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Abstract

strict climate policies have triggered farmer protests, reflecting the tension between policy ambition and sectoral 
readiness. This paper investigates the relationship between farmgate GHG emissions and economic growth in 

2022, we apply a Vector Autoregressive (VAR) model to test causal linkages 
among GDP, agricultural emissions, and non-agricultural emissions. The results show no statistically significant 
causality between GDP and either agricultural or non- tory 
as an emerging economy aligning with the EU, policy implications can be distinguished along supply- and demand-
side dimensions. Supply-side mitigation such as changing traditional farming practices may face resistance and 
require long adaptation periods in rural areas. Conversely, demand-side strategies, including dietary shifts, 
innovations in food processing, and consumer-driven transformations, appear more feasible in the short term. Over 
time, these changes may gradually lead to mitigation within farmgate practices. The main contribution of this study 
is to highlight demand-
offering a pragmatic roadmap for aligning economic growth with emission reduction goals.
Keywords: Vector Autoregressif Model; Time Series; Agricultural Emissions; Sustainable Economic Growth; 
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Introduction
The Common Agricultural Policy (CAP) of the European Union (EU), after 67 years marked by 

successes, is currently at the center of the most controversial protests. It would be unfair to deem the 
policies that have created a modernized agricultural geography, constituting 13.2% of the world's basic 
agricultural product value and holding 10% of international agricultural trade, as unsuccessful.  
However, unexpected changes in the global economic, political, and environmental landscape, often 
referred to as global shocks, have prompted the countries that have developed these strong policies to 
reconsider their approaches. The discontinuity in production during the COVID-19 pandemic, energy 
bottlenecks, climate crisis, the Russia-Ukraine conflict, turmoil in the Middle East, and spikes in oil 
prices have impacted, and continue to impact, not only all countries but also EU member states. In 
addition to these factors, the externalities created by their highly competitive power in different countries 
have led to a perceived need for reform due to both environmental and socio-economic reasons(Coderoni 
and Esposti, 2018a).  

     The exceeding or impending surpassing of the ecological damage threshold in certain regions 
due to intensive agriculture has led to discomfort among many European Union member states, thereby 
pioneering the emergence of the sustainability concept. Another issue of great concern to EU countries 
is the setting of global targets by the UN regarding sustainable environmental policies. Academic circles 
and the world environment-protection-public opinion are aware of the 13th Sustainable Development 
Goal (SDGs) by the United Nations (UN). In line with this goal, world countries should achieve a 45% 
reduction in global net carbon emissions from 2010 to 2030 to effectively mitigate global warming and 
limit it to a 1.5 C increase. Additionally, the SDGs set a target of achieving global net zero carbon 
emissions by approximately 2050 (United Nations, 2024). As a result, it was expected that 
environmentally friendly policies would come to the forefront in the EU before the rest of the world. In 
short, the EU does not want to be one of the geographies that disrupts the global carbon balance. 

    The goal of achieving sustainable production, amidst the external challenges mentioned 
above, has exacerbated the feeling of more severe structural issues. The increase in constraints within 
the traditional system that the agricultural sector has been accustomed to for years has led to difficulties 
in production and trade, resulting in farmer protests. EU countries have been in a more advantageous 
position compared to almost all farmers worldwide for the past 67 years, thanks to the common funds 
they have obtained. The daily agenda of EU farmers and policymakers revolved around the use of 
agricultural chemicals, combating diseases, achieving high yields, and responding to increased global 
competition. Research indicates that EU agricultural lands are heavily depleted, and it is inevitable that 
environmental issues will arise in the near future under these intensive conditions. While some studies 
emphasize the shifting of agricultural activities to less developed regions (such as the 10+2 countries), 
implementing revolutionary . 

     The key concerns of farmers who are in the grip of the above-mentioned problems 
experienced in their countries in the 12 EU members, where the demonstrations are violent, are classified 
around biodiversity/conservation, climate/emission, and others. The following issues were discussed: 
the stringency of the EU nature restoration law rules, EU trade agreements that lead to cheap imports, 
increasing EU COP support for farmers, improving farmgate prices for farmers, dropping fuel subsidies, 
pesticide use restrictions, compensating farmers affected by extreme weather events, improving 
infrastructure investments to protect against extreme weather events, reintroducing income tax breaks, 
no need to reduce nitrogen emissions, the requirement for slow farm subsidy payments, and more aid 
for sectors hit by the ongoing drought (Carbonbrief, 2024). In summary, stakeholders in the EU 
agricultural sector acknowledge the problems, but they want adaptation and mitigation policies to be 
implemented rapidly in order to overcome them. 

agricultural trade, it has just began to focus the issues discussed by the EU, such as climate change, 
biodiversity, and precision farming systems. The reason why farmer protests have not yet reached 

farmers have been deprived of these supports. The use of agricultural chemicals in many production 
areas has not reached the desired level yet. Turkish agriculture does not currently practice intensive 
agriculture to the same extent as the EU. Since populist policies applied to agricultural inputs do not 
create changes in agricultural infrastructure policies, there is currently no restriction on Turkish farmers. 
Turkish farmers are therefore only watching these protests. The large amounts of agricultural input 
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subsidies received by large-scale enterprises do not yet create an uncomfortable political environment 
for Turkish farmers. It can be argued that unlike EU farmers, the weak culture of unionization, 
cooperation, and collective action among farmers also plays a role at this point.  Nevertheless, in the last 

-dependent practices, 
leading to a measurable increase in its greenhouse gas (GHG) emissions from agriculture. This raises 
questions about -term sustainability trajectory, especially in relation to its trade 
integration with the EU. 

total agricultural or economy-wide emissions in 
without distinguishing between emissions arising directly from primary production (farm-level) and 
those generated downstream through processing, transportation, and consumption. This lack of 
disaggreg
Thus, a clear research gap exists: the need to explicitly analyze the relationship between farmgate 

it with non-agricultural emission dynamics. 
Many developed countries, particularly the EU, continue to implement cheaper climate 

change adaptation policies and prepare to implement more expensive mitigation policies (Baldock et al., 
2007). In this context, the European Green Deal declared by the EU in December 2019 was actually a 
justification for the farmer demonstrations. This series of climate change mitigation strategies is not 
only the EU's strategy to achieve the Paris Climate Agreement goals, but also heralds a total economic 
and social transformation (EDF, 2024). The Green Deal aims to reduce the climate footprint in all sectors 
from industry to agriculture, from construction to transportation, to act in line with sustainability 
principles, to separate the circular economy and resource use from economic growth, to eliminate 
damage to the environment and nature, to protect and restore biodiversity, to renewable energy. and 
investing in carbon capture and storage technologies. As the EU steps into this new adventure, it wants 
to be the pioneer of a new transformation that will affect the whole world. As the world's leading trade 
actor along with the USA and China, the EU aims to spread the transformation throughout the world 
through its commercial, economic and political relations.  

     Green deal strategies envisaged in all sectors have also changed the objectives of EU 
Common Agricultural Policy. While the EU Council included 3 market-oriented objectives among the 
new CAP objectives announced under 9 headings, the remaining 6 objectives are related to natural 
resource use and efforts to prevent climate change. Ensuring farm income, increasing competitiveness, 
rebalancing power in food chain have been determined as more market-oriented strategies. Climate 
change action, environmental care, preserving landscape and biodiversity, supporting generational 
renewal, creating vibrant rural areas and protecting food and health quality can be considered 
environmentally friendly strategies (Smol, 2022; Szpilko and Ejdys, 2022) 

    Transition countries to market economy or developing countries may experience similar 
issues with globalization (Kyriazil and Miro, 2023). Indeed, in a study conducted on emerging 
economies (Brazil, Russia, India, China, and South Africa, BRICS) using the ARDL bound test between 
1971 and 2013, the causal relationship between agricultural production and carbon dioxide emissions 
was examined, disaggregated into crop production and livestock. Empirical results suggest that a 1% 
increase in economic growth, crop production, and livestock production will lead to a proportional 
increase in carbon dioxide emissions by 17%, 28%, and 28% respectively, while a 1% increase in energy 
consumption (Appiah et al., 2018).  Countries face many challenges while striving to ensure food 
security and reduce the proportional share of food expenditures within income. The sector's internal 
challenges and energy bottlenecks caused by globalization-driven outward policies, along with global 
environmental issues, ar
all these unresolved issues, the design of mitigation policies will inevitably become essential in the near 
future. Focusing on farmgate emissions therefore allows us to address both a conceptual and policy gap: 

whether structural changes in farming practices or demand-side strategies (such as dietary shifts) are 
more effective entry points for mitigation. 

 
gas emissions and Gross Domestic Product(GDP) and to determine the strategies the country should 
follow to avoid being affected by stringent environmental policies in the EU, while experiencing a 
harvest season free from agricultural protests. 
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The literature on the subject has predominantly focused on the relationships between total 
emissions, agricultural emissions, energy use, and GDP. Sarpong et al., 2023, studied with time series 
analysis in seven-emerging-
Mexico, and state that environmental tax, renewable energy, and access to clean fuels and technologies 
for food processing decrease carbon emission for those economies. On the other hand, urbanization and 
population growth enhance emissions for the E7 economies. Muhadinovic et al. (2021) analyzed the 
sectoral differences in greenhouse gas emissions in Montenegro and demonstrated that the agricultural 
sector contributed to GDP over a 24-month period. Han et al. 2018, argue that bidirectional short-run 
causality between CO2 emissions and GDP are the signal to develop a low-carbon economy needed to 
address the dilemma between economic development and carbon emissions. Nguyen et al. (2020) states 
that the increases in income and economic integration are the major contributors to higher GHG 
emissions from agriculture in the short run. They reported that the increases in income, agriculture value 
added, and energy consumption are the major drivers of agricultural emissions in the long run. Haider 
et al. (2020) analyzed the relationship between N2O emissions and per capita GDP within the scope of 
their study on the Environmental Kuznets Curve analysis. If countries wish to reduce their N2O 
emissions or agricultural N2O emissions, they should reduce the use of agricultural land. At this point, 
it can be said that farmgate emissions show a high correlation with N2O contributions. In the study, no 

less developed countries in the comparison. There is a substantial literature on reducing or adapting to 
agricultural emissions. A common point where researchers converge is that reducing agricultural 
emissions cannot be one-sided. In this context, the importance of supply and demand-oriented strategies 
has also been emphasized (Poore and Nemecek, 2018). Researchers, aware of the difficulties in many 
developing (and even developed) countries, have also suggested following a roadmap with different 
stages. The importance of this roadmap, which encompasses both behavioral and production changes, 
has been emphasized: (1) for greater mitigation potential; (2) for exploration of mitigation and 
adaptation co-benefits, synergies or trade-offs; (3) to identify clear research gaps; and (4) to integrate 
options that fall both inside and outside of agricultural production (e.g., dietary choices, food 
waste)(Niles et al., 2017; Rosenzweig et al., 2020). 

     In the current paper, it is assumed that agricultural greenhouse gas emissions and non-
agricultural greenhouse gas emissions contribute to GDP. If there were no economic activities, then 
there would be no greenhouse gases emitted into the atmosphere (Harris, 2002). However, with 
advancing technology and increasing levels of education and awareness, the emergence of more efficient 
economies is possible (Gurluk, 2009). All these factors will have a reducing effect on greenhouse gas 
emissions into the atmosphere. The advanced economies of countries, along with their citizens and 
policymakers, are leading proponents of the concept of sustainable development today. The agricultural 
sector is responsible for approximately 10-12% of greenhouse gas emissions in the atmosphere, 
primarily from agricultural production. With the addition of processed food products and transportation 
activities, the greenhouse gas impact of basic agricultural products and the sector is steadily increasing. 
Countries that are increasingly aware and responsible and aim to adapt to international climate change 
are making efforts to take measures in the agriculture sector, which is closely intertwined with nature. 
The methodology used in the study is Vector Autoregressive model (VAR), which is an econometric 
time series analysis used to better understand the relationship between the agricultural production system 

agricultural greenhouse gas emissions and GDP. The study interrogates two hypotheses in a manner that 
contributes to the existing literature. These hypotheses inquire whether the source of agricultural 
emissions is farmgate emissions and whether there is a relationship between non-agricultural emissions 

emissions through areas such as agri-business and transportation rather than agricultural production 
itself, and that farmgate emissions do not contribute to GHG emissions production. Food policy studies 
have been conducted on the separate analysis of agricultural greenhouse gas emissions(Garvey et al., 
2021; Garvey et al., 2022; Stewart et al., 2023a). The impact of various dietary practices on GHG 
emissions is investigated to demonstrate that although the food system accounts for 23-42% of emissions 
(Stewart et al., 2023a). Significant portion of these emissions occurs in the stages after the primary 
agricultural product is produced. The study's focus on disaggregating agricultural and non-agricultural 
emission contributions aims to better illustrate the distinction between agricultural production and 
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consumption and to fill a gap in the literature. The expectation regarding the second hypothesis is the 
presence of a relationship between non-agricultural emissions and GDP. In that case, the specified 
hypotheses are as follows: 

H1: There is a relationship between farmgate GHG emissions and GDP  
H2: There is a relationship between non-agricultural emissions and GDP  
 
Material and Method  
The material of the research consists of time series data obtained from FAOSTAT, World Bank 

(WB) and Turkish Statistical Institute. Uzel et al. (2022), methodology was used to calculate Green 
House Gases (GHG) emissions from cro 2 equivalent arising from 
agricultural production was calculated by conversion factors. GHG gases arising from crop production 
contains emissions from synthetic fertilizers which consist of nitrous oxide gas from synthetic nitrogen 
additions to cultivated soils. The data calculations are from IPCC, and is available at FAO (IPCC, 2006; 
FAO, 2019). Climate scientists, after seve-ral experiments, calculated in the mid-2000s that dirt dwellers 
spew about one kilogram of the greenhouse gas for every 100 kg of fertilizer. In addition, it is stated 
that the emis-sions will be linearly doubling when the uses of fertilizers are increased (Sciencenews, 
2019). GHG emis-sions from crop residues consist of direct and indirect nitrous oxide emissions from 
nit-rogen in crop and forage/pasture renewal residues left on agricultural fields by farmers. GHG 
emissions from burning crop residues consist of methane and nitrous oxides. The nitrous oxide gases 
occur by the combustion of a percentage of crop residues burnt on site. The mass of fuel available for 
burning should be estimated taking into account the fractions removed before burning due to animal 
consumption, decay in the field, and use in other sectors (biofuel, domestic livestock feed, building 
materials, etc.). GHG emissions from burning as cultivation of organic soils technically consist of both 
CO2 and nitrous oxide(N2O). Drainage and cultivation of peat soils increase soil aeration and reverse 
the carbon flux into a net CO2 emission into the atmosphere. Farmed organic soils are a large source of 
both CO2 and nitrous oxide emission, due to the net degradation (oxidation) of the parent material 
(Klemedtsson, 1997). 

GHG emissions arising from livestock contains the GHG emissions originat-ing from livestock 
rearing. The livestock data disseminates total methane (CH4) and ni-trous oxide (N2O) emissions 
originating from livestock-related processes. Detailed emis- ic 
fermentation  which is the CH4 emissions produced from enteric fermentation processes in the digestive 
systems of ruminants and to a lesser extent of non- 2O 
emissions originated from the nitrogen in manure left by graz ure 

4 and N2O emissions originating from aerobic and anaerobic processes of 
manure decomposition. 

One of the most significant errors in emission calculations is conducting a sectoral calculation 
that encompasses the entire agricultural industry instead of focusing solely on farmgate emissions. 
Research conducted at the agricultural industry level and research conducted at the farm level should be 
analyzed and interpreted differently from each other. A significant portion of emissions in the 
agricultural industry stems from production-independent food chain relationships such as transportation, 
processing, and catering services. The role of farmers revolves around producing primary agricul-tural 
products and deciding whether to implement emission regulatory measures up to this point.  Therefore, 
farmgate analyses provide more useful insights into the rela-tionships between the agricultural sector 
and GDP. Crop production and livestock emis-sions were combined to obtain agricultural farmgate 
emissions data. All data has been converted to CO2 equivalent. Non-agricultural emissions have been 
calculated by sub-tracting farmgate emissions from the total emission quantity. GDP data has been in-
cluded in the analysis, taking into account the constant USD values declared by the World Bank. 

When examining the historical evolution of GDP and the agricultur-al-non-agricultural 
emissions under investigation, it will become apparent whether the series is driven by its own past values 
and/or random shocks. While GDP exhibits be-havioral characteristics, emission production 
demonstrates distinct features. Tradition-ally, when working with cross-sectional data in econometrics, 
reaching a common solu-tion through simultaneous equation models is possible. However, the necessity 
of find-ing a common variable for solving equation systems does not always make it feasible to conduct 
many analyses. In VAR models, this is not an issue, as it enables multivariate analyses within the 
framework of time series econometrics. 
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The series must be stationary so that econometrically significant relationships between variables 
in time series analyses could be obtained. The most significant as-sumption in a regression analysis 
including time series data is that the time series handled is stationary. Regarding general terms, if its 
mean value and variance are constant in time and the covariance value between two periods depends not 
on the main period when this covariance is calculated but on the distance between the two periods, this 
time series is stationary (Sevuktekin and Cinar, 2017). A time series with these characteristics is known 
as weak sta-tionary. If not the first two moments of a time series (that is, mean and variance) do not 
show a change in time, but all moments do; the series is definitely stationary. The difference is taken if 
the variables are non-stationary, and the series are rendered stationary. As the co-transformation data 
between data disappears through taking the difference, inferences are made through action-reaction 
functions and causality analyses rather than evaluations in the classical regression analysis. Although 
various methods have been developed to understand the stationarity of series, the Augmented Dickey-
Fuller (ADF) and the Phillips-Perron tests stand out with their superior aspects (Joseph, 2022). 

     The most basic autoregressive model, which shows that the difference be-tween both sides 
of the Dickey-Fuller equations, the model to which the cut off effect and deterministic trend effect are 
added, and the expanded model obtained through the in-clusion of lagged values of the dependent 
variable in the model are presented in equa-tions 1, 2, and 3 below. 
 

   (1) 

  

  (2) 

  

  (3) 

 

 
 

In the equation,  shows the time series whose stationarity is tested , refers to the 
coefficients that determine whether there is a systematic trend in the time series, and  expresses the 
random error term. In other words,   is a series with a zero mean and variance of random variables 
with independent and normal distribution. The hypotheses to be established in the investigation of the 
stationarity of Yt  are as follows: 

 

 
 

 If  is , Yt time series approximates a stationary time series when t is . If it is 
, the time series is not stationary. Another method for understanding if a time series is stationary or not 

is the Phillips-Perron test. Along with the development of times series theory, new models and tests 
have been/are being developed to repair the faulty aspects of each model. In the Dickey-Fuller test, it is 
assumed that the distribution of random errors (shocks) is statistically independent and has a constant 
variance. In other words, it is assumed that there is no autocorrelation between shocks. Phillips-Perron 
(PP) developed a new non-parametric test for unit roots. As in the ADF test, the PP test can be developed 
for three different regression models. However, the simplest model is to be presented here:  

 (4) 
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 (5) 

 
The main problem in the use of the ADF test is the selection of the lag length. The power and 

dimension properties of the ADF test are rather sensitive to the number of lags included in the model. 
Here, the aim is to include error terms in the model that would be sufficient to eliminate autocorrelation. 
The methods used in determining the appropriate lag number in autoregressive processes are methods 
such as the Akaike Information Criterion (AIC), the Schwart Information Criterion (SIC), and Hannah 
Quin (HQ). AIC and SIC criteria are the methods used the most in practice. In order to determine the 
appropriate lag number, the AIC and SIC information criteria should have the smallest values. In this 
study, these criteria were considered. The VAR model was developed by (Sims, 1980), and the model is 
based on the Granger causality test. If there are two internal variables in the model, each variable is 
associated with the lag values until a certain period of both itself and the other internal variables. As 
stated by Thomas 1997, the general form of VAR (p) model with k variable and p  lag   is as follows:  

 
 
 
 

(6) 

 
In equation 6,  and  are error terms. The lagged values of X1t affect X2t 

values of X2t affect X1t . In this model, there are only lagged values on the right side of the equations, 
and parameter estimations can be made with the least squares method. 

The VAR model is particularly suitable for this study because it allows us to capture the dynamic 
and mutual interactions between GDP and agricultural/non-agricultural emissions without imposing 
strict theoretical restrictions on the system. Unlike single-equation models, VAR treats all variables as 
endogenous, which is essential when investigating potential feedback effects between economic growth 
and environmental pressures. Additionally, the ADF and PP unit root tests are appropriate tools for 
ensuring the stationarity of the series, a prerequisite for valid econometric inference in time series 
analysis. These tests complement each other by addressing different statistical properties of error terms, 
thus increasing the robustness of the results. The use of lag selection criteria such as AIC and SIC further 
enhances model suitability, as they ensure the optimal lag length is chosen to avoid problems of 
autocorrelation and omitted dynamics. Taken together, these features make the VAR framework an 
appropriate and reliable approach for analyzing the historical co-movements and causal relationships 
between GDP and emission indicators in this study. 

 
Results  
The agricultural emission (agemis), gross domestic products (gdp), and non-agricultural 

emissions (nonagemis) are accepted as endogenous variables in the VAR analysis. EViews software 
was employed for the analysis. Previously, stationary analysis was made to understand if the series are 
stationary. First, ADF and PP tests were applied to the series at the level and then to the first differences, 
as described above. The results of the tests for stationary and trended models are provided in Table 1. 

    The series having a unit root shows that it is not stationary. Whether the varia-bles of lwhprice, 
lwhprdamnt, lbaprice, ldapprice and ldieselprice had a unit root at the logarithmic level, that is whether 
they had a stationary structure and whether they showed a distribution around a certain mean value were 
tested through the ADF and PP tests. As a result of the tests applied, it was seen that none of the variables 
was stationary at their logarithmic levels and that they were stationary at the first differ-ence of 

5%, and 10%). 
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Table 1. ADF and PP Unit Root Results

  
  In determining the lag length, both the Akaike Information Criterion (AIC) and the Schwarz 
Criterion (SC) were considered. Incorrect determination of the appropriate lag length can lead to 
inconsistent results in impact-response analyses and variance decomposition stages using these two 
analyses. If the lag length is larger than necessary, it can increase the mean squared errors of the 
predictions. Additionally, there is a possibility of higher variance in parameter estimates. If the lag length 
is calculated to be smaller than necessary, it may result in autocorrelated error terms. Based on the 
criteria mentioned, a lag length of 4 has been accepted for this study. At lower lag lengths, problems 
such as heteroskedasticity and serial correlation were encountered in the residuals of the model. 

The VAR(4) model created for the variables in the model was examined for stationarity by 
checking whether the roots of the AR characteristic polynomial lie within the unit circle. Since the roots 
are inside the unit circle (as shown in Figure 1), it can be said that the generated VAR model exhibits a 
stationary structure. All moduli calculated by the Eviews software are smaller than the absolute value 
of one. However, in this study, the unit circle plot of the characteristic roots has been provided. 
Regarding the investigation of whether the VAR (2) model created for the variables included in the 
model was stationary, as the distribution of the reverse roots of the AR characteristic polynomial was 
inside the unit circle, it can be stated that the VAR model established had a stationary structure (Figure 
1). All modulus calculated by EViews software were smaller than the unit value in terms of absolute 
value. However, in this study, the unit circle view of the characteristic roots is presented. 

 
                Figure 1. The stability graphic of VAR(4) Model 
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The estimation results for the VAR(4) model created according to the deter-mined lag length 
are presented in Table 2. The coefficients for Equation 3 are shown in Ta-ble 3.   In the model explaining 
agricultural emissions (agemis), the coefficient of one-period lagged agricultural emissions (agemis(t-
1)) exhibits a statistically significant negative effect at a significance level of 0.1.  

In the same model, the coefficient of the one-period lagged non-agricultural emissions variable 
(nonagemis(t-1)) exhibits a statisti-cally significant positive effect at a significance level of 0.1, and the 
coefficient of the two-period lagged GDP variable (gdp(t-2)) shows a statistically significant positive 
effect at a significance level of 0.05. In the model explaining non-agricultural emissions (no-nagemis), 
the one-period lagged agricultural emissions variable (agemis(t-1)) shows a sta-tistically significant 
negative effect at a significance level of 0.1, the four-period lagged ag-ricultural emissions variable 
(agemis(t-4)) exhibits a statistically significant negative effect at a significance level of 0.1, the one-
period lagged non-agricultural emissions variable (nonagemis(t-1)) shows a statistically significant 
positive effect at a significance level of 0.1, and the two-period lagged GDP variable (gdp(t-2)) 
demonstrates a statistically significant positive effect at a significance level of 0.1.  

In the model explaining the GDP variable, only the coefficient of its own variable at the second 
lag (gdp(t-2)) is statistically significant and positively significant at a significance level of 0.1. In this 
study, the first model, which al-lows us to understand whether the hypothesized relationships occur or 
not, yielded an R-squared value of 0.517.  

The model explaining non-agricultural emissions achieved an R-squared value of 0.988, and the 
model with GDP as the dependent variable resulted in an R-squared value of 0.403. From this 
perspective, we understand that the relationship between non-agricultural emissions and GDP is higher 
compared to other relationships examined in the study. 
 
Table 2. VAR (4) Model Results 
  agemis nonagemis gdp 
agemis(t-1) -10.354* -10.982* -31.269 
agemis(t-2) 0.002 -0.231 2.284 
agemis(t-3) 5.599 6.290 -6.068 
agemis(t-4) -0.513 -0.558* -1.951 
nonagemis(t-1) 9.107* 10.656* 28.012 
nonagemis(t-2) -9.727 -10.118 -32.095 
nonagemis(t-3) -5.027 -5.864 8.182 
nonagemis(t-4) 5.682 6.356 -3.979 
gdp(t-1) 0.072 0.070 0.030 
gdp(t-2) 0.156** 0.166** 0.511* 
gdp(t-3) 0.104 0.116 0.348 
gdp(t-4) 0.067 0.077 0.091 
constant -0.260 -0.212 -0.925 
R 0.517 0.988 0.403 
F 1.252   
AIC -5.162   
SC -4.538   

*Significancy level at p<0.01  

**Significancy level at p<0.05  

***Significancy level at p<0.01  

 
In the research, Granger causality analysis was conducted to understand the cause-effect 

relationship between variables. If all variables used in the model are of the same order, Granger causality 
test can be applied by Gujarati(Gujarati, 2004).  

Since all variables in the VAR(4) model explaining the relationship between GDP and 
agriculture are of the first order, Granger causality test could be applied. As can be seen from Table 3, 
the non-agricultural emissions variable is not the cause of GDP and non-agricultural emissions 
(p=0.108 > 0.05 and p=0.338 > 0.05). In other words, since the non-agricultural emissions variable is 
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not the Granger cause of the GDP variable, changes in non-agricultural emissions will not precede 
changes in GDP.  

Therefore, when the regression of the non-agricultural emissions variable with other variables 
includes its past or lagged values, the prediction does not significantly improve. Similarly, non-
agricultural emissions and agricultural emissions are not seen as the Granger cause of GDP: (p=0.469 > 
0.10 and p=0.580 > 0.05). Non-agricultural emissions also do not exhibit Granger causality with GDP 
and agricultural employment: (p=0.134 > 0.10 and p=0.116 > 0.05). 

Although the results of the current study are not consistent with Jiang and Yu (2023) regarding 
the Granger causality between GDP and non-agricultural GHG emissions, it is important to consider 

-industrial emissions. This result 
is considered a concern for countries experiencing two-way causality, as indicated by several research 
papers (Chaabouni and Saidi, 2015). 
 
Table 3. VAR / Granger Causality Results 

Dependent Variable: agemis 
 
gdp 
nonagemis 
 

x2 value 
 

7.586 
4.533 

 

df 
 

4 
4 
 

p-value 
 

0.108 
0.338 

 
Dependent Variable: gdp 
 
agemis 
nonagemis 
 

x2 value 
 

3.556 
2.866 

 

df 
 

4 
4 
 

p-value 
 

0.469 
0.580 

 
Dependent Variable: nonagemis 
 
agemis 
gdp 
 

x2 value 
 

7.033 
7.385 

 

df 
 

4 
4 
 

p-value 
 

0.134 
0.116 

 
VAR analysis provides explanatory information regarding the relationships between variables. 

Variance decomposition analysis is indeed a part of VAR analysis, and it shows the proportion of 
movements caused by a variable's own shocks compared to the changes resulting from shocks of other 
variables. As shown in Table 4, agricultural emissions are determined by their own shocks in the short 
term. In the first period, 100% of the variation in agricultural emissions' standard deviation is attributed 
to its own shocks. By the end of the 10 periods, 69.4% of the agricultural emissions variation is 
accounted for by itself, with the remaining 21.6% explained by GDP and non-agricultural emissions.  
The degree to which GDP and non-agricultural emissions are explained by their own shocks in the short 
term is higher than agricultural emissions. In the first period, 100% of the variation in GDP's standard 
deviation is attributed to its own shocks. By the end of 10 periods, GDP accounts for 70% of the variation 
in its standard deviation. Similarly, by the end of 10 periods, 36.3% of non-agricultural emissions and 
69.4% of agricultural emissions are attributed to their own variations. 
 
Table 4. Variance Decomposition for the Variables 
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After obtaining the VAR model, impulse-response functions were examined. Impulse response 
functions reflect the effect of a one-standard deviation shock in one of the error terms on the current and 
future values of endogenous variables. In VAR analysis, impulse-response functions play a significant 
role in determining the dynamic interactions between the variables, identifying symmetric relationships 

. The most influential variable on a macroeconomic indicator can be determined through 
variance decomposition, and whether this variable can be used as a policy tool is also determined by im-
pulse-  Hayat, 2016). In Figure 2, graphical representations of the im-
pulse-response functions are provided. Here, all possible relationships are depicted. In panel (a) of 
Figure 2, when a one-unit random shock is applied to the error term of agricultural emission quantity, it 
illustrates how this shock affects its own variable. In other words, panel (a) of Figure 2 depicts how the 
emission quantity of agricultural emissions is affected in subsequent periods when a random shock is 
applied to it. According to the results, a shock in the emission quantity of agricultural emissions 
positively affects itself, with this effect lasting for approximately 1.5 periods; thereafter, it exhibits a 
negative effect. It is understood that this effect disappears after 5 periods. Impulse-response analysis and 
causality analysis should be distinguished from each other. Although im-pulse-response functions 
provide some clues about causality, the interpretations primar-ily focus on random shocks. In panel (b) 
of Figure 2, the effect of a one-period shock given to the GDP variable on agricultural emissions is 
illustrated. A one-standard deviation shock given to GDP positively affects agricultural emissions for 5 
periods, and this effect dissipates after the 6th period. From the results, it can be said that in the case of 
signifi-cant increases in GDP, there is potential for affecting agricultural emissions. As seen in the other 
panels of Figure 3, shocks in non-agricultural emissions have a positive effect on agricultural emissions 
for 2 periods; the effect of non-agricultural emissions on GDP is positive for 1 period, then it becomes 
negative, and these effects dissipate after 5 periods. Similarly, non-agricultural emissions positively 
affect GDP for 2 periods, then negatively affect it, and the effects disappear in subsequent periods. 
Shocks in agricultural emis-sions positively affect non-agricultural emissions. At this point, the impact 
of farmgate emissions on non-agricultural emissions is open to discussion. However, as expected, a one-
unit shock given to GDP creates a positive effect on non-agricultural emissions, and this effect dissipates 
after 8 periods. This finding is consistent with major studies. Jiang and Yu (2023) found that strong 
shock impacts between GDP and Emission in impulse-response analysis. The high-frequency GDP 
growth rate data enables a more precise estimation of the impact of economic growth on carbon 
emissions in different seasons. 

 

 

(a) Response of agemis to agemis                             (b) Response of agemis to gdp 
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(c) Response of agemis to nonagemis                      (d) Response of gdp to agemis 

 
(e) Response of gdp to gdp                                               (f) Response of gdp to nonagemis 

 

(g) Response of nonagemis to agemis                            (h) Response of nonagemis to gdp 

 

 
Figure 2. The effect of one S.D.-impulse to other series on dependent variables 
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In addition to the individual effects of the variables, their common effect on the dependent 
variable can provide insight to researchers. Table 5 indicates the impact of the double effect of the series 
on the wheat prices series depending on Wald Tests. 

When examining Table 5a and Table 5b, the test results of the double effect of agricultural 
emissions of GDP in the first and second lags, and the double effect of GDP on agricultural emissions 
in the first and second lags, can be observed. Since the probability value P=0.350 >0.05, for the joint 
effect of agricultural emissions in the first and second lags, the coefficients of the first and second lags 
together are not the cause of GDP. Additionally, in Table 5b, the test statistics with P=0.073 > 0.05 
indicate that the joint effect of the first and second lags of GDP is not the cause of agricultural emissions.  

 and P=0.093 > 0.05 indicate that the fertilizer and diesel prices do not have a dual effect on 
wheat prices. 

 
Table 5. Impact of the Double Effect of the Series- Wald Tests 

(a) agemis and gdp 
 

    
    

    
 

 
 

 
 

 
 

 
 

 
 

 
 
 

     
 
When the answers to the hypotheses investigated in the study are examined, it is found that the 

first hypothesis is rejected because there is no relationship between farmgate emissions and GDP in 
-farmgate emissions indi-

mitigation-related policies.  A study conducted in the UK highlights the importance of the EU Green 
Deal, as it was estimated that per capita GHG emissions from food fell by 32% between 1986 and 2017. 
It was emphasized that 21% of this 32% reduction is related to improvements in agricultural practices 
(Stewart et al., 2023a). 

 Farmgate GHG contributions are closely related to the structures and charac-teristic features of 
businesses. Until today, it has been commonly said that the Turkish agricultural sector has been 
inefficient and sluggish. The high number of parcels per farm, the low amount of land per farm, the law 
of diminishing returns, the scale econo-my in the rural population, and the consequent decrease in the 
proportional importance of agriculture in GDP are indicators that agriculture is not sustainable. 
However, with the adoption of green economy and nature-friendly production systems, these statistics 
can be turned into advantages. In other words, as a result of the aforementioned struc-tural weaknesses, 
low agricultural chemical usage and low livestock quantity per farm have led to an agriculture sector 
that contributes less to the increase in greenhouse gases causing climate change. Although there may 
not be a probability of a reaction like that of farmers in European Union member countries against 
various restrictions imposed by the Union, there are many policies that policymakers managing 

 the EU's most important trading partner, regulations 
similar to the EU's need to be implemented gradually.   

  Our results, which are consistent with the work of Sarpong (2023), predicting the taxa-tion of 
non-agricultural emissions, predict that farm emissions are not currently effective. However it is 
inconsistent with the work of Coderoni and Esposti (2018a), that investigates how the farm-level 
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production choices, and the respective emissions, vary over time also in response to CAP expenditure. 
Results suggest that CAP expenditure had a role in the evolution of the farm-level emissions.   

Many studies have been conducted on the potential responses of agriculture in technical terms 
for mitigation (Johnson et al., 2017). In addition to research on how countries can im-prove organic 
farming techniques or address agricultural diseases, research support and investments should also be 
provided for agricultural mitigation (Jarecki and Lal, 2003). However, the suc-cess of programs to be 
implemented for mitigation is much more challenging in rural communities deeply rooted in their 
traditions. Studies indicate that the use of different agricultural techniques could reduce emissions from 
agriculture by up to 30%. Some ag-ricultural techniques and management shifts such as reducing tillage, 
eliminating fal-low and keeping the soil covered with residue, cover crops or perennial vegetation, 
avoiding over application and using split N application rates to meet plant need, ma-nipulating animal 
diet and manure management practices to reduce CH4 and N2O emission. Lal  (2007) pointed out that 
simply reducing tillage could lead to a 15% decrease in emissions from agriculture. Finding producers 
in underdeveloped regions who are willing to abandon the cultivation and tillage techniques they have 
been using for centu-ries and transition to environmentally friendly production techniques, while also 
ad-dressing productivity issues, may be challenging. Environmental-friendly agricultural techniques to 
be implemented should consider trade-offs based on geographical and climatic conditions, and they 
should be introduced to country farmers and accompanied by rational policies accordingly.     

 A situation analysis prioritizing the determination of the extent to which farms at each scale 
-tion is that carbon emissions decrease 

as the scale of the operation increases. However, it should not be overlooked that small-scale operations 
may contribute to increasing GHG emissions due to reasons such as inefficient waste disposal, inability 
to utilize biogas, and inefficient production methodologies (Prosperi et al., 2020). Some farms in Spain 
and Italy, despite being smaller in scale, have been found to be more successful in developing practical 
solutions closely aligned with the directives of the EU's Green Deal (Ravani et al., 2024). After 

-
velop a series of supply and demand-oriented strategies under mitigation policies, and to determine 
policies in the short term for agricultural production and in the medium to long term for food 
consumption and processing habits. The supply-side measures aim to reduce the emission intensity of 
agricultural production through environment-friendly practices as mentioned above. The demand-side 
measures aim to reduce emissions through waste reduction and dietary change (Garvet et al. 2022).  

 The second hypothesis of the study has also been rejected as no relationship was found between 
non-
adaptation to climate change should be started from metropol-itan cities (Boyd et al., 2022). At this 
point, urban settlements should be started for the adaptation and mitigation of non-agricultural 
emissions. Indeed, we may easily state that Istanbul, which is metropolitan city, and Izmit, industrial 

- gation policies. If the current study had 
been conducted as a re-gional study, it could have revealed different results for the Marmara Region. 

Our findings diverge from several EU-based studies, particularly regarding the absence of a 
significant causal link between GDP and farm-
the EU (e.g., Coderoni and Esposti, 2018b) shows that Common Agricultural Policy (CAP) expenditures 

trajectories. This difference 
can be attributed to structural and institutional contexts: while EU agriculture is more consolidated and 

inputs result in weaker linkages between growth and agricultural emissions. Similarly, while UK studies 
highlight that 21% of emission reductions were achieved through farm-level improvements under the 
EU Green Deal (Stewart et al., 2023b), such supply-side improvements are le
where demand-side measures such as dietary change and food processing policies may play a more 

numbers create a baseline of lower emissions compared to some EU counterparts, partially explaining 
why Turkish farmers have not responded with the same level of protest as seen in EU countries. By 

igation in 
-driven changes and urban policies, 

before advancing toward structural transformations at the farm level. 
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Conclusions
In this study investigating the relationship between agricultural and non-agricultural greenhouse 

gas emissions and economic growth, i.e., GDP, the situa
has been examined. Despite all the de-bates, the EU has begun transitioning to a mitigation policy with 
the EU Green Deal to prevent climate change, experiencing stages of increasing agricultural production, 
en-hancing competitiveness in international agricultural trade, and sustainability along the way. While 
the sole common denominator among farmer protests observed in various countries across Europe may 
not be the transition to sustainable agricultural strategies, EU leaders are nonetheless curious about the 
response agriculture will provide in pre-venting climate change. Strategies that are likely to also 
influence th
hasn't been able to benefit from EU funds and whose economy hasn't grown as much as the EU-15, 

 through the stage of 
competitiveness in international agricultural trade. Although neither agricultur-al nor non-agricultural 
emissions were identified as drivers of GDP in the analysis re-sults, as a country that has not taken 
concrete steps regarding ag -political 
pressures in the near future. Strate-gies should be devised for agricultural production, agricultural 
processing, and con-sumption stages. Understanding the impact of supply and demand-side changes on 
ag-ricultural emissions in the medium and long term provides crucial insights for devising emissions 
reduction policies. Those political strategies are essential for identifying policy levers for further 
emissions mitigation. 

     
for centuries for mitigation purposes may require time. The current findings of the paper do not dictate 
this. However, in a growing economy, transitioning to regional studies and demand-side mitigation 
policies for non-agricultural emissions can be implemented more readily. The process that began with 
supply-side mitigation efforts in countries like the EU, where farmers were structurally more prepared, 
could start with demand-
processing industry, etc.). The wave of change observed in consumers and agricultural raw material 
processors could lead towards farmgate miti-gation efforts. 

Since the human and ecosystem-centered structure of agricultural policies causes it to have a 
complex, multifaceted, and sometimes unpredictable character, it is possible to predict that the 
adaptation speed of the sector will vary significantly across regions and subheadings. Agricultural 
policies, which are at the core of the changing policies of the EU, are also among the sectors in need of 
transformation the most due to their central position in the human-nature relationship. However, the 
complex and multi-layered structure of the sector causes a slow pace of change. In this respect, 

process of transition to smart, digital and environmentally friendly production and consumption models 
that will facilitate mitigation strategies against climate change. Although the initial costs of the basic 
elements that will accelerate and, more importantly, make permanent the transformations in agricultural 
policies are high, their long-term benefits will be high. 

 In the setup of VAR models, it is not important which variable is exogenous or which variable 
is endogenous. It can be argued that VAR models are more advanta-geous than classical simultaneous 
equations regression models. Each equation can be forecasted separately, and the lag order of each 
model can also differ. However, VAR models, which offer many analyses, cannot be used in research 
where forecasting is im-portant. At this point, after analyzing the presence of relationships between 
variables and conducting analyses such as variance decomposition, forecasting can be performed with 
other econometric models. Researchers willing to contribute to this study can work with regional data. 
This way, it may be possible to propose different strategies for ad-vanced industrial regions and 
advanced agricultural basins.      

 
and structured approach to climate mitigation in agriculture and non-agricultural sectors:  

Short-term (1 3 years): Prioritize demand-side mitigation measures such as dietary change 
campaigns, food waste reduction, and efficiency improvements in the processing industry. 

Launch pilot programs in metropolitan and industrial regions (e.g., Istanbul, Izmit) to test 
adaptation and mitigation strategies for non-agricultural emissions. 
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Improve monitoring and data collection systems on farm-level emissions to establish a reliable 
baseline for policymaking. 

Medium-term (3 7 years): Gradually introduce supply-side policies, including incentives for 
reduced tillage, crop rotation, manure management, and organic farming practices. 

Provide targeted subsidies and credit schemes for farmers investing in low-emission 
technologies and smart farming methods. 

Strengthen institutional capacity for implementing EU-compatible regulations, especially in 
trade-sensitive agricultural subsectors. 

Long- h the EU 
Green Deal by adopting integrated strategies across production, processing, and consumption stages. 

Support the structural transformation of farms (e.g., consolidation, modernization) to overcome 
fragmentation and improve efficiency while lowering emissions. 

Foster a culture of innovation and knowledge transfer, ensuring that environmentally friendly 
practices become permanent features of the rural economy. 

This phased roadmap acknowledges the structural constraints of Turkish agriculture while 
ensuring that mitigation strategies are both feasible and politically sustainable. It emphasizes a balanced 
progression from demand-side to supply-side interventions, mirroring EU experiences but adapted to 

-economic and institutional realities. 
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