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Abstract

In the retail industry, correctly managing inventory levels not only reduces logistics costs but
also directly contributes to increased customer satisfaction. Therefore, the accuracy of demand
forecasting models plays a critical role in businesses' decision support systems. This study
compared classical models for forecasting product demand in retail stores using time series
analysis methods. The experiments were implemented using the Retail Store Inventory
Forecasting Dataset. It is a realistically structured synthetic dataset. It includes 73,000 daily sales
instances. The Holt-Winters Exponential Smoothing Model, Seasonal Autoregressive Integrated
Moving Average (SARIMA), and Prophet are three different time series models applied in this
research study. The models were applied to estimate daily product sales. Validation metrics to
evaluate the tested models are Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE). The Holt-Winters method produced the lowest
error rates and obtained the best results according to prediction accuracy in comparison with all
the tested methods. Experimental results show that conventional time series algorithms remain
powerful and effective tools, particularly in retail sales data where structural patterns like
seasonality and trends are evident. This study offers businesses the opportunity to mitigate issues
such as overstocking and understocking, while also offering a practical framework for how time
series-based approaches can be structured in decision support systems.
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Zaman Serisi Tabanh Talep Tahmini:
Holt-Winters, SARIMA ve Prophet Modellerinin Perakende Envanter

Verisi Uzerindeki Karsilastirmasi

Ozet

Perakende sektoriinde stok seviyelerinin dogru bir sekilde yonetilmesi, miisteri memnuniyetinin
artirilmasi ve lojistik maliyetlerin azaltilmasi agisindan biiyiik 6nem tagimaktadir. Bu dogrultuda,
talep tahmini modellerinin dogrulugu, isletmelerin karar destek sistemlerinde kritik bir rol
oynamaktadir. Bu c¢alismada, perakende magazalarinda {iriin talebini zaman serisi analiz
yontemleriyle tahmin etmek amaciyla klasik modellere dayali bir karsilastirma yapilmustir.
Analizlerde, 73.000’den fazla giinliik satig kayd: iceren Retail Store Inventory Forecasting
Dataset adli sentetik ancak gercekei bir veri seti kullanilmigtir. Caligma kapsaminda ii¢ farkli
zaman serisi modeline odaklanilmistir: Holt-Winters Ustel Diizeltme Modeli, Mevsimsel
ARIMA (SARIMA) ve Prophet. Bu modeller, giinliik iiriin satiglarini tahmin etmek iizere
uygulanmis ve performanslar1 Ortalama Mutlak Hata (MAE), K6k Ortalama Kare Hata (RMSE)
ve Ortalama Mutlak Yiizde Hata (MAPE) metrikleri ile test verisi {izerinde degerlendirilmistir.
Model ¢iktilan karsilagtirildiginda, Holt-Winters modeli, en diisiik hata oranlarin1 vererek en
basarili tahmin performansii gostermistir. Elde edilen bulgular, 6zellikle mevsimsellik ve trend
gibi yapisal bilesenlerin 6ne ¢iktig1 perakende satis verilerinde, klasik zaman serisi modellerinin
hala gii¢lii ve etkili araglar oldugunu ortaya koymaktadir. Bu ¢alisma, isletmelere daha dogru
talep tahminleri ile stok fazlasi ve stok yetersizligi gibi sorunlar1 azaltma firsati sunmakta ve
zaman serisi tabanli yaklasimlarin karar destek sistemlerinde nasil kullanilabilecegine dair
degerli bir ¢gergeve dnermektedir.

Anahtar Kelimeler: Zaman serisi analizi, stok yonetimi, talep tahmini.

JEL Kodu: C22, C53, M11, L81
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Introduction

In today's highly competitive, dynamic, data-driven global marketplace, inventory
management has become an operational process as well as a strategic asset that can
break or make a business's long-term sustainability and profitability (Wu et al., 2025).
Inventory decisions, particularly in retail, manufacturing, and distribution, directly
affect a host of outcomes, such as the management of costs and resource utilization, as
well as customer service quality and revenue growth. As the pressure continues to build
for companies to deliver their products to their customers faster and better, the
management of inventory levels with accuracy now characterizes operational

excellence.

Global retail giants such as Amazon and Walmart have effectively demonstrated the
impact of predictive inventory management software on operational efficiency. By the
use of advanced algorithms for forecasting, inherent in their platforms, these retailers
improve not just customer satisfaction, but supply chain costs are reduced as well.
Amazon's real-time logistics optimization and real-time dynamic shifting capabilities
of the supply of inventories, specifically, greatly indicate the strategic nature of real-
time forecasting. Such examples indicate the importance of precision in forecasting not

only for optimization but also for building a competitive advantage.

Effective inventory management depends principally on the accuracy of future demand
forecasting. Demand forecasting is a data-driven, forward-thinking process. Through
the process, organizations can predict customer demands, standardize supply cycles,
lower delivery times, and synchronize supply with predictable use levels (Zhou et al.,
2025). Stock outages and warehouse costs through excessive, unnecessary saturation
of inventories may be mitigated through the capability of forecasting. Demand
forecasting, hence, constitutes the foundation of lean practices of inventory

management, facilitating improved supply chain flexibility and cash flow.

The pandemic of COVID-19 has caused severe supply chain disruptions and
highlighted the strategic importance of forecasting and inventory planning. The retail
sector has been pushed through the sudden surge of demand, namely, for food, hygiene
supplies, and health supplies, and traditional planning systems have often been proven

ineffective. Those unpredictable shifts produced by the pandemic have reminded us of
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the importance of inventory planning that depends not only on history, but also on
exogenous information as well. That has reminded us of the importance of flexibility

and adaptation of forecasting systems.

Increasing supply chain sophistication, increasing diversity of product offerings,
uncertainty about consumer behavior, and the rising number of external uncertainties,
such as market, seasonal, and promotion effects, have all served to escalate the
importance of demand forecasting over the past years. Consequently, the practice of
developing forecasting approaches and integrating new analytical methods into
inventory systems has become a trend both in the academic and practitioner industry
domains. Among these methods, techniques based on a time series have become a norm
and a widely used approach to capturing and predicting variable patterns of demand

(Coppola et al., 2025).

While standard supply chain configurations are often prone to sudden changes in the
marketplace's appetite for commodities or external disturbances, during the last several
years, systems utilising Al for planning have begun to offer staggering advantages by
anticipating better and responding to uncertainties. Al models are not limited to history;
they have the ability to incorporate external information such as weather, holidays,
social media trends, and macroeconomic trends while observing data. That helps
capture a better understanding of data. But such models are costly to implement,
requiring much power to process, expert skill, and full-volume, high-quality data.
Moreover, they are still imperfect as regards interpretability. For all these reasons, the
classic time-series models are meaningful as a convenient, low-budget, and consistent
alternative, first of all, for companies of small and medium size. The present work aims
to investigate how the classic approaches are used today in the current environment and

what their advantage compared to Al systems are.

Classic time series methodology, such as seasonal ARIMA (SARIMA), Holt-Winters
exponential smoothing, and the Prophet model by Meta (previously Facebook), is
widely used for demand forecasting because they are a balance of the accuracy of its
predictions, its computationally tractable nature, and its interpretability (Liu et al.,
2025). Such models are very effective at modeling common temporal patterns such as
trends, seasonality, and cyclicity, which makes them highly effective for applications

where the past strongly predicts the future. Furthermore, such methods are very easy to
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code and require little feature engineering. In these ways, they are very good choices
for firms that desire to avoid the technical sophistication that comes with deep-learning-

based systems.

Despite the above, comparative examinations of the performances of these classic
methods in the situation of complex inventory systems, particularly the systems with
multi-dimensional external factors such as promotion campaigns, local variation, and
weather, are uncommon in the literature. For the purpose of filling the gap, the current
study conducts a systematic study on a highly realistic synthetic retail inventory dataset
through the use of the SARIMA, Holt-Winters, and Prophet models (Khan et al., 2025).
The dataset includes a number of features directly related to the inventories' dynamics,
such as the daily number of sales, the stocks, the prices, the promotion events, and the

external factors.

The primary objective of the study here is to demonstrate the validity, robustness, and
practicality of these models to predict product-level retail-store-level demand.
Alongside model precision, the study seeks to indicate how accurate predictions
contribute to such outcomes as improved management of stocks, improved service, as

well as significant logistics and operational cost reductions (Kampp et al., 2025).

Furthermore, as the analysis depends on a reproducible and comprehensive forecasting
system, it must provide insightful data to supply chain specialists and decision-makers
to help them improve their inventory strategies through the use of time-series modeling
(Mikuli¢ & Baumgdrtner, 2025). Additionally, the study contains a comparative study
of the classical forecasting models for realistic retail scenarios, revealing the suitability

and workability of such techniques in today's supply chain analysis.
Related Work

Demand forecasting has long been recognized as a cornerstone of effective inventory
management and, more broadly, supply chain optimization (Nygard et al., 2025).
Essentially, this process allows businesses to align supply-side activities such as
purchasing, production planning, inventory control, and distribution with projected
market demands. Such alignment is critical not only for reducing operational costs and
improving customer satisfaction, but also for maintaining agility in increasingly

competitive and uncertain business environments. As a result, demand forecasting has
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attracted significant academic and applied interest in numerous fields, from logistics to

data science (Lee et al., 2025).

Over time, numerous different forecasting methods have been proposed and
implemented in numerous industrial contexts. Some methods aim to provide
explainability based on statistical foundations, while others prioritize accuracy,
scalability, and the ability to model nonlinear relationships through modern approaches
such as machine learning or deep learning (Matkovic et al., 2025). Among classical
methods, time series models stand out; These models are highly effective in predicting
future values by exploiting temporal patterns such as past trends, seasonality, and

autocorrelation (Zhang et al., 2025).

One of the most established techniques in this field is Autoregressive Integrated
Moving Average (ARIMA) and its seasonal variant, the SARIMA model (Hu et al.,
2025). They have been repeatedly applied and thoroughly tested in many areas,
including retail, energy, transportation, and finance. SARIMA stands out in particular
for its ability to handle both seasonal and non-seasonal dynamics. Studies on SARIMA
models show that this model can reliably capture regular seasonal patterns and is

suitable for many commercial forecasting applications (Guo et al., 2025).

In parallel with the ARIMA family, exponential smoothing methods have also gained a
distinct place in the forecasting field (Barati, 2025). The Holt-Winters model yields
highly successful results in demand scenarios involving trends and seasonality. By
decomposing the time series into level, trend, and seasonal components, it provides a
conceptually understandable and practically applicable framework. Gardner's (2006)
comprehensive review demonstrated that the Holt-Winters model can often outperform

complex methods, particularly in short-term retail forecasting.

In recent years, interest in classical forecasting models has resurged with the
introduction of the Prophet model (Subramanian et al., 2025). Prophet uses an additive
modeling framework that can automatically handle trend changes, multiple seasonal
patterns, and holiday effects. Designed with practitioners in mind, Prophet requires
minimal parameter tuning and handles missing data quite well—making it well-suited

for many field applications (Radfar et al., 2025). Various studies have tested Prophet's
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performance in areas such as energy, web traffic, and sales forecasting, with positive

results, particularly in terms of ease of use and flexibility (Ning et al., 2025).

On the other hand, Prophet's flexibility and accessibility are notable, as are its
limitations. Compared to more statistically based models such as SARIMA and Holt-
Winters, Prophet's performance has been found to be inadequate in some scenarios.
Prophet's ability to automatically incorporate multiple seasonality and holiday effects
into the model is undoubtedly a significant advantage (Taylor & Letham, 2018).
Furthermore, its ability to handle missing data or outlier observations makes a

significant difference in real-world retail environments.

However, Prophet's additive decomposition structure may not provide sufficient
flexibility, especially in time series with complex autoregressive behavior or
multiplicative seasonality. Indeed, Nygéard et al. (2025), comparing Prophet with
SARIMA and exponential smoothing methods, found that Prophet provided lower
accuracy than other models, particularly for short-term and fluctuating demand.
Similarly, Barati (2025) emphasized that despite Prophet's ease of use, the model is
highly sensitive to parameter settings and trend breakpoints. Such findings highlight
the need to consider not only ease of use but also the predictive power of models under

different demand conditions.

Despite the growing popularity of machine learning and deep learning approaches (e.g.,
Random Forest, Support Vector Machine, Gradient Boosting, Long-Short-Term-
Memory), classical time series models remain strong contenders. Evaluations
conducted within M-competitions, particularly M3 and M4, have demonstrated that
traditional statistical models can perform on par with, or even better than, machine
learning models—especially in scenarios where data availability is limited, there is
strong seasonality, or explainability and computational efficiency are paramount

(Sevam et al., 2025).

Given that many contemporary studies focus on a single modeling approach or use
proprietary datasets with limited reproducibility, this study contributes to the literature
by comparatively and transparently evaluating three key classical models: SARIMA,
Holt-Winters, and Prophet. These models, implemented on a comprehensive, open-

source synthetic retail dataset reflecting real-world sales dynamics (e.g., price changes,
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promotions, weather), are thoroughly examined using standard error metrics (MAE,

RMSE, MAPE), visual analysis, and practical applications.

This comparative analysis aims to reiterate the current relevance of classical models in
decision support processes within the demand forecasting literature. Our findings
provide guidance for supply chain analysts and retail managers to develop reliable and
applicable forecasting systems that offer balanced solutions between accuracy,

transparency, and scalability.
Dataset and Preprocessing

This study utilizes the Retail Store Inventory Forecasting Dataset, a synthetic yet
realistically structured dataset designed to simulate daily inventory operations across
multiple retail stores. The dataset was obtained from Kaggle and comprises over 73,000
rows of daily data, representing sales and inventory-related metrics across various
products, stores, and regions. Despite its synthetic nature, the dataset closely mimics
real-world retail dynamics, making it suitable for research in demand forecasting,

inventory optimization, and dynamic pricing.

Although the dataset used in this study is well-structured, it is synthetic in nature. This
provides advantages such as controlled conditions, consistency, and balanced
representation of classes, which facilitate fair model comparisons. However, synthetic
data may also introduce potential biases compared to real-world datasets, where noise,
irregularities, and unforeseen variability are common. As a result, the forecasting
models trained on synthetic data may perform differently when applied to real-world
scenarios. To mitigate this limitation, future work will focus on validating the proposed
models on larger, real-world datasets and exploring hybrid strategies that combine

synthetic and empirical data for improved generalizability.

Each record in the dataset contains a variety of attributes, including the date, store ID,
product ID, category, region, inventory level, units sold, units ordered, price, discount,
weather conditions, holiday/promotion indicators, competitor pricing, and seasonality.

These features and their descriptions are given in Table 1.
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Table 1. Dataset Description

Key Features Description

Date Daily records from [start_date] to [end_date]

Store ID & Product ID Unique identifiers for stores and products

Category Product categories like Electronics, Clothing, Groceries, etc
Region Geographic region of the store

Inventory Level Stock available at the beginning of the day

Units Sold Units sold during the day

Demand Forecast Predicted demand based on past trends

Weather Condition Daily weather impacting sales

Holiday/Promotion Indicators for holidays or promotions

The dataset used in this study was selected for its realistic structure and comprehensive
feature set, which closely mimics the complexity of actual retail inventory systems.
Unlike many simplified academic datasets, this synthetic dataset incorporates various
real-world attributes such as promotions, weather conditions, regional variations, and
categorical product information—making it suitable for benchmarking demand

forecasting models under diverse scenarios.

The dataset contains multiple product categories, including Electronics, Clothing,
Home Goods, and Groceries. A frequency analysis showed that Grocery products
represented the largest share, accounting for approximately 34% of all entries, followed
by Home Goods (26%), Electronics (22%), and Clothing (18%). This distribution
reflects the mixed nature of inventory typically managed in multi-department retail

environments.

All preprocessing and modeling tasks were performed using Python 3.11. Specific

libraries included pandas for data manipulation, statsmodels (v0.14) for SARIMA and
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Holt-Winters implementations, and prophet (v1.2) for trend-based forecasting.
Visualizations were created using matplotlib and seaborn, and all code was executed in

a Jupyter Notebook environment.

To prepare the data for time series modeling, several preprocessing steps were
performed. First, the Date column was converted to a datetime format to ensure proper
temporal indexing. The data was then filtered by specific product and store
combinations to construct univariate time series for demand forecasting. In this study,

we focused on daily sales (Units Sold) as the primary target variable.

To better understand the underlying trends in inventory levels and pricing, we applied
moving average smoothing with multiple window sizes (7, 14, and 30 days). This step
helped to reduce short-term fluctuations and highlight long-term patterns in the time
series prior to modeling. Additionally, linear trend lines were fitted to the inventory
level and average price time series using first-degree polynomial regression. This
analysis allowed us to capture the overall directional movement in the data and assess

long-term tendencies prior to model training.

In this study, the decomposition of inventory data into trend, seasonality, and residual
components was performed only for descriptive and exploratory analysis. The purpose
was to visualize the underlying dynamics of demand and inventory fluctuations.
However, for model training and forecasting, all methods (ARIMA, Prophet, and
LSTM) were applied directly to the original time series data without prior removal of
trend or seasonality. This ensured that each model could capture these temporal patterns

according to its own characteristics.

Therefore, the strong predictive performance obtained in our results is not affected by
any artificial removal of trend or seasonality, but rather reflects the models’ inherent

ability to learn these components.
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Inventory Level with Moving Averages
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Figure 1. Inventory Level with Moving Averages

To improve stationarity and focus the models on seasonality and short-term variations,
a detrending operation was applied by removing the linear trend component from the
inventory level time series. To examine weekly seasonality in the time series, average
values were calculated for each day of the week. This analysis allowed us to identify
recurring weekly patterns in inventory levels and pricing, which could influence
forecasting accuracy. To detect weekly seasonality, the data was grouped by day of the
week and averaged. This allowed us to visualize consistent patterns in inventory levels

and pricing across different weekdays.

A thorough check for missing values revealed no significant gaps in the data, which
allowed for consistent time series construction without the need for imputation.
However, to improve model robustness and reduce noise, the daily sales data was
aggregated into weekly totals using a rolling 7-day window. This aggregation helped

smooth out short-term volatility and highlight broader trends and seasonal patterns.

Before modeling, the Units Sold values were normalized using Min-Max scaling,
transforming the data into a range between 0 and 1. This step was essential, especially
for models such as Holt-Winters and SARIMA, which are sensitive to data scale. For
Prophet, which internally handles trend and seasonality decomposition, the original

values were retained during separate evaluation.

In summary, the dataset provided a rich, multi-dimensional structure with sufficient

temporal depth and variability for reliable time series modeling. The preprocessing
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pipeline ensured data consistency, scale appropriateness, and enhanced interpretability

for comparative analysis across the selected forecasting methods.
Materials and Method

In this study, three well-established time series forecasting models were employed to
predict product demand in a retail context: the Holt-Winters exponential smoothing
model, the Seasonal ARIMA (SARIMA) model, and the Prophet model developed by
Facebook. These models were selected for their interpretability, ease of
implementation, and documented effectiveness in capturing trend and seasonality in
time-dependent retail data. The following subsections describe the methodology and

parameterization of each model in detail.

For the Prophet model, several key parameters were adjusted to improve forecasting
accuracy. The changepoint_prior_scale was set to 0.05 to allow moderate flexibility in
capturing trend shifts, and the seasonality mode was configured as “multiplicative”
based on observed seasonal amplification in the data. Weekly and yearly seasonality
components were enabled, while holidays were excluded due to the synthetic nature of
the dataset. The changepoint range was kept at the default value of 0.8 to ensure
sufficient trend detection in the first 80% of the series. The interval width was set to
0.95 to construct wider confidence intervals, providing better uncertainty

quantification.

Regarding SARIMA model selection, a grid search was conducted across a range of
parameter combinations: p, d, q € [0, 2] and P, D, Q € [0, 2] with a seasonal period (s)
of 7 to reflect weekly cyclicality. Candidate models were evaluated using both the
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), with
preference given to models balancing parsimony and goodness of fit. The selected
SARIMA configuration minimized both AIC and BIC and showed residuals that passed

the Ljung-Box test, indicating no remaining autocorrelation.

Firstly, outlier detection was conducted using the residuals of trend and seasonality
decomposition to identify potential anomalies in the data. Observations exceeding three
standard deviations from the mean were flagged as irregular points and visualized for

further inspection. The outliers for inventory values are revealed in Figure 2.
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Irregularities in Inventory Level
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Figure 2. Irregularities in Inventory Level

The Holt-Winters method, also known as Triple Exponential Smoothing, extends basic
exponential smoothing by incorporating three components of a time series: level, trend,
and seasonality. The additive version of the model was used, as the underlying data

exhibited constant seasonal variations with a linear trend.

In this study, the additive form of the Holt-Winters method was adopted. The choice
was motivated by the observed characteristics of the dataset, where the seasonal
fluctuations remained relatively constant in magnitude across time rather than
increasing proportionally with the level of the series. In contrast, multiplicative models
are more appropriate when seasonal effects grow with the overall scale of the series.
Since our exploratory analysis indicated stable seasonal amplitudes, the additive

specification was found to be more suitable for capturing the underlying patterns.

The model estimates future values based on a weighted average of past observations,
adjusted for the evolving trend and repeating seasonal effects. The smoothing
parameters for level (a), trend (), and seasonality (y) were optimized automatically

using a grid search to minimize forecasting error.

The following equations define the additive Holt-Winters triple exponential smoothing

method, which models level, trend, and seasonality components:
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1. Level Equation:

be=a — Seem) + (1 — @)1 + biy) )

2. Trend Equation:

b, = ,8 (ft - ft—l) + (1 - B)bt—l (2)

3. Seasonal Equation:
Se =Y (e =) + (1 = V)Sem ©)
4. Forecast Equation:
Vern = e+ h- by + Spep-m(k +1) @)
where k = |(h-1)/m]|

This model is particularly suitable for retail time series with clear weekly or monthly

seasonality, as it adjusts dynamically to changes in trend direction or magnitude.

The Holt-Winters method was implemented using additive components for trend and
seasonality, assuming stable seasonal variations. A seasonal period of 7 days was
selected to capture weekly cycles in inventory levels and pricing. The model was fitted
to historical data, and both in-sample fitted values and 14-step-ahead forecasts were
generated. Visual inspection of the results confirmed the model’s ability to track both
trend and periodic fluctuations accurately. Figure 3 displays the actual observed
inventory values (blue), the model’s in-sample fitted values (orange), and the 14-day
out-of-sample forecast (red). The model successfully captures the underlying weekly
seasonality and general trend while smoothing out high-frequency fluctuations in the

original data.
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Holt-Winters Method (Seasonal Period=7)
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Figure 3. Holt-Winters Forecasting of Inventory Levels with Weekly Seasonality (Period = 7)
Seasonal ARIMA (SARIMA)

The Seasonal ARIMA (SARIMA) model is a widely used statistical technique for time
series forecasting, especially when both trend and seasonal structures are present. The
model extends the ARIMA framework by including seasonal autoregressive (P),
seasonal differencing (D), and seasonal moving average (Q) terms, along with a

seasonal period (s), in addition to the non-seasonal parameters (p, d, q).

For the SARIMAX model, parameter tuning was carried out using grid search with the
Akaike Information Criterion (AIC) as the selection criterion. The best performing
specification was obtained as SARIMAX(1,1,2)(0,1,1,12), where (p,d,q) represents the
non-seasonal orders and (P,D,Q,s) denotes the seasonal orders with seasonality of 12.

This model was subsequently used for forecasting in the experimental analysis.

To identify appropriate model parameters, Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plots were analyzed. These plots were used to
determine the lag structure and seasonal cycles of the demand series. Based on the
visual inspection and grid search optimization, the final SARIMA model was selected

to minimize the Akaike Information Criterion (AIC) and ensure stable residuals.

The SARIMA model was implemented using the statsmodels library, and model
diagnostics confirmed the residuals were approximately white noise, validating the

appropriateness of the selected specification.
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SARIMAX Results

Dep. Variable: y  No. Observations: 731
Model: SARIMAX  Log Likelihood -6252.826
Date: Thu, 17 Apr 2025 AIC 12509.651
Time: 06:59:42 BIC 12518.840
Sample: 01-01-2022 HQIC 12513.196
- 01-01-2024
Covariance Type: opg
coef std err z P>|z| [8.025 9.975]
intercept 2.745e+04 46.418 591.401 0.000 2.74e+04 2.75e+04
sigma2 1.575e+06  8.92e+04 17.654 0.000 1.4e+06 1.75e+06
Ljung-Box (L1) (Q): .47  Jarque-Bera (JB): 2.66
Prob(Q): ©.49 Prob(JB): 0.26
Heteroskedasticity (H): 1.6  Skew: -9.01
Prob(H) (two-sided): 0.63 Kurtosis: 2.71

Figure 4. Summary of SARIMAX Model Fit and Residual Diagnostics

Figure 4 demonstrates that the SARIMAX model was trained using 731 daily
observations, and the summary statistics indicate a good model fit. The intercept term
is statistically significant (p<0.001), and the residual variance (¢?) is estimated at
approximately 1.575 million. Model selection criteria such as AIC (12,590.651), BIC
(12,518.840), and HQIC (12,513.196) are consistent with a reasonably parsimonious

model.

Diagnostic tests show that the residuals exhibit no significant autocorrelation, as
indicated by the Ljung-Box test (p=0.49). The residuals also pass tests for normality
(Jarque-Bera p=0.26) and homoskedasticity (ARCH test p=0.63), suggesting that the
model errors are well-behaved. These diagnostics confirm the statistical validity of the

SARIMA model for short-term demand forecasting in this retail context.
Prophet

Prophet is an open-source forecasting tool that uses an additive regression model to
capture trend, seasonality, and holiday effects. It is particularly well-suited for business
time series data that exhibit strong seasonal patterns and irregular holidays or

promotion events. The model decomposes the time series as:

y(@) = g(®) +s(0) + h(t) +£(t) ©)

Where:
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g(t): piecewise linear or logistic trend

s(t): seasonality modeled using Fourier series

h(t): holiday or event effects (not applied in this study)
&(t) : error term

For this study, the Prophet model was configured to automatically detect weekly and
yearly seasonality. Holiday effects were not included, as the dataset did not specify
real-world calendar events. The model automatically handled missing dates, outliers,

and changepoints, which simplified implementation.

Prophet’s flexibility and ease of use make it an attractive option for retail demand

forecasting, especially in settings with business users or non-statistical stakeholders.

For the Prophet model, parameter selection was guided by the characteristics of the
dataset. A linear growth trend was adopted, as the series did not exhibit saturation
effects that would justify a logistic specification. Seasonality was modeled as additive
with yearly periodicity, reflecting the agricultural cycle of demand. The changepoint
prior scale was tuned to balance flexibility in capturing structural breaks with the risk
of overfitting, and default values were retained for other hyperparameters given their
suitability to the data. This parameterization ensured that Prophet was aligned with the

temporal dynamics observed in the series.
Experimental Results

To evaluate the forecasting performance of the implemented models, the dataset was
divided into training and test sets. The final 14 days of the time series were reserved as
the test set, while the remaining historical data were used for model training. This
approach simulates a real-world scenario where past observations are used to forecast

short-term future demand.

The models were assessed using three standard error metrics commonly used in time

series forecasting:

Mean Absolute Error (MAE): Measures the average magnitude of the errors in a set of

forecasts, without considering their direction.
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Root Mean Squared Error (RMSE): Gives higher weight to large errors and penalizes

models that produce large deviations.

Mean Absolute Percentage Error (MAPE): Represents prediction accuracy as a

percentage, allowing scale-independent comparison.

These metrics provide a comprehensive view of model performance in terms of both

scale-sensitive and relative accuracy.

Table 2 summarizes the evaluation results of the three forecasting models on the test
dataset. As seen in the Table 2, all three models produced relatively close error values,
indicating consistent short-term forecasting capability. However, the Holt-Winters
model yielded the lowest MAE and MAPE, suggesting slightly better overall accuracy

and robustness in capturing the underlying data structure.

Table 2. Forecasting Accuracy Comparison of Holt-Winters, SARIMA, and Prophet Models on
the Test Set

Model MAE RMSE MAPE (%)
Holt-Winters 1090.99 1344.99 3.98
SARIMA 1090.33 1338.35 3.98
Prophet 1101.43 1358.54 4.03

In addition to standard error metrics (MAE, RMSE, MAPE), we employed the
Diebold—Mariano (DM) test to statistically compare forecast accuracy across models
using squared-error loss on 1-step-ahead forecast errors (two-sided). The results are

given in Table 3.
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Table 3. Diebold—Mariano (DM) Pairwise Forecast Accuracy Tests on the Test Set

Model Pair Loss DM statistic p-value
SARIMA vs Holt-Winters SE 0.21 0.83
SARIMA vs Prophet SE -2.19 0.029
Holt-Winters vs Prophet SE -1.92 0.056

DM tests indicate that SARIMA significantly outperforms Prophet (p = 0.029), while
Holt—Winters and SARIMA are statistically indistinguishable (p = 0.83). The difference
between Holt—Winters and Prophet is marginal and not significant at the 5% level (p =

0.056).

To strengthen the reliability of model evaluation, we additionally estimated 95%
confidence intervals for MAE and RMSE. These intervals, obtained via bootstrap
resampling (1000 replications) of 1-step-ahead forecast errors on the test set, provide a
measure of uncertainty around the point estimates. Table 4 reports the results,
highlighting the degree of overlap among models and complementing the statistical

comparisons.

Table 4. Forecast Error Estimates with 95% Confidence Intervals (Bootstrap)

Model MAE (point) MAE 95% CI RMSE (point) RMSE 95% CI

Holt-Winters ~ 1090.99 1025.4 —1156.6  1344.99 1270.2 — 1419.8
SARIMA 1090.33 1024.8 — 11559  1338.35 1265.0 — 1411.7
Prophet 1101.43 1035.0 — 11679  1358.54 1283.1 — 1433.9

Table 4 reports MAE and RMSE with 95% confidence intervals. The intervals overlap
substantially, indicating that point estimate differences among Holt-Winters, SARIMA,
and Prophet are small. Paired-error testing via the Diebold—Mariano test provides
complementary evidence; specifically, SARIMA significantly outperformed Prophet (p
=0.029), while Holt-Winters and SARIMA were statistically indistinguishable.

660



Improving the allocation of large-scale inventory equipment and reducing customer
wait times are critical issues faced by major commercial companies. This study
proposes strategic solutions to optimize the inventory management of such product
resources, with the goal of minimizing delays in client care. After applying the

SARIMA model, prices of products are estimated as shown in Figure 5.

SARIMA Model Forecast
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‘ |
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Figure 5. SARIMA Model Forecast of Product Price

Figure 6 displays the forecasted inventory levels generated by the Prophet model,
including the estimated trend and uncertainty intervals. The upper panel illustrates
actual data points (black dots), the model's forecast (blue line), and the 95% confidence
intervals (shaded area). While the model captures the overall seasonality and
fluctuations in the inventory data, the wide prediction intervals indicate some
uncertainty in short-term projections. The lower panel shows a gradual decline in the
underlying trend beginning in late 2022, suggesting a potential shift in inventory
dynamics. Despite Prophet’s flexibility in modeling nonlinear trends and seasonalities,
its forecast accuracy was slightly inferior to Holt-Winters and SARIMA in this case, as
reflected in higher MAE and RMSE values. The SARIMAX model achieved strong
predictive performance. Specifically, the selected SARIMAX(1,1,2)(0,1,1,12) model
yielded the lowest AIC and produced accurate forecasts compared to alternative

configurations.
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Prophet Forecast for Inventory Level
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Figure 6. Forecast and Trend Components of Inventory Level using Prophet Model

Figure 7 illustrates the forecast results for average product price using the Prophet
model. The top panel shows the actual values (black dots), the predicted values (blue
line), and the confidence intervals. The model captures repeating seasonal fluctuations
and exhibits moderate uncertainty over the forecast horizon. The bottom panel indicates
arising price trend in early 2022, followed by a steady decline through the end of 2023.
This may reflect pricing adjustments or demand saturation. Despite its effectiveness in
identifying nonlinear price movements, the model's forecast performance was still less
favorable compared to Holt-Winters, particularly in inventory-level prediction, where

simpler seasonality structures were dominant.
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Prophet Forecast for Average Price
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Figure 7. Forecast and Trend Components of Average Price using Prophet Model

An analysis of the temporal distribution of forecasting errors revealed a notable pattern:
all three models exhibited higher error rates on weekends compared to weekdays. This
fluctuation was more pronounced in the Prophet model, which tended to overestimate
demand on Saturdays and underestimate it on Mondays. One possible explanation is
that Prophet’s weekly seasonality component failed to fully capture asymmetric sales
behavior occurring near the start or end of the business cycle. In contrast, SARIMA and
Holt-Winters—due to their autoregressive and smoothing components—were more

responsive to short-term sales volatility.

Additionally, the wider uncertainty intervals generated by Prophet introduced greater
variability into its forecast outputs. While the 95% prediction intervals were appropriate
for risk-averse planning, the central forecasts (i.e., yhat values) often deviated further
from actual sales compared to the point forecasts produced by SARIMA and Holt-

Winters. This behavior suggests that Prophet may be more suitable for strategic-level
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planning where uncertainty needs to be quantified, rather than operational-level

forecasting where point accuracy is paramount.

One contributing factor to Prophet's underperformance lies in its reliance on
changepoint detection to model trend shifts. In the synthetic dataset used here, demand
patterns were relatively stable with gradual trends, making Prophet’s aggressive trend
segmentation less effective. Furthermore, Prophet assumes additive or multiplicative
decompositions but lacks the autoregressive mechanisms present in SARIMA, which

likely limited its ability to model short-term temporal dependencies effectively.
Conclusion

This study explored the effectiveness of classical time series forecasting models, Holt-
Winters, SARIMA, and Prophet, in predicting product demand within a synthetic yet
realistic retail inventory dataset. By focusing on inventory levels and average pricing
data across multiple time periods, the research aimed to support demand forecasting

and inform stock optimization strategies for retail environments.

The data, which include the daily sales, prices, stocks, weather, and advertising
indicators, were first subjected to a series of preprocessing techniques such as
aggregation, normalization, seasonality decomposition, and outlier detection. The
evaluation was limited to a 14-day horizon, this choice reflects operational needs in
retail inventory management. Future research may extend the analysis to longer
horizons to assess model suitability for strategic planning. Each of the models had been
trained with the past data and tested with a set-aside test set via three standard metrics:

MAE, RMSE, and MAPE.

In all three approaches, the Holt-Winters model had the lowest values of the forecast
errors, which exceeded the others with the exception of a small number of metrics.
Such a victory could be attributed to the comparatively stable, additively seasonal
nature of the set, which perfectly fit the assumptions of the Holt-Winters model.
Though the SARIMA produced a statistically accurate and a bit richer model of the
temporal series, and the Prophet could model the trends and the holidays, both slightly
lagged behind the total prediction accuracy.

These figures confirm the assumption that the model's simplicity—if proper for the data

properties inherent—beats a general or higher-complexity method. Using ensemble
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techniques or hybrids of statistical and machine methods might generate subsequent

advances, which represents a rich target area for future work.

Results of the work, while achieved via a synthesized dataset, have principal
implications for practical retail inventory planning. Consistency of Holt-Winters shows
how simple models are capable of producing highly accurate forecasts when applied to
structured and seasonal data environments. For practitioners, it indicates that, in some
environments, investment into robustness and interpretability can sometimes outweigh

investment into highly complex algorithms.

It becomes feasible to continue the current work further by introducing hybrid modeling
approaches that combine classical and machine learning methods, e.g., combining
SARIMA with gradient boosting or LSTM models. Ensemble approaches can also be
employed as a means of leveraging the strengths of several models, hence guaranteeing

robustness and versatility in a variety of demand cases.

In short, the work shows the practical benefit of making use of robust, comprehensible
time series models for retail demand forecasting. Efficient predictions, besides enabling
the optimising of turnover of stocks and reducing holding costs, enable improved
supply chain and logistics decisions as well. With retailing continuing to become
increasingly data-driven, the integration of such forecasting infrastructure with
inventory management systems can yield considerable benefits operationally and

financially.

Although log-transformation is often recommended to enhance linearity and improve
the suitability of additive models, in this study we did not conduct a systematic
comparison between additive and multiplicative formulations under log transformation.
Nevertheless, exploratory checks indicated no significant difference in model accuracy.
A more comprehensive analysis of log-transformed series combined with multiplicative

specifications remains an avenue for future research.
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