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WAVELET ESTIMATION OF SEMIPARAMETRIC ERRORS IN
VARIABLES MODEL

SEÇİL YALAZ

Abstract. Most of the work on wavelet estimation when the variables are
measured with errors have centered around nonparametric approaches which
cause curse of dimensionality. In this paper it is aimed to avoid this complexity
using wavelet semiparametric errors in variables regression model. Using the-
oretical arguments for nonparametric wavelet estimation a wavelet approach
is represented to estimate partially linear errors in variables model which is a
semiparametric model when explanatory variable of nonparametric part has
measurement error. Assuming that the measurement error has a known dis-
tribution we derive an estimator of the linear parts’parameter. In simulation
study derived method is compared with no measurement error case.

1. Introduction

Image processing plays an important role in our daily life. In the process of
deblurring and denoising the images are improved to pictorial information of them
and with the machine reading the images are processed for automatic machine
perception. According to the location and brightness measures of an image, it
needs to be digitized with some devices which converts the image into its digital
form.
A monochrome image can be expressed by a bivariate function f(x, y), where

(x, y) denotes the spatial location in the image and the function value f(x, y) is
proportional to the brightness of the image at (x, y). In the computer science liter-
ature, the function f(x, y) is often called the image intensity function [1]. An image
can be considered as a surface of the image intensity at each pixel. A regression
surface from a noisy image is often fitted by local smoothing procedures [1], [2].
In image processing, mathematical operations are used for processing any form

of signal processing. Because image processing methods mostly deal with the im-
age as a two-dimensional signals, they use standard signal processing techniques
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to improve it. Signal processing is an enabling technology that encompasses the
fundamental theory, applications, algorithms, and implementations of processing or
transferring information contained in many different physical, symbolic, or abstract
formats broadly designated as signals [3].
Wavelet theory provides a unified framework for a number of techniques which

had been developed independently for various signal processing applications [4].
Most studies including wavelet theory have been recently recognized as different
views of a signal theory. In [5], Chang and Qu represented wavelet estimation of
partially linear models using penalized least squares approach which avoids the re-
strictive smoothness requirements for the nonparametric function of the traditional
smoothing approaches such as smoothing spline, kernel and piecewise polynomial
methods. [6] introduced adaptive wavelet multivariate (x∗ ∈ [0, 1]d, d > 1) non-
parametric regression with errors in variables. They devise an adaptive estimator
based on projection kernels on wavelets and a deconvolution operator.
Curse of dimensionality in nonparametric models causes that converge of any

estimator to the true value is very slow. Because of this complexity, we intro-
duce wavelet semiparametric regression. We extend the wavelet partially linear
regression procedure to semiparametric errors in variables model. We consider the
partially linear model from the data (X,X∗, Y ) with mean function XTβ + g(X∗)
when X∗ has measurement error.
Consider the semiparametric partially linear model:

Yu = XT
u β + g(X∗u) + ∆yu, u = 1, 2, ..., n (1)

where Yu are observations, Xu are n × p dimensional known design points, X∗u is
a random variable defined on [0, 1], β in an unknown p−dimensional parameter
vector, g(.) is unknown and the random model errors ∆yu are iid with N(0, σ2).
Here

χu = X∗u + ∆χu, (2)

where ∆χu are iid measurement errors. It is assumed that ∆χ has a known distrib-
ution which is proposed by [7] for nonparametric model and [8] for semiparametric
model. This model is also studied by [9] for semiparametric model on the assump-
tion that ∆χ has an unknown distribution.
This study is structured as mentioned. In section 2 we briefly describe the

semiparametric errors in variables method for one dimensional wavelets (d = 1).
We will redefine an estimator of linear parts’parameter in Section 3. Section 4
provides some Monte Carlo simulation studies to investigate finite sample properties
of estimators. Finally conclusion and some remarks are given in Section 5.
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2. Approximation Kernels and Family of Estimators for
Nonparametric Function

If parametric part is embedded into response variable in a semiparametric re-
gression model, one can get nonparametric regression model:

Y −XT β̂n︸ ︷︷ ︸ = g(x∗) + ∆y

Y ∗

for E[∆y|x∗] = 0. If β is known nonparametric function can be estimated using
nonparametric methods. Hence, using the theoretical arguments of the nonpara-
metric wavelet estimation we can define a wavelet approach to estimate partially
linear errors in variables model.
Let g(x∗) = E(Y ∗|X∗ = x∗) =

∫
y∗gX∗,Y ∗ (x∗,y∗)dy∗

f(x∗) = (gf)(x∗)
f(x∗) where f(x∗) is

defined as a classical deconvolution problem. We firstly estimate (gf)(x∗). Denote
p(x∗) := g(x∗)× f(x∗) and consider a father wavelet ϕ on the real line satisfying

• ϕ is compactly supported on [−A,A]; A is a positive integer.
• Denote ϕ0k(x∗) = ϕ(x∗ − k). There exists a positive integer N , such that
for any x∗ and k∫ ∑

k∈Z
ϕ(x∗ − k)︸ ︷︷ ︸
ϕ0k(x∗)

ϕ(y∗ − k)︸ ︷︷ ︸
ϕ0k(y∗)

(y∗ − x∗)ldy∗ = δ0l, l = 0, ..., N.

where δ0l is the Kronecker delta which is defined as [11]

δ0l =

{
1 , 0l = 0,
0 , otherwise.

• ϕ is of class the space of functions having all continuous derivatives Cr,
where r ≥ 2.

The associated projection kernel on the space

Vj := span{ϕjk, k ∈ Z}, j ∈ N,
is given for any x∗ and y∗ by

Kj(x
∗, y∗) =

∑
k

ϕjk(x∗)ϕjk(y∗),

where
ϕjk(x∗) = 2

j
2ϕ(2jx∗ − k), j ∈ N, k ∈ Z.

Then the projection of p(x∗) on Vj can be written as,

pj(x
∗) = Kj(p)(x

∗) :=

∫
Kj(x

∗, y∗)p(y∗)dy∗ =
∑
k

pjkϕjk(x∗)

where

pjk =

∫
p(y∗)ϕjk(y∗)dy∗.
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In [6] the authors adapt the kernel approach proposed by [7] in their wavelet context
and they introduced

p̂jk :=
1

n

n∑
u=1

Y ∗u × (Djϕ)j,k(χu) = 2
j
2

1

n

n∑
u=1

Y ∗u

∫
exp(−i2jχu−k)

φϕ(s)

φ∆y(2js)
ds, (3)

p̂j(x
∗) =

1

n

∑
k

n∑
u=1

Y ∗u × (Djϕ)j,k(χu)ϕjk(x∗), (4)

where φϕ(s) is the Fourier transform of wavelet ϕjk and Dj is the deconvolution
operator which is demonstrated by Kn in [7] and defined as follows

(Djϕ)(χ) =

∫
exp(−isχ)

φϕ(s)

φ∆y(2js)
ds. (5)

The authors also proposed a resolution level j selecting rule depending Goldensh-
luger and Lepski methodology [10]. After this step which helps to introduce the
unknown function of the nonparametric part, we can estimate the parameter of the
parametric part.

3. Construction of Estimators

For the model (1.1) let us denote the densities of χ and x∗ by fχ(.) and fx∗(.)
respectively. Then the estimator of fx∗(.) is described as,

f̂n(x∗) =
1

n

∑
k

n∑
u=1

(Djϕ)j,k(χu)ϕjk(x∗), (6)

where (Djϕ)j,k is demonstrated in equation (2.3).
Let

ωnu(.) =
(Djϕ)j,k(.)∑
u(Djϕ)j,k(.)

=
1

n

(Djϕ)j,k(.)

f̂n(.)
. (7)

As we mentioned above if β is known then the estimation of g(.) can be found using
nonparametric errors in variables method which uses classical Nadaraya-Watson
Kernel estimator as follows [12, 13]

gn(x∗) =
∑
k

n∑
u=1

ωnu(x∗)(Y ∗u −XT
u β). (8)

Hence before to find the estimation of nonparametric function we need to estimate
linear parts’parameter. Here the generalized least squares estimates of β can be
used to estimate β̂n as shown below,

β̂n = (X̃T X̃)−1(X̃T Ỹ ) (9)

where Ỹu = Yu −
∑
k

∑n
u=1 ωnu(χu)Yu for Ỹ = (Ỹ1, ..., Ỹn) and X̃u = Xu −∑

k

∑n
u=1 ωnu(χu)Xu for X̃ = (X̃1, ..., X̃n).
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4. Simulation Study

In this section, finite sample properties of the estimators were investigated by
Monte Carlo simulation approach. To carry out calculations and give some simu-
lation results we used MATLAB.
We consider a model which has 2 dimensional linear variable and report on the

simulation results with the sample sizes n = 32, 64, 128 and 256. We consider dif-
ferent nonparametric functions for the nonparametric component as follows

g1 (x∗) = 4.26(exp(−3.25x∗)− 4 exp(−6.5x∗) + 3 exp(−9.75x∗)),

g2 (x∗) =

 4x∗2(3− 4x∗) , 0 ≤ x∗ ≤ 0.5,
4
3x
∗(4x∗2 − 10x∗ + 7)− 1.5 , 0.5 < x∗ ≤ 0.75,

16
3 x
∗(1− x∗)2 , 0.75 < x∗ ≤ 1.

Here g1 is a smoothing function which is given by [14] and g2 is a piecewise poly-
nomial with discontinuity which is given by [15]. In all examples the density of
both the true regressor x∗ and the measurement error ∆χ are chosen as the most
common combinations of ordinarily smooth distributions which are summarized in
Table 1.

1 2 3
x∗ → Beta (2, 2) x∗ → Beta (0.5, 2) x∗ → Uniform [0, 1]
∆χ→ L (0, 0.25) ∆χ→ L (0, 0.25) ∆χ→ L (0, 0.25)
∆y → N (0, 0.25) ∆y → N (0, 0.25) ∆y → N (0, 0.25)
β = (1, 2) β = (1, 2) β = (1, 2)

σ2
∆y = 0.25 σ2

∆y = 0.25 σ2
∆y = 0.25

X → N2 (0, I2) X → N2 (0, I2) X → N2 (0, I2)

Table 1. Functions of variables and values of parameters in each
example driven in simulation

We consider the normal distribution as an example of a supersmooth distribution,
and the Laplace (or double exponential) distribution, uniform distribution and beta
distribution for the ordinarily smooth case. Because Beta (2, 2) and Beta (0.5, 2)
distributions reflect two different behaviors on [0, 1] we use them. Finally, following
the asymptotic considerations given in [6], we choose the primary resolution level
j that we have used throughout our simulations as j(n) = log2(log(n)) + 1.
To compare the results of the cases considering and ignoring measurement errors

average values of N = 100 replicates of mean squared error (MSE) and estimates of
the estimators considered in four different sample sizes are given in Table 2 for g1

and in Table 3 for g2 (NoME: No Measurement Error). It can be easily seen that
the results are encouraging.

5. Conclusion

This paper presents the case wavelet estimation of partially linear model when
nonparametric part has measurement error. If the measurement error is known it
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n = 32 n = 64 n = 128 n = 256

Example 1

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0079
(

0.9943
1.9543

)
0.0027

(
1.0309
2.0062

)
0.0013

(
0.9815
2.0071

)
0.0008

(
0.9846
2.0141

)
NoME 0.0188

(
1.0091
1.8848

)
0.0059

(
0.9747
2.0271

)
0.0022

(
0.9356
1.9803

)
0.0015

(
0.9846
2.0155

)

Example 2

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0130
(

1.0919
2.0000

)
0.0074

(
0.9794
1.8561

)
0.0028

(
0.9628
1.8337

)
0.0015

(
0.9954
1.9974

)
NoME 0.0237

(
1.1162
2.0073

)
0.0058

(
0.8911
1.9115

)
0.0021

(
0.9447
1.9188

)
0.0014

(
1.0384
1.9981

)

Example 3

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0081
(

0.9485
2.0048

)
0.0030

(
1.0618
1.8745

)
0.0018

(
1.0312
2.0733

)
0.0010

(
1.0743
1.9438

)
NoME 0.0221

(
0.9631
1.8586

)
0.0060

(
1.1039
1.7965

)
0.0029

(
1.0369
2.1189

)
0.0019

(
1.0941
1.9345

)
Table 2. Monte Carlo simulation results for g1

n = 32 n = 64 n = 128 n = 256

Example 1

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0064
(

1.0708
1.9043

)
0.0035

(
1.0299
1.9672

)
0.0021

(
1.0160
2.0243

)
0.0009

(
0.9825
2.0090

)
NoME 0.0093

(
1.0135
1.8829

)
0.0036

(
0.9565
2.0048

)
0.0021

(
0.9393
2.0243

)
0.0010

(
0.9958
2.0427

)

Example 2

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0185
(

1.1512
1.8998

)
0.0119

(
1.0085
1.8975

)
0.0065

(
1.0384
1.7115

)
0.0033

(
0.9320
1.9629

)
NoME 0.0385

(
1.2572
1.9170

)
0.0192

(
0.8755
1.9425

)
0.0081

(
1.0450
1.7743

)
0.0042

(
1.0148
1.9589

)

Example 3

MSE β̂ MSE β̂ MSE β̂ MSE β̂

Our 0.0078
(

1.0143
2.0204

)
0.0038

(
1.0571
1.8656

)
0.0027

(
1.0263
2.0203

)
0.0013

(
1.0453
1.9602

)
NoME 0.0238

(
0.9632
1.8918

)
0.0054

(
1.0999
1.8119

)
0.0088

(
0.9970
2.0913

)
0.0018

(
1.0517
1.9696

)
Table 3. Monte Carlo simulation results for g2

is possible to estimate linear parts’parameter using well known Nadaraya-Watson
estimator. In this study we introduced generalized least square estimator of β
based on projection kernels on wavelets and borrowing the ideas of deconvolution
technique. It is discussed in the simulation that the resulting rates are comparable
to no measurement error case. Asymptotic normality of proposed estimator is still
open one and should be investigated.
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