓀𝐺(𝓏))

𝑥=𝑦𝓏

 

                 = (ℴ𝐺⨂𝑖/𝑝𝓀𝐺)(𝑥) 

Hence, 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 =  ℴ𝐺⨂𝑖/𝑝𝓀𝐺 . 

 

Example 3.3. Consider the group G = {Ձ, ɓ} with the following operation: 

 

∙ Ձ ɓ 

Ձ Ձ ɓ 

ɓ ɓ Ձ 

 

Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s over 𝑈 = 𝐷2 = {< 𝑥, 𝑦 >: 𝑥2 = 𝑦2 = 𝑒, 𝑥𝑦 = 𝑦𝑥} = {𝑒, 𝑥, 𝑦, 𝑦𝑥} as follows: 

 

𝒻𝐺 = {(Ձ, {𝑒, 𝑦}), (ɓ, {𝑦𝑥})} and ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})} 

 

Since Ձ = ՁՁ = ɓɓ, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(Ձ) = (𝒻𝐺
𝑐(Ձ) ∪ ℊ𝐺(Ձ)) ∩ (𝒻𝐺

𝑐(ɓ) ∪ ℊ𝐺(ɓ)) = {𝑥, 𝑦} and since ɓ = Ձɓ =

ɓՁ, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(ɓ) = (𝒻𝐺
𝑐(Ձ) ∪ ℊ𝐺(ɓ)) ∩ (𝒻𝐺

𝑐(ɓ) ∪ ℊ𝐺(Ձ)) = {𝑒, 𝑥} is obtained. Hence, 

 

𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})} 

 

Proposition 3.4. The set 𝑆𝐺(𝑈) is closed under the soft intersection-plus product. That is, if 𝒻𝐺 and ℊ𝐺 are two 

𝒮𝒮s, then so is 𝒻𝐺⨂𝑖/𝑝ℊ𝐺. 

 

PROOF. It is obvious that the soft intersection-plus product is a binary operation in 𝑆𝐺(𝑈). Thereby, 𝑆𝐺(𝑈) is 

closed under the soft intersection-plus product. 

 

Proposition 3.5. The soft intersection-plus product is not associative in 𝑆𝐺(𝑈)  

 

PROOF. Let Consider the 𝒮𝒮s 𝒻𝐺 and ℊ𝐺 over 𝑈 = {𝑒, 𝑥, 𝑦, 𝑦𝑥} in Example 3.3. Let ℏ𝐺 = {(Ձ, {𝑥}), (ɓ, {𝑦, 𝑦𝑥})} 

be an 𝒮𝒮 over 𝑈. Since 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})}, then 

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑦𝑥}), (ɓ, {𝑦, 𝑦𝑥})} 

 

Moreover, since ℊ𝐺⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑦𝑥}), (ɓ, {𝑦, 𝑦𝑥})}, then 

 

𝒻𝐺⨂𝑖/𝑝(ℊ𝐺⨂𝑖/𝑝ℏ𝐺) = {(Ձ, {𝑥, 𝑦𝑥}), (ɓ, {𝑥, 𝑦, 𝑦𝑥})} 
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Thereby, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)⨂𝑖/𝑝ℏ𝐺 ≠ 𝒻𝐺⨂𝑖/𝑝(ℊ𝐺⨂𝑖/𝑝ℏ𝐺).  

 

Proposition 3.6. The soft intersection-plus product is not commutative in 𝑆𝐺(𝑈). 

 

PROOF. Consider the 𝒮𝒮s 𝒻𝐺 and ℊ𝐺 over 𝑈 = {𝑒, 𝑥, 𝑦, 𝑦𝑥} in Example 3.3. Then, 

 

𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})}, and ℊ𝐺⨂𝑖/𝑝𝒻𝐺 = {(Ձ, {𝑦, 𝑦𝑥}), (ɓ, {𝑒, 𝑦𝑥})} 

 

implying that 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 ≠ ℊ𝐺⨂𝑖/𝑝𝒻𝐺 . 

 

Proposition 3.7. 𝑈𝐺 is the right absorbing element of the soft intersection-plus product in 𝑆𝐺(𝑈). 

 

PROOF. Let 𝑥 ∈ 𝐺. Then, 

(𝒻𝐺⨂𝑖/𝑝𝑈𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ 𝑈𝐺(𝓏))

𝑥=𝑦𝓏

 

                     = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ 𝑈)

𝑥=𝑦𝓏

 

= 𝑈𝐺(𝑥) 

for all 𝑥 ∈ 𝐺. Thus, 𝒻𝐺⨂𝑖/𝑝𝑈𝐺 = 𝑈𝐺.◻ 

 

Proposition 3.8. 𝑈𝐺 is not the left absorbing element of the soft intersection-plus product in 𝑆𝐺(𝑈). 

 

PROOF. Consider the 𝒮𝒮 𝒻𝐺 in Example 3.3. Then, 

 

𝑈𝐺⨂𝑖/𝑝𝒻𝐺 = {(Ձ, ∅), (ɓ, ∅)} 

 

implying that 𝑈𝐺⨂𝑖/𝑝𝒻𝐺 ≠ 𝑈𝐺.◻ 

 

Remark 3.9. 𝑈𝐺 is not the absorbing element of the soft intersection-plus product in 𝑆𝐺(𝑈). 

 

Proposition 3.10. The soft intersection-plus product is not idempotent in 𝑆𝐺(𝑈). 

 

PROOF. Consider the 𝒮𝒮 𝒻𝐺 in Example 3.3. Then, for all 𝑥 ∈ 𝐺, 

 

𝒻𝐺⨂𝑖/𝑝𝒻𝐺 = {(Ձ, 𝑈), (ɓ, {𝑥})} 

 

implying that 𝒻𝐺⨂𝑖/𝑝𝒻𝐺 ≠ 𝒻𝐺. ◻ 

 

Proposition 3.11. Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑝𝒻𝐺 = 𝑈𝐺. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 𝐴 is a fixed set. Hence, for all 𝑥 ∈

𝐺, 

(𝒻𝐺⨂𝑖/𝑝𝒻𝐺)(𝑥) = ⋂ (𝒻𝐺
𝑐(𝑦) ∪ 𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

 

= 𝑈𝐺 (𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑝𝒻𝐺 = 𝑈𝐺.◻ 

 

Proposition 3.12. Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝑈𝐺⨂𝑖/𝑝𝒻𝐺 = 𝒻𝐺. 
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PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 𝐴 is a fixed set. Hence, for all 𝑥 ∈

𝐺, 

(𝑈𝐺⨂𝑖/𝑝𝒻𝐺 )(𝑥) = ⋂ (𝑈𝐺 
𝑐(𝑦) ∪ 𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

 

                     = ⋂ (∅ ∪ 𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

 

 = 𝒻𝐺 (𝑥) 

Thereby, 𝑈𝐺⨂𝑖/𝑝𝒻𝐺 = 𝒻𝐺.◻ 

 

Proposition 3.13. Let 𝒻𝐺  be an 𝒮𝒮. Then, ∅𝐺⨂𝑖/𝑝𝒻𝐺 = 𝑈𝐺. 

 

PROOF. Let 𝒻𝐺 be an 𝒮𝒮. Then, for all 𝑥 ∈ 𝐺, 

(∅𝐺⨂𝑖/𝑝𝒻𝐺)(𝑥) = ⋂ (∅𝐺
𝑐(𝑦) ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

                    = ⋂ (𝑈 ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

= 𝑈𝐺(𝑥) 

 

Thereby, ∅𝐺⨂𝑖/𝑝𝒻𝐺 = 𝑈𝐺.◻ 

 

Proposition 3.14. Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑝∅𝐺 = 𝒻𝐺
𝑐
. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 𝐴 is a fixed set. Hence, for all 𝑥 ∈

𝐺, 

(𝒻𝐺⨂𝑖/𝑝∅𝐺)(𝑥) = ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ∅𝐺(𝓏))

𝑥=𝑦𝓏

 

                       = ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ∅𝐺)

𝑥=𝑦𝓏

 

         = 𝒻𝐺
𝑐(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑝∅𝐺 = 𝒻𝐺
𝑐
. 

 

Proposition 3.15. Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺
𝑐⨂𝑖/𝑝𝒻𝐺 = 𝒻𝐺 . 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 𝐴 is a fixed set. Hence, for all 𝑥 ∈

𝐺, 

(𝒻𝐺
𝑐⨂𝑖/𝑝𝒻𝐺)(𝑥) = ⋂ ((𝒻𝐺

𝑐)𝑐(𝑦) ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

                        = ⋂ (𝒻𝐺(𝑦) ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

                                                                                   = 𝒻𝐺(𝑥) 

 

Thereby, 𝒻𝐺
𝑐⨂𝑖/𝑝𝒻𝐺 = 𝒻𝐺.◻ 

 

Proposition 3.16. Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑝𝒻𝐺
𝑐 = 𝒻𝐺

𝑐
. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 𝐴 is a fixed set. Hence, for all 𝑥 ∈

𝐺, 

(𝒻𝐺⨂𝑖/𝑝𝒻𝐺
𝑐)(𝑥) = ⋂ (𝒻𝐺

𝑐(𝑦) ∪ 𝒻𝐺
𝑐(𝓏))

𝑥=𝑦𝓏

= 𝒻𝐺
𝑐(𝑥) 
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Thereby, 𝒻𝐺⨂𝑖/𝑝𝒻𝐺
𝑐 = 𝒻𝐺

𝑐
.◻ 

 

Theorem 3.17. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = 𝑈𝐺  if and only if 𝒻𝐺 ⊆̃𝐴 ℊ𝐺. 

 

PROOF. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s.  Suppose that 𝒻𝐺 ⊆̃𝐴 ℊ𝐺 . Then, 𝒻𝐺(𝑦) ⊆ ℊ𝐺(𝑧), for each 𝑦, 𝑧 ∈ 𝐺. Thus, for 

all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= 𝑈𝐺(𝑥) = 𝑈 

Thereby, 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = 𝑈𝐺.◻ 

 

Conversely, suppose that 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = 𝑈𝐺. Then, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = 𝑈𝐺(𝑥) = 𝑈 for all 𝑥 ∈ 𝐺. Thus, for all 𝑥 ∈

𝐺, 

𝑈𝐺(𝑥) = 𝑈 = (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

This implies that 𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏) = 𝑈, for all 𝑦, 𝑧 ∈ 𝐺. Thus, 𝒻𝐺(𝑦) ⊆ ℊ𝐺(𝑧), for each 𝑦, 𝑧 ∈ 𝐺. Thereby, 

𝒻𝐺 ⊆̃𝐴 ℊ𝐺. Note here that, 𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏) = (𝒻𝐺 (𝑦)\ℊ𝐺(𝓏))

′
, for all 𝑦, 𝑧 ∈ 𝐺. 

Proposition 3.18. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. If 𝒻𝐺 = 𝑈𝐺  and ℊ𝐺 = ∅𝐺  , then 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = ∅𝐺 . 

 

PROOF. Let 𝒻𝐺 = 𝑈𝐺  and ℊ𝐺 = ∅𝐺 . Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝑈𝐺(𝑥) = 𝑈 and ℊ𝐺(𝑥) = ∅𝐺(𝑥) = ∅. Thus, 

for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                               = ⋂ (𝑈𝐺 
𝑐(𝑦) ∪ ∅𝐺(𝓏))

𝑥=𝑦𝓏

 

           = ⋂ (∅ ∪ ∅)

𝑥=𝑦𝓏

 

                                                                                = ∅𝐺(𝑥) 

 

Thereby, 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = ∅𝐺.◻ 

 

Proposition 3.19. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. If ℊ𝐺 ⊆̃𝑆 (𝒻𝐺)𝑐, then 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = 𝒻𝐺
𝑐
. 

 

PROOF. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s and ℊ𝐺 ⊆̃𝑆 (𝒻𝐺)𝑐. Hence, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, where 𝐴 

and 𝐵 are two fixed sets and 𝐵 ⊆ 𝐴′. Thus, for all 𝑥 ∈ 𝐺, 

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= 𝒻𝐺 
𝑐(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = 𝒻𝐺 
𝑐
. ◻ 

 

Proposition 3.20. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. Then, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)
c

= 𝒻𝐺⨂𝑢/𝑑ℊ𝐺. 

 

PROOF. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, for all 𝑥 ∈ 𝐺, 

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺)
𝑐
(𝑥) = ( ⋂ (𝒻𝐺 

𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

)

′
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                            = ⋃ (𝒻𝐺 
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

′

𝑥=𝑦𝓏

 

                         = ⋃ (𝒻𝐺 (𝑦) ∩ ℊ𝐺
𝑐(𝓏))

𝑥=𝑦𝓏

 

                      = ⋃ (𝒻𝐺 (𝑦) ∖ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

            = (𝒻𝐺⨂𝑢/𝑑ℊ𝐺)(𝑥) 

Thereby, (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)
c

= 𝒻𝐺⨂𝑢/𝑑ℊ𝐺. 

 

Proposition 3.21. Let 𝒻𝐺, ℊ𝐺, and ℏ𝐺 be three 𝒮𝒮s. If 𝒻𝐺 ⊆̃ ℊ𝐺 ,  then ℊ𝐺⨂𝑖/𝑝ℏ𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑝ℏ𝐺 and 

ℏ𝐺⨂𝑖/𝑝𝒻𝐺 ⊆̃ ℏ𝐺⨂𝑖/𝑝ℊ𝐺. 

 

PROOF. Let 𝒻𝐺, ℊ𝐺, and ℏ𝐺 be three 𝒮𝒮s such that 𝒻𝐺 ⊆̃ ℊ𝐺 . Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) ⊆ ℊ𝐺(𝑥), and hence, 

(ℊ𝐺(𝑥))
′

⊆ (𝒻𝐺(𝑥))
′
. Then, for all 𝑥 ∈ 𝐺, 

 

(ℊ𝐺⨂𝑖/𝑝ℏ𝐺)(𝑥) = ⋂ (ℊ𝐺
𝑐(𝑦) ∪ ℏ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                ⊆ ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ℏ𝐺(𝓏))

𝑥=𝑦𝓏

 

                   = (𝒻𝐺⨂𝑖/𝑝ℏ𝐺)(𝑥) 

 

implying that ℊ𝐺⨂𝑖/𝑝ℏ𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑝ℏ𝐺. Similarly, for all 𝑥 ∈ 𝐺, 

 

(ℏ𝐺⨂𝑖/𝑝𝒻𝐺)(𝑥) = ⋂ (ℏ𝐺
𝑐(𝑦) ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

                              ⊆ ⋂ (ℏ𝐺
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                  = (ℏ𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) 

 

implying that ℏ𝐺⨂𝑖/𝑝𝒻𝐺 ⊆̃ ℏ𝐺⨂𝑖/𝑝ℊ𝐺.◻ 

 

Proposition 3.22. Let 𝒻𝐺 , ℊ𝐺, ℴ𝐺, and 𝓀𝐺 be four 𝒮𝒮s. If 𝓀𝐺 ⊆̃ ℴ𝐺, and 𝒻𝐺 ⊆̃ ℊ𝐺 , then ℴ𝐺⨂𝑖/𝑝𝒻𝐺 ⊆̃ 𝓀𝐺⨂𝑖/𝑝ℊ𝐺 

and ℊ𝐺⨂𝑖/𝑝𝓀𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑝ℴ𝐺. 

 

PROOF. Let 𝒻𝐺, ℊ𝐺, ℴ𝐺 , and 𝓀𝐺 be four 𝒮𝒮s such that 𝓀𝐺 ⊆̃ ℴ𝐺, and 𝒻𝐺 ⊆̃ ℊ𝐺 . Then, for all 𝑥 ∈ 𝐺, 𝓀𝐺(𝑥) ⊆

ℴ𝐺(𝑥), 𝒻𝐺(𝑥) ⊆ ℊ𝐺(𝑥), and thus, ℴ𝐺
𝑐(𝑥) ⊆ 𝓀𝐺

𝑐(𝑥), ℊ𝐺
𝑐(𝑥) ⊆ 𝒻𝐺

𝑐(𝑥), for all 𝑥 ∈ 𝐺. Then, for all 𝑥 ∈ 𝐺, 

 

(ℴ𝐺⨂𝑖/𝑝𝒻𝐺)(𝑥) = ⋂ (ℴ𝐺 
𝑐(𝑦) ∪ 𝒻𝐺(𝓏))

𝑥=𝑦𝓏

 

                               ⊆ ⋂ (𝓀𝐺
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                   = (𝓀𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) 

 

implying that ℴ𝐺⨂𝑖/𝑝𝒻𝐺 ⊆̃ 𝓀𝐺⨂𝑖/𝑝ℊ𝐺 . Similarly, for all 𝑥 ∈ 𝐺,  

 

(ℊ𝐺⨂𝑖/𝑝𝓀𝐺)(𝑥) = ⋂ (ℊ𝐺
𝑐(𝑦) ∪ 𝓀𝐺(𝓏))

𝑥=𝑦𝓏
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                              ⊆ ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ℴ𝐺(𝓏))

𝑥=𝑦𝓏

 

                 = (𝒻𝐺⨂𝑖/𝑝ℴ𝐺)(𝑥) 

implying that ℊ𝐺⨂𝑖/𝑝𝓀𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑝ℴ𝐺 . ◻ 

 

Proposition 3.23. The soft intersection-plus product distributes over the intersection operation of 𝒮𝒮s from the 

left side. 

 

PROOF. Let 𝒻𝐺, ℊ𝐺, and ℏ𝐺 be three 𝒮𝒮s. Then, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑝(ℊ𝐺 ∩̃ ℏ𝐺)) (𝑥) = ⋂ (𝒻𝐺
𝑐(𝑦) ∪ (ℊ𝐺 ∩̃ ℏ𝐺)(𝓏))

𝑥=𝑦𝓏

 

                                                    = ⋂ (𝒻𝐺
𝑐(𝑦) ∪ (ℊ𝐺(𝓏) ∩ ℏ𝐺(𝓏)))

𝑥=𝑦𝓏

 

                                                                          = ⋂ ((𝒻𝐺
𝑐(𝑦) ∪ ℊ𝐺(𝓏)) ∩ (𝒻𝐺

𝑐(𝑦) ∪ ℏ𝐺(𝓏)))

𝑥=𝑦𝓏

 

                                                                                     =  [ ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

] ∩ [ ⋂ (𝒻𝐺
𝑐(𝑦) ∪ ℏ𝐺(𝓏))

𝑥=𝑦𝓏

] 

                                                    = (𝒻𝐺⨂𝑖/𝑝ℊ𝐺)(𝑥) ∩ (𝒻𝐺⨂𝑖/𝑝ℏ𝐺)(𝑥) 

Thus, 𝒻𝐺⨂𝑖/𝑝(ℊ𝐺 ∩̃ ℏ𝐺) = (𝒻𝐺⨂𝑖/𝑝ℊ𝐺) ∩̃ (𝒻𝐺⨂𝑖/𝑝ℏ𝐺).◻ 

 

Example 3.24. Consider the group 𝐺 in Example 3.3. Let 𝒻𝐺, ℊ𝐺, and ℏ𝐺 be three 𝒮𝒮s over 𝑈 = {𝑒, 𝑥, 𝑦, 𝑦𝑥} as 

follows: 

 

𝒻𝐺 = {(Ձ, {𝑒, 𝑦}), (ɓ, {𝑦𝑥})}, ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})}, ℏ𝐺 = {(Ձ, {𝑥}), (ɓ, {𝑦, 𝑦𝑥})}  

 

Since 𝒻𝐺⨂𝑖/𝑝ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})} and 𝒻𝐺⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑥, 𝑦𝑥}), (ɓ, {𝑥, 𝑦})}, then 

 

(𝒻𝐺⨂𝑖/𝑝ℊ𝐺) ∩̃ (𝒻𝐺⨂𝑖/𝑝ℏ𝐺) = {(Ձ, {𝑥}), (ɓ, {𝑥})} 

 

Moreover, since ℊ𝐺 ∩̃ ℏ𝐺 = {(Ձ, {𝑥}), (ɓ, ∅)} 

 

𝒻𝐺⨂𝑖/𝑝(ℊ𝐺 ∩̃ ℏ𝐺) = {(Ձ, {𝑥}), (ɓ, {𝑥})} 

 

Thus, 𝒻𝐺⨂𝑖/𝑝(ℊ𝐺 ∩̃ ℏ𝐺) = (𝒻𝐺⨂𝑖/𝑝ℊ𝐺) ∩̃ (𝒻𝐺⨂𝑖/𝑝ℏ𝐺).◻ 

 

Proposition 3.25. The soft intersection-plus product does not distribute over the intersection operation of 𝒮𝒮s 

from the right side. 

 

PROOF. Consider the group 𝐺 in Example 3.3. Let 𝒻𝐺, ℊ𝐺, and ℏ𝐺 be three 𝒮𝒮s over 𝑈 = {𝑒, 𝑥, 𝑦, 𝑦𝑥} as 

follows: 

 

𝒻𝐺 = {(Ձ, {𝑒, 𝑦}), (ɓ, {𝑦𝑥})}, ℊ𝐺 = {(Ձ, {𝑥, 𝑦}), (ɓ, {𝑒, 𝑥})}, ℏ𝐺 = {(Ձ, {𝑥}), (ɓ, {𝑦, 𝑦𝑥})} 

 

Since 𝒻𝐺⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑥, 𝑦𝑥}), (ɓ, {𝑥, 𝑦})} and ℊ𝐺⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑦𝑥}), (ɓ, {𝑦, 𝑦𝑥})}, then 

 

(𝒻𝐺⨂𝑖/𝑝ℏ𝐺) ∩̃ (ℊ𝐺⨂𝑖/𝑝ℏ𝐺) = {(Ձ, {𝑦𝑥}), (ɓ, {𝑦})} 

 

Moreover, since 𝒻𝐺 ∩̃ ℊ𝐺 = {(Ձ, {𝑦}), (ɓ, ∅)} 
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(𝒻𝐺 ∩̃ ℊ𝐺)⨂𝑖/𝑝ℏ𝐺 = {(Ձ, {𝑒, 𝑥, 𝑦𝑥}), (ɓ, 𝑈)} 

 

Thus,(𝒻𝐺 ∩̃ ℊ𝐺)⨂𝑖/𝑝ℏ𝐺 ≠ (𝒻𝐺⨂𝑖/𝑝ℏ𝐺) ∩̃ (ℊ𝐺⨂𝑖/𝑝ℏ𝐺).◻ 

 

Remark 3.26. The soft intersection-plus product does not distribute over the intersection operation of 𝒮𝒮s from 

both sides.  

4. Conclusion 

This study begins with the formal introduction of a novel binary operation on soft sets, designated as the soft 

intersection–plus product, constructed over parameter domains endowed with an intrinsic group-theoretic 

structure. Grounded in this foundational formulation, we embark on a comprehensive algebraic investigation of 

the operation, with particular emphasis on its structural behavior across various hierarchies of soft subsethood 

and its alignment with generalized soft equality relations. The operation is further subjected to a rigorous 

comparative analysis with the previously established soft binary products, systematically embedded within the 

stratified lattice of soft subset classifications. This comparative framework yields sharpened theoretical insights 

into the relative expressive capacities and algebraic compatibilities of alternative soft operations. In parallel, we 

undertake a detailed structural analysis of the proposed product’s interaction with both the null and absolute soft 

sets, as well as with existing binary soft operations defined over group-structured parameter spaces. These 

investigations further elucidate the operation’s foundational role within the broader algebraic topology of soft 

systems. The algebraic treatment is conducted within a strictly axiomatic setting, adhering to core principles of 

abstract algebra wherein properties such as closure, associativity, commutativity, idempotency, distributivity 

over other soft set operations, and the presence or absence of identity, inverse, and absorbing elements serve as 

critical invariants in the classification of algebraic structures. The regularities and algebraic phenomena revealed 

by this analysis confirm the internal coherence and formal integrity of the soft intersection–plus product and 

underscore its potential to extend classical algebraic paradigms into the domain of soft set theory. In particular, 

the operation serves as a conceptual and structural cornerstone for the development of a generalized soft group 

theory, wherein soft sets defined over group-parameterized domains emulate the axiomatic signatures of 

classical group constructs through rigorously defined soft operations. Beyond its foundational contributions, the 

algebraic framework developed herein offers fertile ground for future research—both in the synthesis of new 

algebraic operations within soft environments and in the refinement of generalized soft equalities—thereby 

expanding the theoretical boundaries and practical applicability of soft set theory across algebraic modeling, 

computational abstraction, and uncertainty-oriented decision science. 
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