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An Improved Approach for Bending Vibrations of Cantilever Beam
with Tip Mass at Different End Conditions

Highlights

«  Yeni bir yaklasim onerildi ve dogrulandi/A new improved approach was proposed and validated
¢ Birinci bouytsuz dogal frekans kolaylikla bulunabilir/The first nondimensional bending natural frequency
can be obtained easily
Bu yontem farkli durumlar i¢in uygulanabilir/It can easily be applied to different end conditions
Simulasyon sonuglari ideal sonuglarla neredeyse aynidir/The simulation results are nearly identical to
ideal values P

Graphical Abstract

In this work, first natural frequencies of the cantilever beam with tip mass at different end conditions and cross
sections were tried to obtain by reducing the system to basic single degree of freedom spring-mass system.
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AN IMPROVED APPROACH FOR BENDING
VIBRATIONS OF CANTILEVER BEAM WITH TIP
MASS AT DIFFERENT END CONDITIONS

EQUIVALENT MASS AND SPRING CONSTANTS ARE
CALC ED

Figure: Graphical abstract of this work
Aim
The aim of this work is to obtain the first natural frequencies of the cantilever beam with tip mass at different end
conditions and different tapers.
Design & Methodology
For this purpose, the whole system for each cases are reduced to single degree of freedom mass-spring system then
the first natural frequencies are tried to obtain by selecting proper mass and spring constants.
Originality
In literature, there are some approaches to obtain the first natural frequnecy of the cantilever beam with and without
tip mass and with some special cases but they can not be applied to all cases and their formulas are not explicit. In
this work, a generalized formula is developed and this formula can be applied the all cases. For tapered beams, there
is no this kind of approach.
Findings
The first natural frequnecies of the cantilever beam with tip mass at different end conditions and tapers which are
height taper, width taper and double taper can be found easily by using this approach. The results are nearly identical
to theoretical values so that the percentage of the error values are below the 7% for all cases.
Conclusion

The methods in literature are complex and can not be applied to other cases. A generalized and simple approach is
developed to obtain the first natural frequencies. This approach can be applied to all cases easily. Since the
calculation steps are simplified thus computational time is reduced.
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ABSTRACT

Single dof lumped model is frequently utilized due to its simlicity, when studying bending vibration of cantilever beam with a tip
mass. For this purpose, an equivalent single dof model is obtained with some assumptions. These assumptions effect the accuracy
of the result. This study proposes a new formulation of proportion parameter n which is defined as a function of ratio of the tip
mass to the beam mass and used to obtain the value of the first natural frequency. Depending on proposed formula, calculation of
the first natural frequency with respect to the mass ratio was simplified and the results were improved. The new formulation of the
proportion parameter was applied to the reference model studied in literature to verify its effectiveness. After it is verified, three
complex new cases were considered and the corresponding equivalent spring constant and natural frequency parameter were
obtained. Lastly, the first non-dimensional natural frequencies were obtained for three different tapered cases with and without tip
mass consisting of only height taper, only width taper and double taper. One can see that the results are close to theoretical
frequencies presented in the literature.

Keywords: Cantilever beam with tip mass, Natural frequency,
model. °

Farkli U¢ Kosullarina sakip W¢ Kiitleli bir Ankastre
Kirisin Egilme Titresifnl in Gelistirilmis Yeni Bir

ing system, Lateral Vibrations, Discrete vibration

ik dereceli bir model elde edilir. Bu varsayimlar sonucun dogrulugunu etkiler.

Bu ¢aligsma, ug kiitlesinin kirig kiit bir fonksiyonu olarak tanimlanan ve ilk dogal frekans degerini elde etmek igin

kullanilan orant1 parametre

atiirde sunulan teorik frekanslarina yakin oldugu gériilebilir.
stre kiris, Dogal frekans, Kiitle-yay sistemi, Egilme titresimleri, Ayrik titresim modeli

constant (k.q) is taken as 3 in Giirgdze’s study [12].
These values are derived from the deflection formula,
which is under the force concentrated at the tip of the

Discrete vibration model of cantilever beam with tip
mass has been studied by researches for many years.

Usually, because of simplycity, beams with or without tip
mass can be described as one-degree-of-freedom mass
spring systems with equivalent mass and spring
constants. For calculating the natural frequency, the
assestment of equivalent mass and spring constants are
so critical for that kind of systems[1-9]. The number of
studies of this subject are limited and they can not be
found easily. In literature, the value of 33/140 is widely
used for the equivalent mass parameter (m,, ) [10,11].
Another critical parameter for the equivalent spring

*Sorumlu Yazar (Corresponding Author)
e-posta : orcun.bicer@samsun.edu.tr

beam and always taken as constant. But, in reality the
both parameters should be changed by changing of the
mass ratio [12]. Where, first mode function of the beam
was modelled as linear combination of deflection
formula under uniformly distributed force and force
concentrated at the tip of the beam. The author defined a
new parameter n which effects degree of proportion of
this combination. In Giirgdze’s another study [13],
another spring was added to end of the cantilever beam
with tip mass. The system was modelled 2 DOF spring



and mass system. The frequency formula was derived by
Lagrange multipliers method and solved. Continous
beam carrying elastically mounted masses was
investigated by Ercoli and Laura [14] numerically and
experimentally.

Obtaining the natural frequency of tapered beams is
critical in different areas especially in aerospace and
aeronautics engineerings. In Mabie and Rogers study
[15], only height tapered and only width tapered beams
with tip mass were investigated. Analytical formulations
by using bessel series and exact solutions for first three
non-dimensional natural frequencies were obtained for
these cases. For double taper beams, the taper ratios were
assumed as same. The exact solutions for first five natural
frequencies were found in Mabie and Rogers [16].

It is observed from the literature that models of reducing
the cantilever beam with and without tip mass are
ineffective and they can not applied to other types of end
conditions. For tapered beams, there are no reducing
procedures and formulations in literature. Hence, the
main aim of the this study is to represent a new model to
improve and simplify the equations for deriving the first
natural frequency of the cantilever beam with and
without tip mass and for different end conditions and
different type of tapered beams.

The organisation of this paper is as follows. The section
2 is about mathematical backround of the study. Ig
section 3, the first natural frequency results are presenf@g
and section 4 includes discussion and suggestion abo
improving the results.

2. MATERIAL and METHOD
In this section, the model studied in [17] was co
as Case 1 first. The improved approach in Wi
applied to this case. Then the resu

My +mey

7l xem

Figure 1. Cantilever Beam with tip Mass and Its Equivalent
System [17]

Here,

ﬁ _ Mtip _ Mtip
M mp PAL

Where, p, A, L presents density, cross section and length
of the beam respectively. The §2 parameter is the non-
dimensional first natural frequency of the cantilever
beam. The fundamental mode shape function of the
cantielever beam with tip mass can be found as [17]

w(x) = (cosh (%x) — cos (ﬁx)) _

L
a, <sinh (% x) —sin (% x)) 2
Where,

_ (sinhp1—sin(B1))+pB1m(coshpi—cos(B1))
1 (coshBi+cos(B1))+B1Bm(sinhp1—sin(G4))

®)
Therefore, total bending deflecig
expressed as ®

w(x, t) = w(H)w(x)

(4)
e beam is assumed as
unity, Eq.4g¢ as follows
®
w(x,t) ¢ (OW(x)

an be obtained as [17]
W (x)2dx = M pAL

N2 R
= 1) (229) dx = kg

dx? eq 3

(7)

Where, E,I are modulus of elasticity of the beam and
moment of inertia of the beam respectively. Using Eq. (6)
and Eg. (7) the first natural frequency can be determined

as below.

, ke , EI ’ EI
@1 = meq‘fBM pAL* - '812 F’A7
(8)
Here, $? can be defined as undimensional natural
frequency. The important point of this approach is to
determine w(x). For the first mode of deflection, it can
be modelled as linear combination of the deflection for
distributed force w, and for concentrated tip force w,. In
Kim’s study, n was defined as an interpolation parameter
and its formula was not given. Moreover, when (3, is
zero, the deflection terms due to the tip force should be
zero. But in [17] when By, is zero, the deflection terms
which comes from the tip force is not zero. In this study,
the formula of the first mode deflection is changed and
the parameter 1 is redefined as follows.

w1 (x,t) = we ()W (x) = we (D) [MWg + (1 — )]

(9)h

Where,

Wy = $352(6L2 —4Lx + x?)
(10) .

W, = §x2(3L - x)

(11)



1
1+8m

n =
(12)
For a given By, M., and IQeq can be determined from the
Eq. (6) and (7) by substituting the w.(x) term into these
equations instead of w(x). Then the undimensional first
natural frequency can be obtained from Eq. (8).
2.2.Case 2

Now, if the end condition is changed as in figure 2, the
springs behave as parallel connected springs. The general
formula of the system remains same except for total kg,
term. Its formula can be obtained as

Keqe = keq + ke

(13)
E LApL Hl Xend keq + ke é
—
—
k. é
|

. [
My Meq l Xend

Figure 2. Cantilever Beam with tip mass and spring and Its
Egivalent System

Where, k, is end-spring constant. If k, term is
normalized as below.

“~ L3

keqe = keﬁ °
(14) ®

As a result, the fundemantal natural frequency of tha
system is becomes as

W, = keqt

1 Meq+BMm
Here,
keqt k keqe

(15

2.3.Case 3
Then, if we change the end £0n 'tlon
cantllever beam with conec

ain such as

Xend

.

Figure 3. Cantilever beam with connected mass-spring system
and Its Equivalent System

Here, the equivalent system’s equation of motion is as
follows [10]

i el -

e
(16)
Where, x,.,4 and x, are deflection at the end of the beam
and deflection of connected mass respectively.

Then, the first nondimensional natural frequency can be
obtained from solution of eigen value of K — w?M
matrix wrt keqe, Bue: Keq- Here, K, M, w are stiffness
matrix, mass matrix and natural frequency respectively
and By, = :—Z As a result, the nondimensional mass and

stiffness matrices can be obtained as below.

M= [meq 0 ] K= [keq + kege —Akege
0 ﬁMe kege kege

(17)

2.4.Case 4

Next, a general model will be solved. This model’s first
bending natural frequency can be obtaihied exactly from
the equation below. [12]
(Kege = Buea*)[(sin(a) + sinjgla))r
cosh(a))g] + kegeBue

sinh(a))(cos(a) +
Here,

natural frequency can be calculated
y modelling system as two masses-two

uency can be obtained by solving eigen-value
w?M matrix as in case 3.

E.LAp Lm

_ keq

Xend

My

Xend
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Figure 4.Cantilever Beam with Tip Mass and Mass-Spring
System and Its Equivalent System
The equivalent system’s equation of motion can be found
as
[meq +M; O ] [gfend] [keq + k. ] [xend
- +

0 mell X — k.
0 (21)
Then, the nondimensional mass and stiffness matrices
can be found as

e

~

M= [meq + Bu ] K= [keq ‘l’keye _Akege]
_kege kege

(22)

2.5. Case 5

Then, the beam is evaluated as a linearly tapered
cantilever beam. Firstly, this case contains only height
tapered, only width tapered and double tapered cantilever
beam with and without tip mass. By using similar



formulation, the first natural frequencies of all states can

be found.

E 1LAp Lm
Meq + Mr

My ‘l =
Al Xend

Figure 5. Linearly Tapered Cantilever Beam with Tip Mass
and Its Equivalent Mass-Spring System

Xend

Eqg. (6) and (7) should be modified as

_ ramweo?ax
€4 = A(L)
(23)
L d2w(x) 2
e
€4 = 1(L)
(24)

Here, A(x) = h(x)b(x), [(x) = %b(x)h(xf and w(x)
can be obtained by integrating two times the Eqg. (25).

d?wx) _ M

dx2  EI(x)

(25)

Where, M is bending moment derived from the

distributed load effect. In this case, b(¢) = 1 when the
beam has only height taper, 2(¢) = 1 when the beam has
only width taper. °

A(x) =%= 1-(1-m)3
(26)

h(x) =%= 1—(1—a)%
(27)

Here,n = % is height taper ratio. h and H are the\Qgights
at the right end and the left end of the beal
a= % is width taper ratio. b and B

Lastly, h(x) and b(x) are
width of the beam respeci§
to the beam, the equiv.

curve can be obtained by using the Eq. (9).

3. RESULTS AND DISCUSSION

So far, the nondimensional first natural frequency has
been obtained for all the cases approximately. The
advantage of our approach is to calculate this frequency
easily with some small errors. In Kim’s study [17], 1
value’s formulation is not clear and it is seemed that the
values are limited to those which are given in table. In
present study, new n value is formulated with respect to
By and formulation of beam deflection for the first mode
i changed. For instance, ) and (1 — ) terms are replaced.

These evolutions simplify the calculation’s process and
provide the adaptation to other cases easily.

3.1. Case 1

In table 1, one can see the equivalent system parameters
of present study and Kim’s work [17]. For small ),
values, there are small differences between natural
frequency values of present study and reference [17]. But
as B, values gets bigger, the natural frequency values are
converged to each other. One can see that these errors are
small and acceptable. The main advantage of this
approach is easy adaptation to the other cases. This
means that computational time and difficulty of solving
the equations are decreased. Table 2.presents natural
frequency values of exact solution, solution and
errors between them. For small 8,, valu re are some

3.2. Case 2

rom our approach, the
equency which is listed in
third one, which is written in
ntage. Again, when B, value is
error is relatively large but less than
ege Uets bigger, the percentage error
pt for 5, value is zero. It can be seen that
rcentage is acceptable and our approach is

bold st

able 4, comparison of natural frequency between our
approach and exact values can be seen. For each cell,
arrangement of the values are same with each cell in the
case 2. One can see that there is a rise of error percentage.
But, maximum error percentage still less than 5% almost
3.17%. In spite of this increasing, our approach is still
successfull.

3.4.Case 4

This system is the general case of case 3. Because, if 8y,
is taken as zero in case 4, the system behaves as in case
3. Here, B, value is begun to vary from 0.5. This is
because of that the maximum error in table 2 is seen as
0.678719 when f,, value is 0.5. It will be checked
whether the increasing of the error percentage still
proceeds or not. Ideal values comes from the solution of
Eqg. (18).

From table 5, for each cell, arrangement of the values are
same with each cell in the case 2 and case 3. One can see
that the increasing of the error percentages do not
proceed and the error percentages decrease. The
maximum error percentage is almost 1.5%. In table 6, the
B value will be increased and it will be checked whether
this decreasing trend proceeds or not.

From table 6, one can see that the error percentages are
decreasing and when 8, value is increased our approach
is converged to ideal values which comes from the
solution of Eq. (18).



3.5. Case 5

Reducing the continous tapered beam with tip mass to
SDOF mass-spring system has not studied in literature
yet. It is one of contributions of present study to the
literature. For all tapered cases, there is an assumption
that the taper is linear. One can see comparison of the first
non-dimensional natural frequencies between our results
and [15] results from the table 7. It can also be seen that
although the percentage of error values are increased,
their maximum value is 3.06228% and it is still less than
5% hence it is plausible. The arrangement of the Tables
7,8 and 9is that the first column is taper ratio, the second,
third, fourth and fifth columns are mass ratios, exact
natural frequencies, our results and error percentages between
exact results and our results respectively.

Table 1. The equivalent system parameters for varying B,_\.. ;(

From table 8, one can see non-dimensional first natural
frequencies variations wrt the taper and mass ratios and
error percentages between exact values in [16] and
present study. It can be seen that the value of the error
percentages are still low and our formulation is
succesfull. For double taper case, width and heigth taper
ratios are assumed to equal to each other.

From Table 9, one can see the non-dimensional
fundamental natural frequencies variations wrt mass and
tapers ratios. The maximum error percentage is 6.38100
which is still plausible. When the mass ratio is equals to
zero, the error percentages are decreased while the taper
ratios are increased but it can be seen that when the mass
ratio is not equal to zero, the percerig@ges of error are
increased while the taper ratios are incr

Our Results Referepce [17N,
Bu n Meq keg wq n W1
0 1 0.256790 3.2 3.530090 | 0.339577 3.518008
0.001 0.999001 | 0.256768 | 3.199601 | 3.523167 | 0.342358 3.510977
0.01 0.990099 | 0.256573 | 3.196059 | 3.462575 | 0.366397g | 3.449467
0.1 0.909091 | 0.254805 | 3.165259 | 2.986840 | 0.537088 3.042873 2.968700
0.5 0.666667 | 0.249579 | 3.088889 | 2.029984 0.23&98 3.008760 2.016424
1 0.5 0.246043 3.05 1.564528 0.23@36 3.003074 1.557332
5 0.166667 | 0.239110 | 3.005556 | 0.757414 303 3.000169 0.756938
10 0.090909 | 0.237561 | 3.001653 . .236015 3.000044 0.541375
25 0.038462 | 0.236494 | 3.000296 | 0.3 0.235836 3.000007 0.344788
50 0.019608 | 0.236111 | 3.000077 0.235775 3.000002 0.244374
100 0.009901 | 0.235915 | 3.000020 0.235745 3.000000 0.173001
500 0.001996 | 0.235755 | 3.000001 0.235720 3.000000 0.077441
1000 0.000999 | 0.235735 | 3.000000 0.999848 0.235717 3.000000 0.054766
5000 0.0002 | 0.235718 | 3.000000 0.999910 0.235716 3.000000 0.024494
10000 0.00001 | 0.235716 3&)000 | 0.999605 0.235722 3.000000 0.017320
Table 2. Compari frequency values between exact values and our values
By P w%?] W, % errors
0 )3.518925 3.530090 0.400311
0.001 3.599003 3.523167 0.403647
0.01 1 47658 3.462575 0.432671
0.1 2.967838 2.986840 0.640264
0.5 2.016299 2.029984 0.678719
1 1.557298 1.564528 0.464266
P r 0.756937 0.757414 0.063017
1 0.541375 0.541479 0.019210
\ 0.344788 0.344800 0.003480
/) 0.244374 0.244376 0.000818
10 0.173001 0.173002 0.000578
500 0.077441 0.077441 0
1000 0.054766 0.054766 0
5000 0.024494 0.024494 0
10000 0.017320 0.017320 0




Table 3. Comparison of natural frequency values for case 2

kege
Bu 0 0.5 1 1.5 2 25 3
3.530090 3.795873 4.044227 4.278187 4.500000 4711381 4.913680
0 3.516015 3.789758 4.0401 4.274680 4.494824 4.702566 4.899582
0.400311 0.161364 0.102151 0.082034 0.115154 0.187457 0.287734
2.631853 2.833727 3.022147 3.199489 3.367505 3.527527 3.680599
0.2 2.612749 2.820048 3.012550 3.192940 3.363152 3.524706 3.678724
0.731185 0.485045 0.318556 0.205105 0.129416 0.080039 0.050969
2.183572 2.352879 2.510983 2.659617 2.800372 2.934384 3.062537
0.4 2.167991 2.340900 2.501680 2.652501 2.795016 2.930430 3.059666
0.718674 0.511726 0.371871 0.268282 0.191643 0.134915 0.093845
1.904445 2.053303 2.192076 2.322572 2.446116 2.563714 2
0.6 1.892468 2.043699 2.184366 2.316423 2.441250 160
0.632880 0.469933 0.352963 0.265447 0.199324
1.709878 1.844218 1.969415 2.087116 2.198524
0.8 1.700651 1.836675 1.963221 2.082047 2.194398 2.403213
0.542573 0.410663 0.315486 0.243463 0.18876 0.112389
1.564528 1.687904 1.802856 1.910906 2.0 . 2.203490
1 1.557304 1.681924 1.797906 1.906774 00 107636 2.201158
0.463858 0.355565 0.275359 0.216683® . 0.134647 0.105945
0.842299 0.909614 0.972280 1.03114 1.086825 1.139789 1.190399
4 0.841549 0.908972 0.971723 . 086389 1.139407 1.190063
0.089077 0.070678 0.057344 0.0 106 0.033543 0.028250
0.603711 0.652044 0.697034 77179259 0.817276 0.853601
8 0.603543 0.651895 0.69690 0.779159 0.817180 0.853517
0.027836 0.022893 0.018118 0.012797 0.011767 0.009807
0.495227 0.534891 0.5748 0.639284 0.670480 0.700287
12 0.495151 0.534829 0.5 0.639248 0.670433 0.700251
0.015349 0.011603 0.0 0.005598 0.007010 0.005144
Table 4. Comgarison of natural frequency values for case 3
Eege
Bue 5 10 50 100
1.794126 1.918361 2.027779 2.041991
0.5 1-764572 1-883690 1-988822 2-002508
1.674854 1.840589 1.958798 1.971678
.866288 1.331198 1.449604 1.563988 1.579669
1 0-859420 1-307155 1-419384 1-527404 1-542201
. 0.799144 1.839338 2.129093 2.395175 2.429515
0.389788 0.618744 0.686179 0.758506 0.769146
. 0-386724 0-606746 0-670001 0-736996 0-746678
5.450743 0.792296 1.977434 2.414623 2.918605 3.009061
0.207901 0.275825 0.439620 0.488761 0.542284 0.550547
10 0-206969 0-273659 0-431021 0-477054 0-526491 0-533782
0.450309 0.791596 1.995030 2.454020 2.999671 3.140795
0.092994 0.123425 0.197357 0.219870 0.244701 0.248431
50 0-092578 0-122457 0-193471 0-214535 0-237417 0-240821
0.449351 0.790482 2.008570 2.486774 3.068020 3.160023
0.065758 0.087281 0.139619 0.155585 0.173225 0.175878
100 0-065464 0-086596 0-136867 0-151805 0-168056 0-170475
0.449102 0.791030 2.010711 2.490037 3.075760 3.169380




Table 5. Comparison of natural frequency values for case 4 when 8, = 0.5

kege
Bue 0.5 1 5 10 50 100
0.911814 1.161898 1.489559 1.532018 1.564409 1.568340
0.5 0.909421 1.156186 1.476420 1.517907 1.549611 1.553467
0.263134 0.494038 0.889923 0.929635 0.954949 0.957407
0.650830 0.847552 1.198010 1.262134 1.315319 1.322019
1 0.649317 0.843964 1.187080 1.249484 1.301264 1.307793
0.233014 0.425137 0.920747 1.012418 1.080104 1.087673
0.292940 0.386919 0.600420 0.658120 0.716313 0.724523
5 0.292315 0.385471 0.594945 0.650935 0.707146 0.715059
0.213810 0.375644 0.920253 1.103797 1.296338 ,1.323527
0.207294 0.274229 0.430729 0.475370 0.522220 .529013
10 0.206854 0.273217 0.426814 0.470124 0.515319
0.212710 0.370402 0.917261 1.115876 28
0.092759 0.122862 0.194855 0.216306
50 0.092564 0.122409 0.193087 0.213896 »0.239690
0.210665 0.370071 0.915649 1.126716 1.418499
0.065596 0.086896 0.137981 0.153285 0.172492
100 0.065452 0.086579 0.136725 0.15157 0.170069
0.220009 0.366140 0.918632 ].& 1.424716
Table 6. Comparison of natural frequency valu cas\he By =5
k
Bume 0.5 1 ) 50 100
0.695785 0.713153 . . 25 0.723503 0.723586
0.5 0.695374 0.712697 . 2345 0.723026 0.723109
0.059105 0.063982 . .066450 0.065972 0.065965
0.591876 0.655593 . / 0.691292 0.693527 0.693798
1 0.591647 0.655204 0.690826 0.693054 0.693323
0.038706 0.059371 0.067455 0.068249 0.068511
0.289306 0.37ZMQ6 - 053 0.522053 0.537891 0.539845
5 0.289251 267 0.501716 0.521675 0.537482 0.539427
0.019015 | A 0. 0.067169 0.072459 0.076096 0.077490
0.205879 .26%4r 0.391121 0.416374 0.438389 0.441237
10 0.2058 .26 0.390869 0.416072 0.438031 0.440871
0.0lﬁi 020736 0.064472 0.072583 0.081729 0.083017
0.082494 or122097 0.189829 0.208514 0.227693 0.230432
50 0.122062 0.189709 0.208358 0.227490 0.230222
0.028674 0.063255 0.074871 0.089235 0.091216
0.086480 0.135614 0.149698 0.164576 0.166745
10 0.086459 0.135533 0.149582 0.164427 0.166594
0.024289 0.059764 0.077549 0.090618 0.090452




Table 7. Comparison of natural frequency values for case of the height tapered beam

n Bm Wiexact [15] w, Error %
0 4.30907 4.3267 0.40914
0.2 3.13864 3.1654 0.85260
0.4 2.58502 2.6061 0.81541
0.6 2.24640 2.2633 0.75232
0.8 2.01359 2.0266 0.46186
1.2 1.0 1.84072 1.8509 0.55304
2.0 1.36359 1.3674 0.27941
3.0 1.13186 1.1337 0.16256
4.0 0.98849 0.9896 0.11229
5.0 0.88870 0.8894 07877
10.0 0.63497 0.6351 047
0 7.6474 7.6776 0%

0.2 5.1998 5.2692_ @ 4
0.4 4.1786 4.2358 36888
0.6 3.5888 3.63 N\ f21210
0.8 3.1937 1.03642
2.0 1.0 2.9053 0.88803
2.0 2.1290 0.43682
3.0 1.7600 0.25568
4.0 1.5339 0.16298
5.0 1.3772 0.11618
10.0 0.9813 0.04076
0 3 21.5108 0.22271
0.2 14347 12.7211 3.02989
0.4 9. 9.7769 3.06228
0.6 7 8.1964 2.66032
0.8 0Rg6 7.1818 2.23785
5.0 10 4 6.3423 6.4636 1.91256
2.0 5745 4.6166 0.93255
3.0 3.7605 3.7802 0.52387
3.2674 3.2787 0.34584
DAY 2.9289 2.9355 0.22534
T 2.0794 2.0807 0.06252




Table 8. Comparison of natural frequency values for case of the width tapered beam

a ﬁM Dicaoct [15] W Error %
0 3.7168 3.7307 0.37398
0.2 2.7202 2.7412 0.77200
0.4 2.2440 2.2612 0.76649
0.6 1.9527 1.9660 0.68111
1.2 0.8 1.7517 1.7617 0.57087
1.0 1.6017 1.6098 0.50571
2.0 1.1879 1.1908 0.24413
3.0 0.9862 0.9878 0.16224
4.0 0.8616 0.8624 0.09285
0 4.3152 4.3273 0.28040
0.2 3.0088 3.0354
0.4 2.4395 2.4617
0.6 2.1045 2.1214
2.0 0.8 1.8777 1.8907
1.0 1.7111 1.7213 _®
2.0 1.2589 1.2625
3.0 1.0422 1.044
4.0 0.9090 0.9
0 5.3977 4029 0.09634
0.2 3.4210 1.09325
0.4 2.6948 ) 7 1.18376
0.6 2.2934 3175y 1.05084
5.0 0.8 2.0301 2.0384° 0.90143
1.0 48 0.77149
2.0 .3438 0.38847
3.0 1.1062 0.21743
4.0 0.9619 0.13533
Table 9. Comparison of naturalffreque valmes’Tor case of the double tapered beam
n=a [3&, wq 16] w1 Error %
0 97 4.5673 0.38088
0.2 j 3.25843 3.2879 0.90442
04 2.66608 2.6904 0.91220
(7 N 2.31036 2.3290 0.80680
1.2 .8 AN 2.06697 2.0813 0.69329
\ 1.88708 1.8982 0.58927
2 4 1.39383 1.3979 0.29200
5.0 0.90655 0.9073 0.08273
i 0.64725 0.6474 0.02317
0 9.25030 9.2725 0.23999
0.2 5.72408 5.8261 1.78230
04 4.47965 4.5615 1.82715
0.6 3.80088 3.8617 1.60016
23 1 0.8 3.35894 3.4046 1.35936
1.0 3.04210 3.0772 1.15381
2.0 2.20735 2.2198 0.56402
5.0 1.41865 1.4208 0.15155
10.0 1.00862 1.0091 0.04759
0 30.9820 31.0152 0.10716
0.2 12.5670 13.3689 6.38100
04 9.19450 9.7211 5.72734
0.6 7.59518 7.9534 4.71641
5.0 0.8 6.61634 6.8725 3.87163
1.0 5.93881 6.1295 3.21091
2.0 4.22934 4.2927 1.49812
5.0 2.68636 2.6967 0.38491
10.0 1.90227 1.9045 0.11723




4. CONCLUSION

This work proposed a improved and simplified approach
by comparison of Kim’s method [17] to reduce cantilever
beam with different boundary conditions to simply mass-
spring system. For reducing mass-spring systems,
assesstment of equivalent mass and spring parameters are
very important and should be selected properly. Firstly,
we improved and simplified the formulation of 1 in [17]
because the calculations of 1 are not clear and simple in
addition that, this model can not be applied to other types
of end conditions. Our approach can be applied to other
end conditions. Then, first bending natural frequencies
were obtained and compared to [17] with and without tip
mass. After that, for different boundary conditions in
[12], the systems are reduced to simple mass-spring
system, which is also a new approach and slightly
different from the models in [12], and the first bending
natural frequencies are presented and compared to results
in [12]. The exact values can be found by solving the Eq.
18, whose formulation is given in [12]. The solutions of
the Eq. (18) was not taken from the [12], It is solved by
using graphical approach in this work. For the last case,
the beam is assumed as linearly tapered cantilever beam
and the first non-dimensional natural frequnecies are
obtained by our approach and compared to results in [15]
and [16]. It is the one of contributions of our work.

Reducing the continous systems to discrete systems mad®

the solution simple but sometimes caused some errors. 1y
present study, error percanteges are under 7% and whil
tip mass is increased, error percentages are decrea "
nearly identical to exact values. This workfcan
extended to beams with other the types of ndary
conditions.
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