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An Improved Approach for Bending Vibrations of Cantilever Beam 

with Tip Mass at Different End Conditions  

 

Highlights 

❖ Yeni bir yaklaşım önerildi ve doğrulandı/A new improved approach was proposed and validated 

❖ Birinci bouytsuz doğal frekans kolaylıkla bulunabilir/The first nondimensional bending natural frequency 

can be obtained easily 

❖ Bu yöntem farklı durumlar için uygulanabilir/It can easily be applied to different end conditions 

❖ Simulasyon sonuçları ideal sonuçlarla neredeyse aynıdır/The simulation results are nearly identical to 

ideal values 

Graphical Abstract 

In this work, first natural frequencies of the cantilever beam with tip mass at different end conditions and cross 

sections were tried to obtain by reducing the system to basic single degree of freedom spring-mass system. 

 
Figure: Graphical abstract of this work 

Aim 

The aim of this work is to obtain the first natural frequencies of the cantilever beam with tip mass at different end 

conditions and different tapers. 

Design & Methodology 

For this purpose, the whole system for each cases are reduced to single degree of freedom mass-spring system then 

the first natural frequencies are tried to obtain by selecting proper mass and spring constants. 

Originality 

In literature, there are some approaches to obtain the first natural frequnecy of the cantilever beam with and without 

tip mass and with some special cases but they can not be applied to all cases and their formulas are not explicit. In 

this work, a generalized formula is developed and this formula can be applied the all cases. For tapered beams, there 

is no this kind of approach. 

Findings 

The first natural frequnecies of the cantilever beam with tip mass at different end conditions and tapers which are 

height taper, width taper and double taper can be found easily by using this approach. The results are nearly identical 

to theoretical values so that the percentage of the error values are below the 7% for all cases. 

Conclusion 

The methods in literature are complex and can not be applied to other cases. A generalized and simple approach is 

developed to obtain the first natural frequencies. This approach can be applied to all cases easily. Since the 

calculation steps are simplified thus computational time is reduced. 
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ABSTRACT 

Single dof lumped model is frequently utilized due to its simlicity, when studying bending vibration of cantilever beam with a tip 

mass. For this purpose, an equivalent single dof model is obtained with some assumptions. These assumptions effect the accuracy 

of the result. This study proposes a new formulation of proportion parameter η which is defined as a function of ratio of the tip 

mass to the beam mass and used to obtain the value of the first natural frequency. Depending on proposed formula, calculation of 

the first natural frequency with respect to the mass ratio was simplified and the results were improved. The new formulation of the 

proportion parameter was applied to the reference model studied in literature to verify its effectiveness. After it is verified, three 

complex new cases were considered and the corresponding equivalent spring constant and natural frequency parameter were 

obtained. Lastly, the first non-dimensional natural frequencies were obtained for three different tapered cases with and without tip 

mass consisting of only height taper, only width taper and double taper. One can see that the results are close to theoretical 

frequencies presented in the literature. 

Keywords: Cantilever beam with tip mass, Natural frequency, Mass-spring system, Lateral Vibrations, Discrete vibration 

model. 

Farklı Uç Koşullarına sahip Uç Kütleli bir Ankastre 

Kirişin Eğilme Titreşimleri için Geliştirilmiş Yeni Bir 

Yöntem 
ÖZ 

Tek serbestlik dereceli toplu model, uç kütlesi olan konsol kirişin eğilme titreşimini incelerken basitliği nedeniyle sıklıkla kullanılır. 

Bu amaçla, bazı varsayımlarla eşdeğer tek serbestlik dereceli bir model elde edilir. Bu varsayımlar sonucun doğruluğunu etkiler. 

Bu çalışma, uç kütlesinin kiriş kütlesine oranının bir fonksiyonu olarak tanımlanan ve ilk doğal frekans değerini elde etmek için 

kullanılan orantı parametresi η için yeni bir formülasyon önermektedir. Önerilen formüle bağlı olarak, ilk doğal frekansın kütle 

oranına göre hesaplanması basitleştirilmiş ve sonuçlar iyileştirilmiştir. Orantı parametresinin yeni formülasyonu, etkinliğini 

doğrulamak için literatürde incelenen referans modele uygulanmıştır. Doğrulandıktan sonra, üç yeni karmaşık durum ele alınmış 

ve karşılık gelen eşdeğer yay sabiti ve doğal frekans parametresi elde edilmiştir. Son olarak, yalnızca yükseklik konikliği, yalnızca 

genişlik konikliği ve çift koniklikten oluşan uç kütlesi olan ve olmayan üç farklı konik durum için ilk boyutsuz doğal frekanslar 

elde edilmiştir. Sonuçların literatürde sunulan teorik frekanslarına yakın olduğu görülebilir. 

Keywords: Uç kütleli ankastre kiriş, Doğal frekans, Kütle-yay sistemi, Eğilme titreşimleri, Ayrık titreşim modeli 

 
1. INTRODUCTION 

Discrete vibration model of cantilever beam with tip 

mass has been studied by researches for many years. 

Usually, because of simplycity, beams with or without tip 

mass can be described as one-degree-of-freedom mass 

spring systems with equivalent mass and spring 

constants. For calculating the natural frequency, the 

assestment of equivalent mass and spring constants are 

so critical for that kind of systems[1-9]. The number of 

studies of this subject are limited and they can not be 

found easily.  In literature, the value of 33/140 is widely 

used for the equivalent mass parameter (𝑚𝑒𝑞  ) [10,11]. 

Another critical parameter for the equivalent spring 

constant (𝑘𝑒𝑞) is taken as 3 in Gürgöze’s study [12]. 

These values are derived from the deflection formula, 

which is under the force concentrated at the tip of the 

beam and always taken as constant. But, in reality the 

both parameters should be changed by changing of the 

mass ratio [12]. Where, first mode function of the beam 

was modelled as linear combination of deflection 

formula under uniformly distributed force and force 

concentrated at the tip of the beam. The author defined a 

new parameter η which effects degree of proportion of 

this combination. In Gürgöze’s another study [13], 

another spring was added to end of the cantilever beam 

with tip mass. The system was modelled 2 DOF spring 
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and mass system. The frequency formula was derived by 

Lagrange multipliers method and solved. Continous 

beam carrying elastically mounted masses was 

investigated by Ercoli and Laura [14] numerically and 

experimentally.  

Obtaining the natural frequency of tapered beams is 

critical in different areas especially in aerospace and 

aeronautics engineerings. In Mabie and Rogers study 

[15], only height tapered and only width tapered beams 

with tip mass were investigated. Analytical formulations 

by using bessel series and exact solutions for first three 

non-dimensional natural frequencies were obtained for 

these cases. For double taper beams, the taper ratios were 

assumed as same. The exact solutions for first five natural 

frequencies were found in Mabie and Rogers [16]. 

It is observed from the literature that models of reducing 

the cantilever beam with and without tip mass are 

ineffective and they can not applied to other types of end 

conditions. For tapered beams, there are no reducing 

procedures and formulations in literature. Hence, the 

main aim of the this study is to represent a new model to 

improve and simplify the equations for deriving the first 

natural frequency of the cantilever beam with and 

without tip mass and for different end conditions and 

different type of tapered beams.  

The organisation of this paper is as follows. The section 

2 is about mathematical backround of the study. In 

section 3, the first natural frequency results are presented 

and section 4 includes discussion and suggestion about 

improving the results. 

 

2. MATERIAL and METHOD 

In this section, the model studied in [17] was considered 

as Case 1 first. The improved approach in this study was 

applied to this case. Then the results was compared to 

each other. By this way, the improved approach was 

validated. After the validation, Case 2 and Case 3 were 

considered. Their parameters and the first natural 

frequencies were obtained by the improved approach.  

2.1. Case 1 

The frequency equation of the first fundamental bending 

mode of the cantilever beam with the tip mass, shown in 

figure 1, is derived as [17], 

1 + 𝑐𝑜𝑠𝛽1𝑐𝑜𝑠ℎ𝛽1 + 𝛽𝑀𝛽1(𝑐𝑜𝑠𝛽1𝑠𝑖𝑛ℎ𝛽1 −
𝑠𝑖𝑛𝛽1𝑐𝑜𝑠ℎ𝛽1) = 0                     (1) 

 

Figure 1. Cantilever Beam with tip Mass and Its Equivalent 

System [17] 

 

Here,  

𝛽𝑀 =
𝑀𝑡𝑖𝑝

𝑚𝑏
=

𝑀𝑡𝑖𝑝

𝜌𝐴𝐿
   

Where, 𝜌, 𝐴, 𝐿 presents density, cross section and length 

of the beam respectively. The 𝛽1
2 parameter is the non-

dimensional first natural frequency of the cantilever 

beam. The fundamental mode shape function of the 

cantielever beam with tip mass can be found as [17] 

𝑤(𝑥) = (𝑐𝑜𝑠ℎ (
𝛽1

𝐿
𝑥) − 𝑐𝑜𝑠 (

𝛽1

𝐿
𝑥)) −

𝑎1 (𝑠𝑖𝑛ℎ (
𝛽1

𝐿
𝑥) − 𝑠𝑖𝑛 (

𝛽1

𝐿
𝑥))   (2) 

Where,  

𝑎1 =
(𝑠𝑖𝑛ℎ𝛽1−𝑠𝑖𝑛(𝛽1))+𝛽1𝛽𝑀(𝑐𝑜𝑠ℎ𝛽1−𝑐𝑜𝑠(𝛽1))

(𝑐𝑜𝑠ℎ𝛽1+𝑐𝑜𝑠(𝛽1))+𝛽1𝛽𝑀(𝑠𝑖𝑛ℎ𝛽1−𝑠𝑖𝑛(𝛽1))
                                       

(3) 

Therefore, total bending deflection of the beam can be 

expressed as 

𝑤(𝑥, 𝑡) = 𝑤𝑡(𝑡)𝑤(𝑥)                                                     

(4) 

If the displacement of the tip of the beam is assumed as 

unity, Eq.4 can be normalized as follows 

𝑤(𝑥, 𝑡) = 𝑤𝑡(𝑡)
𝑤(𝑥)

𝑤(𝐿)
= 𝑤𝑡(𝑡)𝑤̂(𝑥)                                        

(5) 

The equivalent mass and stiffness of the cantilever beam 

with tip mass can be obtained as [17] 

𝑚𝑒𝑞 = 𝜌𝐴 ∫ 𝑤̂(𝑥)2𝑑𝑥
𝐿

0
= 𝑚̂𝑒𝑞𝜌𝐴𝐿                                      

(6) 

𝑘𝑒𝑞 = 𝐸𝐼 ∫ (
𝑑2𝑤̂(𝑥)

𝑑𝑥2 )
2

𝑑𝑥
𝐿

0
= 𝑘̂𝑒𝑞

𝐸𝐼

𝐿3                                      

(7) 

Where, 𝐸, 𝐼 are modulus of elasticity of the beam and 

moment of inertia of the beam respectively. Using Eq. (6) 

and Eq. (7) the first natural frequency can be determined 

as below. 

𝜔1 = √
𝑘̂𝑒𝑞

𝑚̂𝑒𝑞+𝛽𝑀
√

𝐸𝐼

𝜌𝐴𝐿4 = 𝛽1
2√

𝐸𝐼

𝜌𝐴𝐿4                                   

(8) 

Here, 𝛽1
2 can be defined as undimensional natural 

frequency. The important point of this approach is to 

determine 𝑤̂(𝑥). For the first mode of deflection, it can 

be modelled as linear combination of the deflection for 

distributed force 𝑤̂𝑑 and for concentrated tip force 𝑤̂𝑡. In 

Kim’s study, η was defined as an interpolation parameter 

and its formula was not given. Moreover, when 𝛽𝑀 is 

zero, the deflection terms due to the tip force should be 

zero. But in [17] when 𝛽𝑀 is zero, the deflection terms 

which comes from the tip force is not zero. In this study, 

the formula of the first mode deflection is changed and 

the parameter η is redefined as follows. 

𝑤1(𝑥, 𝑡) = 𝑤𝑡(𝑡)𝑤̂𝑐(𝑥) = 𝑤𝑡(𝑡)[η𝑤̂𝑑 + (1 − 𝜂)𝑤̂𝑡]                         
(9) 

Where, 

𝑤̂𝑑 =
1

3𝐿4 𝑥2(6𝐿2 − 4𝐿𝑥 + 𝑥2)                                       

(10) 

𝑤̂𝑡 =
1

2𝐿3 𝑥2(3𝐿 − 𝑥)                                                      

(11) 
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 𝑀𝑇  



 

 

𝜂 =
1

1+𝛽𝑀
                                                                      

(12) 

For a given 𝛽𝑀, 𝑚̂𝑒𝑞 and 𝑘̂𝑒𝑞 can be determined from the 

Eq. (6) and (7) by substituting the 𝑤̂𝑐(𝑥) term into these 

equations instead of 𝑤̂(𝑥). Then the undimensional first 

natural frequency can be obtained from Eq. (8).  

2.2. Case 2 

Now, if the end condition is changed as in figure 2, the 

springs behave as parallel connected springs. The general 

formula of the system remains same except for total 𝑘𝑒𝑞𝑡 

term. Its formula can be obtained as 

𝑘𝑒𝑞𝑡 = 𝑘𝑒𝑞 + 𝑘𝑒                                                            

(13) 

 
Figure 2. Cantilever Beam with tip mass and spring and Its 

Eqivalent System 
 

Where, 𝑘𝑒 is end-spring constant. If 𝑘𝑒 term is 

normalized as below. 

𝑘̂𝑒𝑞𝑒 = 𝑘𝑒
𝐿3

3𝐸𝐼
                                                               

(14) 

As a result, the fundemantal natural frequency of that 

system is becomes as 

𝜔1 = √
𝑘̂𝑒𝑞𝑡

𝑚̂𝑒𝑞+𝛽𝑀
                                                         (15) 

Here, 

𝑘̂𝑒𝑞𝑡 = 𝑘̂𝑒𝑞 + 𝑘̂𝑒𝑞𝑒 

 

2.3. Case 3 

Then, if we change the end condition again such as 

cantilever beam with conected mass-spring attachment as 

shown in figure 3. The equivalent system is assumed as 

two masses-two springs system. 

 
Figure 3. Cantilever beam with connected mass-spring system 

and Its Equivalent System 

 

Here, the equivalent system’s equation of motion is as 

follows [10]. 

[
𝑚𝑒𝑞 0

0 𝑚𝑒
] [

𝑥̈𝑒𝑛𝑑

𝑥̈𝑒
] + [

𝑘𝑒𝑞 + 𝑘𝑒 −𝑘𝑒

−𝑘𝑒    𝑘𝑒
] [

𝑥𝑒𝑛𝑑

𝑥𝑒
] = 0                                

(16) 

Where, 𝑥𝑒𝑛𝑑  and 𝑥𝑒 are deflection at the end of the beam 

and deflection of connected mass respectively.  

Then, the first nondimensional natural frequency can be 

obtained from solution of eigen value of 𝐾 − 𝜔2𝑀 

matrix wrt 𝑘̂𝑒𝑞𝑒, 𝛽𝑀𝑒, 𝑘̂𝑒𝑞. Here, 𝐾, 𝑀, 𝜔 are stiffness 

matrix, mass matrix and natural frequency respectively 

and 𝛽𝑀𝑒 =
𝑚𝑒

𝑚𝑏
. As a result, the nondimensional mass and 

stiffness matrices can be obtained as below. 

𝑀 = [
𝑚̂𝑒𝑞 0

0 𝛽𝑀𝑒
] , 𝐾 = [

𝑘̂𝑒𝑞 + 𝑘̂𝑒𝑔𝑒 −𝑘̂𝑒𝑔𝑒

−𝑘̂𝑒𝑔𝑒 𝑘̂𝑒𝑔𝑒

]                              

(17) 

2.4. Case 4 

Next, a general model will be solved. This model’s first 

bending natural frequency can be obtained exactly from 

the equation below. [12]  

(𝑘̂𝑒𝑔𝑒 − 𝛽𝑀𝑒𝛼4)[(𝑠𝑖𝑛(𝛼) + 𝑠𝑖𝑛ℎ(𝛼))𝑟 − (𝑐𝑜𝑠(𝛼) −

𝑐𝑜𝑠ℎ(𝛼))𝑔] + 𝑘̂𝑒𝑔𝑒𝛽𝑀𝑒𝛼4[(𝑠𝑖𝑛(𝛼) +

𝑠𝑖𝑛ℎ(𝛼))(𝑐𝑜𝑠(𝛼) − 𝑐𝑜𝑠ℎ(𝛼)) − (𝑠𝑖𝑛(𝛼) −

𝑠𝑖𝑛ℎ(𝛼))(𝑐𝑜𝑠(𝛼) + 𝑐𝑜𝑠ℎ(𝛼))] = 0          (18) 

Here,  

𝑟 = 𝛽𝑀𝑒𝛼4(𝑐𝑜𝑠(𝛼) − 𝑐𝑜𝑠ℎ(𝛼)) + 𝛼3(𝑠𝑖𝑛(𝛼) −

𝑠𝑖𝑛ℎ(𝛼))                   (19) 

𝑔 = 𝛽𝑀𝑒𝛼4(𝑠𝑖𝑛(𝛼) − 𝑠𝑖𝑛ℎ(𝛼)) + 𝛼3(𝑐𝑜𝑠(𝛼) +

𝑐𝑜𝑠ℎ(𝛼))                   (20) 

This system’s first natural frequency can be calculated 

approximately by modelling system as two masses-two 

springs system as in figure 4. As a result, approximate 

natural frequency can be obtained by solving eigen-value 

of 𝐾 − 𝜔2𝑀 matrix as in case 3. 

 

 

 
Figure 4.Cantilever Beam with Tip Mass and Mass-Spring 

System and Its Equivalent System 

The equivalent system’s equation of motion can be found 

as 

[
𝑚𝑒𝑞 + 𝑀𝑇 0

0 𝑚𝑒
] [

𝑥̈𝑒𝑛𝑑

𝑥̈𝑒
] + [

𝑘𝑒𝑞 + 𝑘𝑒 −𝑘𝑒

−𝑘𝑒    𝑘𝑒
] [

𝑥𝑒𝑛𝑑

𝑥𝑒
] =

0                       (21) 

Then, the nondimensional mass and stiffness matrices 

can be found as  

𝑀 = [
𝑚̂𝑒𝑞 + 𝛽𝑀 0

0 𝛽𝑀𝑒
] , 𝐾 = [

𝑘̂𝑒𝑞 + 𝑘̂𝑒𝑔𝑒 −𝑘̂𝑒𝑔𝑒

−𝑘̂𝑒𝑔𝑒 𝑘̂𝑒𝑔𝑒

]       

(22) 

 

2.5. Case 5  

Then, the beam is evaluated as a linearly tapered 

cantilever beam. Firstly, this case contains only height 

tapered, only width tapered and double tapered cantilever 

beam with and without tip mass. By using similar 
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formulation, the first natural frequencies of all states can 

be found.  

 
Figure 5. Linearly Tapered Cantilever Beam with Tip Mass 

and Its Equivalent Mass-Spring System 

 

Eq. (6) and (7) should be modified as 

𝑚̂𝑒𝑞 =
∫ 𝐴(𝑥)𝑤̂(𝑥)2𝑑𝑥

𝐿
0

𝐴(𝐿)
                                                             

(23) 

𝑘̂𝑒𝑞 =
∫ 𝐼(𝑥)(

𝑑2𝑤̂(𝑥)

𝑑𝐿2 )
2

𝑑𝑥
𝐿

0

𝐼(𝐿)
                                                         

(24) 

Here, 𝐴(𝑥) = ℎ(𝑥)𝑏(𝑥), 𝐼(𝑥) =
1

12
𝑏(𝑥)ℎ(𝑥)3 and 𝑤(𝑥) 

can be obtained by integrating two times the Eq. (25). 
𝑑2𝑤(𝑥)

𝑑𝑥2 =
𝑀

𝐸𝐼(𝑥)
                                                                  

(25) 

Where, 𝑀 is bending moment derived from the 

distributed load effect. In this case, 𝑏̂(𝜁) = 1 when the 

beam has only height taper, ℎ̂(𝜁) = 1 when the beam has 

only width taper.  

ℎ̂(𝑥) =
ℎ(𝑥)

𝐻
= 1 − (1 − 𝑛)

𝑥

𝐿
                                                     

(26) 

𝑏̂(𝑥) =
𝑏(𝑥)

𝐵
= 1 − (1 − 𝑎)

𝑥

𝐿
                                                     

(27) 

Here, 𝑛 =
ℎ

𝐻
 is height taper ratio. ℎ and 𝐻 are the heights 

at the right end and the left end of the beam respectively. 

𝑎 =
𝑏

𝐵
 is width taper ratio. 𝑏 and 𝐵 are the widths at the 

right end and the left end of the beam respectively. 

Lastly, ℎ̂(𝑥) and 𝑏̂(𝑥) are non-dimensional heigth and 

width of the beam respectively. If the tip mass is added 

to the beam, the equivalent mass is obtained as follow. 

𝑚̂𝑒𝑞 =
∫ 𝐴(𝑥)𝑤̂(𝑥)2𝑑𝑥

𝐿
0 +𝑤2𝛽𝑀

𝐴(𝐿)
                                                 

(28) 

Here, 𝑤2 = ∫ 𝐴(𝑥)𝑑𝑥
𝐿

0
. The 𝑘̂𝑒𝑞 formulation is same. 

The non-dimensional deflection curves can be found by 

integrating Eq. (25) separetely and the total deflection 

curve can be obtained by using the Eq. (9). 

 

3. RESULTS AND DISCUSSION 

So far, the nondimensional first natural frequency has 

been obtained for all the cases approximately. The 

advantage of our approach is to calculate this frequency 

easily with some small errors. In Kim’s study [17], η 

value’s formulation is not clear and it is seemed that the 

values are limited to those which are given in table. In 

present study, new η value is formulated with respect to 

𝛽𝑀 and formulation of beam deflection for the first mode 

i changed. For instance, η and (1 − 𝜂) terms are replaced. 

These evolutions simplify the calculation’s process and 

provide the adaptation to other cases easily. 

3.1. Case 1 

In table 1, one can see the equivalent system parameters 

of present study and Kim’s work [17]. For small 𝛽𝑀 

values, there are small differences between natural 

frequency values of present study and reference [17]. But 

as 𝛽𝑀 values gets bigger, the natural frequency values are 

converged to each other. One can see that these errors are 

small and acceptable. The main advantage of this 

approach is easy adaptation to the other cases. This 

means that computational time and difficulty of solving 

the equations are decreased. Table 2 presents natural 

frequency values of exact solution, our solution and 

errors between them. For small 𝛽𝑀 values, there are some 

errors but these errors are less than 1%. This means that 

the error values are small and acceptable. 

3.2. Case 2 

From table 3, comparison of natural frequency values for 

case 2 can be seen. In each cell, first figure is the natural 

frequency which is obtained from our approach, the 

second one is exact natural frequency which is listed in 

Gürgöze’s study [12] and third one, which is written in 

bold style, is error percentage. Again, when 𝛽𝑀 value is 

small, the percentage error is relatively large but less than 

1%. Moreover, as 𝑘̂𝑒𝑔𝑒 gets bigger, the percentage error 

gets lower except for 𝛽𝑀 value is zero. It can be seen that 

the error percentage is acceptable and our approach is 

succesfull. 

3.3. Case 3 

In table 4, comparison of natural frequency between our 

approach and exact values can be seen. For each cell, 

arrangement of the values are same with each cell in the 

case 2. One can see that there is a rise of error percentage. 

But, maximum error percentage still less than 5% almost 

3.17%. In spite of this increasing, our approach is still 

successfull.  

3.4. Case 4 

This system is the general case of case 3. Because, if 𝛽𝑀 

is taken as zero in case 4, the system behaves as in case 

3. Here, 𝛽𝑀 value is begun to vary from 0.5. This is 

because of that the maximum error in table 2 is seen as 
0.678719 when 𝛽𝑀 value is 0.5. It will be checked 

whether the increasing of the error percentage still 

proceeds or not. Ideal values comes from the solution of 

Eq. (18). 

From table 5, for each cell, arrangement of the values are 

same with each cell in the case 2 and case 3. One can see 

that the increasing of the error percentages do not 

proceed and the error percentages decrease. The 

maximum error percentage is almost 1.5%. In table 6, the 

𝛽𝑀 value will be increased and it will be checked whether 

this decreasing trend proceeds or not. 

From table 6, one can see that the error percentages are 

decreasing and when 𝛽𝑀 value is increased our approach 

is converged to ideal values which comes from the 

solution of Eq. (18).  

 

 

 
 
 

 
 
 
 

 

 𝑥𝑒𝑛𝑑  𝑥𝑒𝑛𝑑  

𝑘𝑒𝑞 

E, I, A, 𝜌, L, m 

𝑀𝑇 

𝑚𝑒𝑞 + 𝑀𝑇  



 

 

3.5. Case 5 

Reducing the continous tapered beam with tip mass to 

SDOF mass-spring system has not studied in literature 

yet. It is one of contributions of present study to the 

literature. For all tapered cases, there is an assumption 

that the taper is linear. One can see comparison of the first 

non-dimensional natural frequencies between our results 

and [15] results from the table 7. It can also be seen that 

although the percentage of error values are increased, 

their maximum value is 3.06228% and it is still less than 

5% hence it is plausible. The arrangement of the Tables 

7, 8 and 9 is that the first column is taper ratio, the second, 

third, fourth and fifth columns are mass ratios, exact 

natural frequencies, our results and error percentages between 

exact results and our results respectively. 

From table 8, one can see non-dimensional first natural 

frequencies variations wrt the taper and mass ratios and 

error percentages between exact values in [16] and 

present study. It can be seen that the value of the error 

percentages are still low and our formulation is 

succesfull. For double taper case, width and heigth taper 

ratios are assumed to equal to each other.  

From Table 9, one can see the non-dimensional 

fundamental natural frequencies variations wrt mass and 

tapers ratios. The maximum error percentage is 6.38100 

which is still plausible. When the mass ratio is equals to 

zero, the error percentages are decreased while the taper 

ratios are increased but it can be seen that when the mass 

ratio is not equal to zero, the percentages of error are 

increased while the taper ratios are increased. 
 

Table 1. The equivalent system parameters for varying 𝛽𝑀 

 Our Results Reference [17] 

𝛽𝑀 η 𝑚𝑒𝑞 𝑘𝑒𝑞  𝜔1 η 𝑚𝑒𝑞 𝑘𝑒𝑞  𝜔1 

0 1 0.256790 3.2 3.530090 0.339577 0.249445 3.087232 3.518008 

0.001 0.999001 0.256768 3.199601 3.523167 0.342358 0.249386 3.086499 3.510977 

0.01 0.990099 0.256573 3.196059 3.462575 0.366397 0.248874 3.080291 3.449467 

0.1 0.909091 0.254805 3.165259 2.986840 0.537003 0.245264 3.042873 2.968700 

0.5 0.666667 0.249579 3.088889 2.029984 0.790717 0.239986 3.008760 2.016424 

1 0.5 0.246043 3.05 1.564528 0.876033 0.238236 3.003074 1.557332 

5 0.166667 0.239110 3.005556 0.757414 0.970941 0.236303 3.000169 0.756938 

10 0.090909 0.237561 3.001653 0.541479 0.985153 0.236015 3.000044 0.541375 

25 0.038462 0.236494 3.000296 0.344800 0.993982 0.235836 3.000007 0.344788 

50 0.019608 0.236111 3.000077 0.244376 0.996978 0.235775 3.000002 0.244374 

100 0.009901 0.235915 3.000020 0.173002 0.998486 0.235745 3.000000 0.173001 

500 0.001996 0.235755 3.000001 0.077441 0.999697 0.235720 3.000000 0.077441 

1000 0.000999 0.235735 3.000000 0.054766 0.999848 0.235717 3.000000 0.054766 

5000 0.0002 0.235718 3.000000 0.024494 0.999910 0.235716 3.000000 0.024494 

10000 0.00001 0.235716 3.000000 0.017320 0.999605 0.235722 3.000000 0.017320 

 

Table 2. Comparison of natural frequency values between exact values and our values 

𝛽𝑀 𝜔1𝑒𝑥𝑎𝑐𝑡 [17] 𝜔1 % errors 

0 3.516015 3.530090 0.400311 

0.001 3.509003 3.523167 0.403647 

0.01 3.447658 3.462575 0.432671 

0.1 2.967838 2.986840 0.640264 

0.5 2.016299 2.029984 0.678719 

1 1.557298 1.564528 0.464266 

5 0.756937 0.757414 0.063017 

10 0.541375 0.541479 0.019210 

25 0.344788 0.344800 0.003480 

50 0.244374 0.244376 0.000818 

100 0.173001 0.173002 0.000578 

500 0.077441 0.077441 0 

1000 0.054766 0.054766 0 

5000 0.024494 0.024494 0 

10000 0.017320 0.017320 0 

 

 

 

 

 

 

 

 

 



 

 

 

Table 3. Comparison of natural frequency values for case 2 

 𝑘̂𝑒𝑔𝑒 

𝛽𝑀 0 0.5 1 1.5 2 2.5 3 

0 

3.530090 

3.516015 

0.400311 

3.795873 

3.789758 

0.161364 

4.044227 

4.0401 

0.102151 

4.278187 

4.274680 

0.082034 

4.500000 

4.494824 

0.115154 

4.711381 

4.702566 

0.187457 

4.913680 

4.899582 

0.287734 

0.2 

2.631853 

2.612749 

0.731185 

2.833727 

2.820048 

0.485045 

3.022147 

3.012550 

0.318556 

3.199489 

3.192940 

0.205105 

3.367505 

3.363152 

0.129416 

3.527527 

3.524706 

0.080039 

3.680599 

3.678724 

0.050969 

0.4 

2.183572 

2.167991 

0.718674 

2.352879 

2.340900 

0.511726 

2.510983 

2.501680 

0.371871 

2.659617 

2.652501 

0.268282 

2.800372 

2.795016 

0.191643 

2.934384 

2.930430 

0.134915 

3.062537 

3.059666 

0.093845 

0.6 

1.904445 

1.892468 

0.632880 

2.053303 

2.043699 

0.469933 

2.192076 

2.184366 

0.352963 

2.322572 

2.316423 

0.265447 

2.446116 

2.441250 

0.199324 

2.563714 

2.560000 

0.145078 

2.676148 

2.673160 

0.111793 

0.8 

1.709878 

1.700651 

0.542573 

1.844218 

1.836675 

0.410663 

1.969415 

1.963221 

0.315486 

2.087116 

2.082047 

0.243463 

2.198524 

2.194398 

0.188761 

2.304553 

2.301198 

0.145794 

2.405914 

2.403213 

0.112389 

1 

1.564528 

1.557304 

0.463858 

1.687904 

1.681924 

0.355565 

1.802856 

1.797906 

0.275359 

1.910906 

1.906774 

0.216683 

2.013164 

2.009760 

0.169380 

2.110474 

2.107636 

0.134647 

2.203490 

2.201158 

0.105945 

4 

0.842299 

0.841549 

0.089077 

0.909614 

0.908972 

0.070678 

0.972280 

0.971723 

0.057344 

1.031144 

1.030651 

0.047800 

1.086825 

1.086389 

0.040106 

1.139789 

1.139407 

0.033543 

1.190399 

1.190063 

0.028250 

8 

0.603711 

0.603543 

0.027836 

0.652044 

0.651895 

0.022893 

0.697034 

0.696908 

0.018118 

0.739291 

0.739170 

0.016361 

0.779259 

0.779159 

0.012797 

0.817276 

0.817180 

0.011767 

0.853601 

0.853517 

0.009807 

12 

0.495227 

0.495151 

0.015349 

0.534891 

0.534829 

0.011603 

0.571810 

0.571763 

0.008251 

0.606486 

0.606436 

0.008247 

0.639284 

0.639248 

0.005598 

0.670480 

0.670433 

0.007010 

0.700287 

0.700251 

0.005144 

 

Table 4. Comparison of natural frequency values for case 3 

 𝑘̂𝑒𝑔𝑒 

𝛽𝑀𝑒 0.5 1 5 10 50 100 

0.5 

0.925379 

0·921122 

0.462154 

1.215135 

1·205409 

0.806863 

1.794126 

1·764572 

1.674854 

1.918361 

1·883690 

1.840589 

2.027779 

1·988822 

1.958798 

2.041991 

2·002508 

1.971678 

1 

0.656012 

0·653037 

0.455564 

0.866288 

0·859420 

0.799144 

1.331198 

1·307155 

1.839338 

1.449604 

1·419384 

2.129093 

1.563988 

1·527404 

2.395175 

1.579669 

1·542201 

2.429515 

5 

0.293947 

0·292628 

0.450743 

0.389788 

0·386724 

0.792296 

0.618744 

0·606746 

1.977434 

0.686179 

0·670001 

2.414623 

0.758506 

0·736996 

2.918605 

0.769146 

0·746678 

3.009061 

10 

0.207901 

0·206969 

0.450309 

0.275825 

0·273659 

0.791596 

0.439620 

0·431021 

1.995030 

0.488761 

0·477054 

2.454020 

0.542284 

0·526491 

2.999671 

0.550547 

0·533782 

3.140795 

50 

0.092994 

0·092578 

0.449351 

0.123425 

0·122457 

0.790482 

0.197357 

0·193471 

2.008570 

0.219870 

0·214535 

2.486774 

0.244701 

0·237417 

3.068020 

0.248431 

0·240821 

3.160023 

100 

0.065758 

0·065464 

0.449102 

0.087281 

0·086596 

0.791030 

0.139619 

0·136867 

2.010711 

0.155585 

0·151805 

2.490037 

0.173225 

0·168056 

3.075760 

0.175878 

0·170475 

3.169380 

 

 

 

 



 

 

Table 5. Comparison of natural frequency values for case 4 when 𝛽𝑀 = 0.5 

 𝑘̂𝑒𝑔𝑒 

𝛽𝑀𝑒 0.5 1 5 10 50 100 

0.5 

0.911814 

0.909421 

0.263134 

1.161898 

1.156186 

0.494038 

1.489559 

1.476420 

0.889923 

1.532018 

1.517907 

0.929635 

1.564409 

1.549611 

0.954949 

1.568340 

1.553467 

0.957407 

1 

0.650830 

0.649317 

0.233014 

0.847552 

0.843964 

0.425137 

1.198010 

1.187080 

0.920747 

1.262134 

1.249484 

1.012418 

1.315319 

1.301264 

1.080104 

1.322019 

1.307793 

1.087673 

5 

0.292940 

0.292315 

0.213810 

0.386919 

0.385471 

0.375644 

0.600420 

0.594945 

0.920253 

0.658120 

0.650935 

1.103797 

0.716313 

0.707146 

1.296338 

0.724523 

0.715059 

1.323527 

10 

0.207294 

0.206854 

0.212710 

0.274229 

0.273217 

0.370402 

0.430729 

0.426814 

0.917261 

0.475370 

0.470124 

1.115876 

0.522220 

0.515319 

1.339170 

0.529013 

0.521852 

1.372228 

50 

0.092759 

0.092564 

0.210665 

0.122862 

0.122409 

0.370071 

0.194855 

0.193087 

0.915649 

0.216306 

0.213896 

1.126716 

0.239623 

0.236369 

1.376661 

0.243090 

0.239690 

1.418499 

100 

0.065596 

0.065452 

0.220009 

0.086896 

0.086579 

0.366140 

0.137981 

0.136725 

0.918632 

0.153285 

0.151576 

1.127487 

0.169998 

0.167677 

1.384209 

0.172492 

0.170069 

1.424716 

 
Table 6. Comparison of natural frequency values for case 4 when 𝛽𝑀 = 5 

 𝑘̂𝑒𝑔𝑒 

𝛽𝑀𝑒 0.5 1 5 10 50 100 

0.5 

0.695785 

0.695374 

0.059105 

0.713153 

0.712697 

0.063982 

0.721942 

0.721466 

0.065977 

0.722825 

0.722345 

0.066450 

0.723503 

0.723026 

0.065972 

0.723586 

0.723109 

0.065965 

1 

0.591876 

0.591647 

0.038706 

0.655593 

0.655204 

0.059371 

0.688316 

0.687854 

0.067165 

0.691292 

0.690826 

0.067455 

0.693527 

0.693054 

0.068249 

0.693798 

0.693323 

0.068511 

5 

0.289306 

0.289251 

0.019015 

0.372796 

0.372675 

0.032468 

0.502053 

0.501716 

0.067169 

0.522053 

0.521675 

0.072459 

0.537891 

0.537482 

0.076096 

0.539845 

0.539427 

0.077490 

10 

0.205879 

0.205841 

0.018461 

0.269114 

0.269034 

0.029736 

0.391121 

0.390869 

0.064472 

0.416374 

0.416072 

0.072583 

0.438389 

0.438031 

0.081729 

0.441237 

0.440871 

0.083017 

50 

0.092494 

0.092480 

0.015138 

0.122097 

0.122062 

0.028674 

0.189829 

0.189709 

0.063255 

0.208514 

0.208358 

0.074871 

0.227693 

0.227490 

0.089235 

0.230432 

0.230222 

0.091216 

100 

0.065439 

0.065423 

0.024456 

0.086480 

0.086459 

0.024289 

0.135614 

0.135533 

0.059764 

0.149698 

0.149582 

0.077549 

0.164576 

0.164427 

0.090618 

0.166745 

0.166594 

0.090452 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7. Comparison of natural frequency values for case of the height tapered beam 

𝒏 𝜷𝑴 𝝎𝟏𝒆𝒙𝒂𝒄𝒕 [15] 𝝎𝟏 Error % 

1.2 

0 4.30907 4.3267 0.40914 

0.2 3.13864 3.1654 0.85260 

0.4 2.58502 2.6061 0.81541 

0.6 2.24640 2.2633 0.75232 

0.8 2.01359 2.0266 0.46186 

1.0 1.84072 1.8509 0.55304 

2.0 1.36359 1.3674 0.27941 

3.0 1.13186 1.1337 0.16256 

4.0 0.98849 0.9896 0.11229 

5.0 0.88870 0.8894 0.07877 

10.0 0.63497 0.6351 0.02047 

2.0 

0 7.6474 7.6776 0.39491 

0.2 5.1998 5.2692 1.33467 

0.4 4.1786 4.2358 1.36888 

0.6 3.5888 3.6323 1.21210 

0.8 3.1937 3.2268 1.03642 

1.0 2.9053 2.9311 0.88803 

2.0 2.1290 2.1383 0.43682 

3.0 1.7600 1.7645 0.25568 

4.0 1.5339 1.5364 0.16298 

5.0 1.3772 1.3788 0.11618 

10.0 0.9813 0.9817 0.04076 

5.0 

0 21.4630 21.5108 0.22271 

0.2 12.347 12.7211 3.02989 

0.4 9.4864 9.7769 3.06228 

0.6 7.9840 8.1964 2.66032 

0.8 7.0246 7.1818 2.23785 

1.0 6.3423 6.4636 1.91256 

2.0 4.5745 4.6166 0.93255 

3.0 3.7605 3.7802 0.52387 

4.0 3.2674 3.2787 0.34584 

5.0 2.9289 2.9355 0.22534 

10.0 2.0794 2.0807 0.06252 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 8. Comparison of natural frequency values for case of the width tapered beam  

𝒂 𝜷𝑴 𝝎𝟏𝒆𝒙𝒂𝒄𝒕 [15] 𝝎𝟏 Error % 

1.2 

0 3.7168 3.7307 0.37398 

0.2 2.7202 2.7412 0.77200 

0.4 2.2440 2.2612 0.76649 

0.6 1.9527 1.9660 0.68111 

0.8 1.7517 1.7617 0.57087 

1.0 1.6017 1.6098 0.50571 

2.0 1.1879 1.1908 0.24413 

3.0 0.9862 0.9878 0.16224 

4.0 0.8616 0.8624 0.09285 

2.0 

0 4.3152 4.3273 0.28040 

0.2 3.0088 3.0354 0.88407 

0.4 2.4395 2.4617 0.91002 

0.6 2.1045 2.1214 0.80304 

0.8 1.8777 1.8907 0.69234 

1.0 1.7111 1.7213 0.59611 

2.0 1.2589 1.2625 0.28596 

3.0 1.0422 1.0440 0.17271 

4.0 0.9090 0.9100 0.11001 

5.0 

0 5.3977 5.4029 0.09634 

0.2 3.4210 3.4584 1.09325 

0.4 2.6948 2.7267 1.18376 

0.6 2.2934 2.3175 1.05084 

0.8 2.0301 2.0484 0.90143 

1.0 1.8406 1.8548 0.77149 

2.0 1.3386 1.3438 0.38847 

3.0 1.1038 1.1062 0.21743 

4.0 0.9606 0.9619 0.13533 

 

Table 9. Comparison of natural frequency values for case of the double tapered beam  

𝒏 = 𝒂 𝜷𝑴 𝝎𝟏𝒆𝒙𝒂𝒄𝒕 [16] 𝝎𝟏 Error % 

1.2 

0 4.54997 4.5673 0.38088 

0.2 3.25843 3.2879 0.90442 

0.4 2.66608 2.6904 0.91220 

0.6 2.31036 2.3290 0.80680 

0.8 2.06697 2.0813 0.69329 

1.0 1.88708 1.8982 0.58927 

2.0 1.39383 1.3979 0.29200 

5.0 0.90655 0.9073 0.08273 

10.0 0.64725 0.6474 0.02317 

2.0 

0 9.25030 9.2725 0.23999 

0.2 5.72408 5.8261 1.78230 

0.4 4.47965 4.5615 1.82715 

0.6 3.80088 3.8617 1.60016 

0.8 3.35894 3.4046 1.35936 

1.0 3.04210 3.0772 1.15381 

2.0 2.20735 2.2198 0.56402 

5.0 1.41865 1.4208 0.15155 

10.0 1.00862 1.0091 0.04759 

5.0 

0 30.9820 31.0152 0.10716 

0.2 12.5670 13.3689 6.38100 

0.4 9.19450 9.7211 5.72734 

0.6 7.59518 7.9534 4.71641 

0.8 6.61634 6.8725 3.87163 

1.0 5.93881 6.1295 3.21091 

2.0 4.22934 4.2927 1.49812 

5.0 2.68636 2.6967 0.38491 

10.0 1.90227 1.9045 0.11723 



 

 

4. CONCLUSION 

This work proposed a improved and simplified approach 

by comparison of Kim’s method [17] to reduce cantilever 

beam with different boundary conditions to simply mass-

spring system. For reducing mass-spring systems, 

assesstment of equivalent mass and spring parameters are 

very important and should be selected properly. Firstly, 

we improved and simplified the formulation of η in [17] 

because the calculations of η are not clear and simple in 

addition that, this model can not be applied to other types 

of end conditions. Our approach can be applied to other 

end conditions. Then, first bending natural frequencies 

were obtained and compared to [17] with and without tip 

mass. After that, for different boundary conditions in 

[12], the systems are reduced to simple mass-spring 

system, which is also a new approach and slightly 

different from the models in [12], and the first bending 

natural frequencies are presented and compared to results 

in [12]. The exact values can be found by solving the Eq. 

18, whose formulation is given in [12]. The solutions of 

the Eq. (18) was not taken from the [12], It is solved by 

using graphical approach in this work. For the last case, 

the beam is assumed as linearly tapered cantilever beam 

and the first non-dimensional natural frequnecies are 

obtained by our approach and compared to results in [15] 

and [16]. It is the one of contributions of our work. 

Reducing the continous systems to discrete systems made 

the solution simple but sometimes caused some errors. In 

present study, error percanteges are under 7% and while 

tip mass is increased, error percentages are decreased and 

nearly identical to exact values. This work can be 

extended to beams with other the types of boundary 

conditions. 
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