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Existence of periodic solutions for a mechanical
system with piecewise constant forces

Duygu Aru§aslan∗† and Nur Cengiz‡

Abstract

In this study, we consider spring-mass systems subjected to piecewise
constant forces. We investigate su�cient conditions for the existence
of periodic solutions of homogeneous and nonhomogeneous damped
spring-mass systems with the help of the Floquet theory. In addition to
determining conditions for the existence of periodic solutions, stability
analysis is performed for the solutions of the homogeneous system. The
Floquet multipliers are taken into account for the stability analysis [3].
The results are stated in terms of the parameters of the systems. These
results are illustrated and supported by simulations for di�erent values
of the parameters.
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1. Introduction

In the literature, many mathematical models have been suggested to examine real
world processes. In some cases, state of the process in previous time in�uences the
present and future states of the process signi�cantly. Thus, earlier suggested models
have been improved by taking time delays into consideration. These models including
some of the past states of the processes are expressed by delay di�erential equations.
These equations are very important in various problems of economics, ecology, biology,
engineering, medicine and physics [17, 20].
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Delay di�erential equations are generally given in the following form

x′(t) = f(t, x(t), x(t− τ)),(1.1)

where τ is a positive delay value, t ∈ R, x ∈ Rn. It is clear that evolution of the system
(1.1) depends both on the present and the previous time. If the greatest integer function
[t] instead of t − τ is taken as deviating argument in equation (1.1), then di�erential
equations with piecewise constant argument of the form

x′(t) = f(t, x(t), x([t])),(1.2)

are obtained. Di�erential equations with piecewise constant argument can be considered
in the class of delay di�erential equations since the rate of change of the system is
determined by both the present value and the previously memorized values of the state
variable x. This class of di�erential equations was described by Cooke and Wiener at
the beginning of the 1980s [15]. In recent years, several studies about their theory
such as existence and uniquness of solutions [15, 29], oscillations [1, 16, 26, 30, 31],
existence of periodic and almost periodic solutions [1, 24, 27, 32], integral manifolds [23]
and applications in the �elds of biology, control theory, neural networks and biomedical
models of disease [9, 10, 11, 12, 19, 21, 22, 28, 33], stability [6, 7] are available. This
type of equations has been usually examined by reducing them into discrete equations
and applying numerical methods [11, 12, 15, 16, 17, 18, 22, 25, 29].

In (1.2), the distance between the switching moments is �xed as 1 unit. Taking any
piecewise constant function instead of the greatest integer function, di�erential equations
with piecewise constant argument were generalized by Akhmet in [4]. Later, di�erential
equations with piecewise constant argument of generalized type have been studied by
many authors [2, 5, 6, 8, 11, 13, 14].

A classical homogeneous damped spring-mass system is given by

mẍ+ cẋ+ kx = 0,

where x(t) is the displacement of the mass, m > 0 is the mass, c > 0 is the damping
coe�cient and k > 0 is the spring constant. This system exhibits damped harmonic
motion. In other words, if friction force acts on an oscillating system, then the oscillation
amplitude approaches to zero. According to the sign of the discriminant

∆ =
c2

m2
− 4

k

m

of the characteristic equation

r2 +
c

m
r +

k

m
= 0,

the behavior of the system is determined. If ∆ > 0, ∆ = 0 and ∆ < 0, then the system
exhibits motion with over damped, critical damped and under damped, respectively. The
motions with over damped and critical damped are not oscillating, but the motion with
under damped is oscillating. If this system has an external force F , it is described as
follows

mẍ+ cẋ+ kx = F.

In [16], taking the greatest integer function as deviating argument for the force and
using the method of reduction to discrete equations, Dai and Singh studied the oscillatory
motion of the following spring-mass system

mẍ+ cẋ+ kx = Ax([t]),

where A denotes the magnitude of the force and the last system has discontinuities at
the moments [t] because of the piecewise constant force F = Ax([t]).



523

In this study, we take external forces with piecewise constant argument of general-
ized type instead of greatest integer function for the damped spring-mass system. We
determine su�cient conditions for stability of solutions of the linear homogeneous sys-
tem using Floquet multipliers. Additionally, we deal with existence and uniqueness of
periodic solutions for both homogeneous and nonhomogeneous spring-mass systems.

2. Preliminaries

Let Z,N and R be the sets of all integers, natural and real numbers, respectively. Fix
two real-valued sequences (θi), (ζi), i ∈ Z, such that θi < θi+1, θi ≤ ζi ≤ θi+1 for all
i ∈ Z, |θi| → ∞ as |i| → ∞, and assume that there exists a number θ > 0 such that
θi+1 − θi ≤ θ, i ∈ Z.

The most general form of di�erential equations with piecewise constant argument of
generalized type can be expressed as follows [3]

x′(t) = f(t, x(t), x(γ(t))),

where t ∈ R, x ∈ Rn, γ(t) = ζi for t ∈ [θi, θi+1), i ∈ Z. It is clear that the greatest integer
function [t] is a special case of the argument function γ(t) of alternate type: retarded
and advanced. In fact, γ(t) = [t] for θi = ζi = i, i ∈ Z.

In the present paper, we shall consider the following damped spring-mass systems
with piecewise constant argument of generalized type

mx′′ + cx′ + kx = Ax(γ(t)),(2.1)

and

mx′′ + cx′ + kx = Ax(γ(t)) + g(t),(2.2)

where x ∈ R, t ∈ R, g(t) is a scalar, continuous real valued function, and γ(t) = ζi, if
t ∈ [θi, θi+1), i ∈ Z. The systems (2.1) and (2.2) have discontinuities at the moments
θi, i ∈ Z, since the piecewise function γ(t) is not continuous. But the solutions of the
systems (2.1) and (2.2) present a continuous and continuously di�erentiable dynamic
motion within intervals t ∈ [θi, θi+1), i ∈ Z.

Let z1 = x and z2 = x′. Then, spring-mass systems (2.1) and (2.2) can be reduced to
the following �rst order di�erential equations, respectively,

z′(t) = A0z(t) +A1z(γ(t)),(2.3)

and

z′(t) = A0z(t) +A1z(γ(t)) + f(t).(2.4)

Here the matrices A0 =

[
0 1

− k

m
− c

m

]
and A1 =

[
0 0
A

m
0

]
depend on the parameters

of the spring-mass systems (2.1) and (2.2). Moreover, f(t) =

[
0
g(t)

]
. The systems (2.3)

and (2.4) are linear homogeneous and nonhomogeneous systems with argument-function
γ(t), respectively.

In this study, our purpose is to examine damped spring-mass systems with gener-
alized piecewise constant forces without transforming them into discrete equations and
we shall assume that the systems exhibit harmonic motion with under damped, i.e.,

∆ =
c2

m2
− 4

k

m
< 0. While doing this examination, we use Floquet theory for di�eren-

tial equations with piecewise constant argument of generalized type and obtain su�cient
conditions required for the spring-mass systems (2.3) and (2.4) to have periodic solutions
[3]. Furthermore, we determine under which conditions the solutions of the system (2.3)
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exhibit stable, asymptotically stable and unstable behaviour with the help of the Floquet
multipliers. Later, we give a result about the situation expressing that the system (2.4)
has a unique periodic solution corresponding to the initial value. Additionally, we give
numerical simulations, which show that the spring-mass system (2.3) has asymptotically
stable or unstable solutions and the spring-mass system (2.4) has a periodic solution
corresponding to special values chosen for the sequences and the parameters.

2.1. De�nition. [3] A continuous function z(t) is a solution of (2.3)((2.4)) on R if:

(i) the derivative z′(t) exists at each point t ∈ R with the possible exception of the
points θi, i ∈ Z, where one-sided derivatives exist;

(ii) the equation (2.3)((2.4)) is satis�ed for z(t) on each interval (θi, θi+1), i ∈ Z,
and it holds for the right derivative of z(t) at the points θi, i ∈ Z.

3. The matrix-function of the linear homogeneous system

Let us consider the linear homogenous part of (2.3) and (2.4) without piecewise con-
stant argument as follows

x′(t) = A0x(t) =

[
0 1

− k

m
− c

m

]
x(t).(3.1)

Let I be a 2 × 2 identity matrix. Thus, the state transition matrix X(t, s), t, s ∈ R,
such that X(s, s) =I, of the system (3.1) is given by

X(t, s) = eA0(t−s)

= e−α(t−s)

 cos(β(t− s)) +
α

β
sin(β(t− s)) 1

β
sin(β(t− s))

− k

mβ
sin(β(t− s)) cos(β(t− s))− α

β
sin(β(t− s))


where α =

c

2m
, β =

√
k

m
− c2

4m2
=

√
−∆

2
.

Consider the following matrix-function

Mi(t) = X(t, ζi) +

∫ t

ζi

X(t, s)A1(s)ds, i ∈ Z,

de�ned in [6]. This matrix-function is important for the results obtained below. For our
systems (2.3) and (2.4) under consideration, we �nd that

Mi(t) = e−α(t−ζi)
[
Ki Li
Mi Ni

]
,

where indices Ki, Li,Mi, Ni are evaluated as

Ki =

(
1− A

k

)(
cos(β(t− ζi)) +

α

β
sin(β(t− ζi))

)
+
Aeα(t−ζi)

k
,

Li =
1

β
sin(β(t− ζi)),

Mi = − k

mβ

(
1− A

k

)
sin(β(t− ζi))

and

Ni = cos(β(t− ζi))−
α

β
sin(β(t− ζi)).
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We shall need the following assumptions listed below:

(A1)
A

k

(
1− eα(t−ζi)

(
cos(β(t− ζi))−

α

β
sin(β(t− ζi))

))
6= 1, ∀t ∈ [θi, θi+1], i ∈ Z;

(A2) g is ω-periodic;
(A3) There exists a number p ∈ N such that θi+p = θi+ω, ζi+p = ζi+ω, for all i ∈ Z.
(A1) implies that the matrix-function Mi(t) is invertible. (A2) and (A3) guarantee

that the systems (2.3) and (2.4) are periodic.

3.1. Theorem. [6] For every (t0, z0) ∈ R × R2 there exists a unique solution z(t) =
z(t, t0, z0) of (2.3) in the sense of De�nition 2.1. such that z(t0) = z0 if and only if
condition (A1) is valid.

3.2. Theorem. [6] A number t0 ∈ R, θi ≤ t0 < θi+1, is �xed. For every z0 ∈ R2 there
exists a unique solution z(t) = z(t, t0, z0) of (2.3) in the sense of De�nition 2.1. such
that z(t0) = z0 if and only if det[Mi(t0)] 6= 0 and det[Mj(t)] 6= 0 for t = θj , θj+1, j ∈ Z.

4. The fundamental matrix of the homogeneous spring-mass sys-
tem (2.3)

Let us �x t0 ∈ R. Then we can �nd an i ∈ Z such that θi ≤ t0 < θi+1. Then there
exists a fundamental matrix Z(t) = Z(t, t0) satisfying Z(t0) = Z(t0, t0) =I of the spring-
mass system (2.3) [3, 5]. Without loss of generality assume that θi < t0 < ζi, i ∈ Z. For
interval t ∈ [t0, θi+1] which includes the initial point t0, the fundamental matrix is

Z(t, t0) = Z(t) = Mi(t)M
−1
i (t0).

Moreover, the fundamental matrix Z(t) = Z(t, t0) of (2.3) is constructed in two dif-
ferent ways for increasing and decreasing t as explained below [3, 5].

If θi ≤ t0 < θi+1, t ∈ [θl, θl+1], l > i, then

Z(t) = Ml(t)
[ i+1∏
k=l

M−1
k (θk)Mk−1(θk)

]
M−1
i (t0).

If θi ≤ t0 ≤ θi+1, t ∈ [θj , θj+1], j < i, then

Z(t) = Mj(t)
[ i−1∏
k=j

M−1
k (θk+1)Mk+1(θk+1)

]
M−1
i (t0).

It can be shown that Z(t, s) = Z(t)Z−1(s), t, s ∈ R, and a solution z(t), z(t0) = z0,
(t0, z0) ∈ R× R2, of (2.3) is equal to z(t) = Z(t, t0)z0, t ∈ R.

It's di�cult to give a direct formula for the fundamental matrix of the spring-mass
system (2.3). For illustration, we evaluate this matrix for the intervals t ∈ [θi, θi+1],
t ∈ [θi+1, θi+2] where t is increasing and for the interval t ∈ [θi−1, θi] where t is decreasing.

First, consider the interval [θi, θi+1] which includes the initial value t0, θi ≤ ζi ≤ θi+1.
Then, for t ∈ [t0, θi+1] fundamental matrix of (2.3) has the form

(4.1) Z(t) = Mi(t)M
−1
i (t0) =

e−α(t−t0)

si1

[
Ki1 Li1
Mi1 Ni1

]
,

and its indices are as follows

Ki1 =
(

1− A

k

)(
cos(β(t− t0)) +

α

β
sin(β(t− t0))

)
+
Aeα(t−ζi)

k

(
cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi))

)
,
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Li1 =
1

β

(
1− A

k

)
sin(β(t− t0))

+
1

β

Ae−αζi

k

(
eαt0 sin(β(t− ζi))− eαt sin(β(t0 − ζi))

)
,

Mi1 = − k

mβ

(
1− A

k

)
sin(β(t− t0)),

Ni1 =
(

1− A

k

)(
cos(β(t− t0))− α

β
sin(β(t− t0))

)
+
Aeα(t0−ζi)

k

(
cos(β(t− ζi))−

α

β
sin(β(t− ζi))

)
,

si1 = 1− A

k

(
1− eα(t0−ζi)(cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi)))

)
.

Second, for t ∈ [θi−1, θi], θi−1 ≤ ζi−1 ≤ θi, i ∈ Z, we �nd the fundamental matrix of
(2.3) as follows

(4.2) Z(t) = Mi−1(t)M−1
i−1(θi)Mi(θi)M

−1
i (t0) =

e−α(t−t0)

si1si2

[
Ki2 Li2
Mi2 Ni2

]
,

where

Ki2 =

(
1− A

k

)2(
cos(β(t− t0)) +

α

β
sin(β(t− t0))

)
+
A

k

(
1− A

k

)(
eα(t−ζi−1)(cos(β(ζi−1 − t0)) +

α

β
sin(β(ζi−1 − t0)))

+ eα(θi−ζi)(cos(β(t− t0 − θi + ζi)) +
α

β
sin(β(t− t0 − θi + ζi))

−
(

k

mβ2

)
sin(β(t− θi)) sin(β(t0 − ζi))

)
+

A

mβ2

(
1− A

k

)
eα(θi−ζi−1) sin(β(t− ζi−1)) sin(β(t0 − θi))

+
A2

k2
eα(t−ζi+θi−ζi−1)

(
cos(β(t0 + θi − ζi − ζi−1))− α

β
sin(β(t0 + θi − ζi − ζi−1))

+
k

mβ2
sin(β(θi − ζi−1)) sin(β(t0 − ζi))

)
,

Li2 =
1

β

(
1− A

k

)2

sin(β(t− t0))

+
A

kβ

(
1− A

k

)(
eα(t−ζi−1) sin(β(ζi−1 − t0)) + eα(t0−ζi) sin(β(t− ζi))

− eα(θi−ζi) sin(β(t0 − ζi))(cos(β(t− θi)) +
α

β
sin(β(t− θi)))

+ eα(θi−ζi−1) sin(β(t− ζi−1))(cos(β(t0 − θi)) +
α

β
sin(β(t0 − θi)))

)
+

A2

k2β

(
− eα(t−ζi−1+θi−ζi) sin(β(t0 − ζi))(cos(β(θi − ζi−1))− α

β
sin(β(θi − ζi−1)))

+ eα(t−ζi−1+t0−ζi) sin(β(ζi−1 − ζi))

+ eα(t0−ζi−1+θi−ζi) sin(β(t− ζi−1))(cos(β(θi − ζi))−
α

β
sin(β(θi − ζi)))

)
,
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Mi2 = − k

mβ

(
1− A

k

)2

sin(β(t− t0))

+
A

mβ

(
1− A

k

)(
− eα(θi−ζi) sin(β(t− θi))(cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi)))

− eα(θi−ζi−1) sin(β(θi − ζi))(cos(β(t− ζi−1 + t0 − ζi))−
α

β
sin(β(t− ζi−1 + t0 − ζi)))

+ eα(θi−ζi−1) sin(β(t0 − ζi))(cos(β(t− ζi−1 + θi − ζi))−
α

β
sin(β(t− ζi−1 + θi − ζi))

)
,

Ni2 =

(
1− A

k

)2

(cos(β(t− t0))− α

β
sin(β(t− t0)))

+
A

k

(
1− A

k

)(
eα(t0−ζi)(cos(β(t− ζi))−

α

β
sin(β(t− ζi)))

+ (eα(θi−ζi) sin(β(t0 − ζi)) sin(β(t− θi))
k

mβ2
)

+ eα(θi−ζi−1)(cos(β(t− t0 + θi − ζi−1))− α

β
sin(β(t− t0 + θi − ζi−1))

− eα(θi−ζi−1) sin(β(t− ζi−1)) cos(β(t0 − θi))
k

mβ2

)
+
A2

k2
eα(θi−ζi−1+t0−ζi)

(
cos(β(t− ζi−1 + θi − ζi))−

α

β
sin(β(t− ζi−1 + θi − ζi))

+ sin(β(t− ζi−1)) sin(β(θi − ζi))
k

mβ2

)
,

si1 = 1− A

k

(
1− eα(t0−ζi)(cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi)))

)
,

si2 = 1− A

k

(
1− eα(θi−ζi−1)(cos(β(θi − ζi−1))− α

β
sin(β(θi − ζi−1)))

)
.

Finally, for t ∈ [θi+1, θi+2], θi+1 ≤ ζi+1 ≤ θi+2, i ∈ Z, where t is increasing, funda-
mental matrix of (2.3) is

(4.3) Z(t) = Mi+1(t)M−1
i+1(θi+1)Mi(θi+1)M−1

i (t0) =
e−α(t−t0)

si1si3

[
Ki3 Li3
Mi3 Ni3

]
,

where the indices are given by

Ki3 =

(
1− A

k

)2 (
cos(β(t− t0)) +

α

β
sin(β(t− t0))

)
+
A

k

(
1− A

k

)(
eα(t−ζi+1)(cos(β(t0 − ζi+1))− α

β
sin(β(t0 − ζi+1)))

+ eα(θi+1−ζi)(cos(β(t− t0 − θi+1 + ζi))

+
α

β
sin(β(t− t0 − θi+1 + ζi))−

k

mβ2
sin(β(t− θi+1)) sin(β(t0 − ζi)))

)
+

A

mβ2

(
1− A

k

)
eα(θi+1−ζi+1) sin(β(t− ζi+1)) sin(β(t0 − θi+1))

+
A2

k2
eα(t−ζi+θi+1−ζi+1)

(
cos(β(t0 + θi+1 − ζi − ζi+1))

− α

β
sin(β(t0 + θi+1 − ζi − ζi+1)) + sin(β(θi+1 − ζi+1)) sin(β(t0 − ζi))

k

mβ2

)
,
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Li3 =
1

β

(
1− A

k

)2

sin(β(t− t0))

+
A

kβ

(
1− A

k

)(
− eα(t−ζi+1) sin(β(t0 − ζi+1))

+ eα(θi+1−ζi+1) sin(β(t− ζi+1))(cos(β(t0 − θi+1)) +
α

β
sin(β(t0 − θi+1)))

− eα(θi+1−ζi) sin(β(t0 − ζi))(cos(β(t− θi+1)) +
α

β
sin(β(t− θi+1)))

+ eα(t0−ζi) sin(β(t− ζi))
)

+
A2

k2β

(
eα(t0−ζi+1+θi+1−ζi) sin(β(t− ζi+1))(cos(β(θi+1 − ζi))−

α

β
sin(β(θi+1 − ζi)))

− eα(t−ζi+1+t0−ζi) sin(β(ζi − ζi+1))

− eα(t−ζi+1+θi+1−ζi) sin(β(t0 − ζi))(cos(β(θi+1 − ζi+1))− α

β
sin(β(θi+1 − ζi+1)))

)
,

Mi3 = − k

mβ

(
1− A

k

)
sin(β(t− t0))

+
A

mβ

(
1− A

k

)(
− eα(θi+1−ζi) sin(β(t− θi+1))(cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi)))

+ eα(θi+1−ζi+1) sin(β(t0 − θi+1))(cos(β(t− ζi+1))− α

β
sin(β(t− ζi+1)))

)
,

Ni3 =

(
1− A

k

)2 (
cos(β(t− t0))− α

β
sin(β(t− t0))

)
+
A

k

(
1− A

k

)(
eα(t0−ζi)(cos(β(t− ζi))−

α

β
sin(β(t− ζi)))

+ (eα(θi+1−ζi) sin(β(t0 − ζi)) sin(β(t− θi+1))
k

mβ2
)

+ eα(θi+1−ζi+1)(cos(β(t− t0 + θi+1 − ζi+1))− α

β
sin(β(t− t0 + θi+1 − ζi+1))

− (sin(β(t− ζi+1)) sin(β(t0 − θi+1))
k

mβ2

)
+
A2

k2
eα(θi+1−ζi+1+t0−ζi)

(
cos(β(t− ζi+1 + θi+1 − ζi))−

α

β
sin(β(t− ζi+1 + θi+1 − ζi))

+ sin(β(t− ζi+1)) sin(β(θi+1 − ζi))
k

mβ2

)
,

si1 = 1− A

k

(
1− eα(t0−ζi)(cos(β(t0 − ζi))−

α

β
sin(β(t0 − ζi)))

)
and

si3 = 1− A

k

(
1− eα(θi+1−ζi+1)(cos(β(θi+1 − ζi+1))− α

β
sin(β(θi+1 − ζi+1)))

)
.

Clearly, it is not easy to obtain a complete form for the fundamental matrix. So
here, we have created the fundamental matrix of the system (2.3) in three intervals for
illustration.

The following theorem about existence and uniqueness of solutions for the spring-mass
system (2.4) can be given.
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4.1. Theorem. [3] Assume that the condition (A1) is ful�lled. Then for every (t0, z0) ∈
R×R2 there exists a unique solution z(t) = z(t, t0, z0) of (2.4) in the sense of De�nition
2.1. such that z(t0) = z0, and

z(t) = Z(t, t0)z0 +

∫ t

t0

Z(t, s)f(s)ds.

5. Main results

Let t0 = 0 and denote by Z(ω) = Z(ω, t0) = Z(ω, 0) the matrix of monodromy. The
eigenvalues ρ of the monodromy matrix Z(ω) are called Floquet multipliers (or simply

multipliers) of system (2.3). The eigenvalues of the matrix P =
1

ω
lnZ(ω), λ, are called

the Floquet exponents (or simply exponents) [3].
In this section, for the ω−periodic spring-mass systems (2.3) and (2.4), we shall state

the results depending on the multipliers ρ1 and ρ2. ω can be located in one of the intervals
[θi, θi+1] which includes t0, [θl, θl+1], l > i where t is increasing or [θj , θj+1], j < i where
t is decreasing. The monodromy matrix can be found using the constructions presented
in the Section 4. Thus, the periodicity of the solutions for the systems (2.3), (2.4) and
stability of the solutions for the system (2.3) can be investigated using the multipliers.
These results about periodicity and stability are stated by the following theorems [3].

5.1. Theorem. If ρ is a multiplier then there exists a nontrivial solution z(t) of (2.3)
such that z(t+ ω) = ρz(t). Conversely, if there exists a nontrivial solution z(t) of (2.3)
such that z(t+ ω) = ρz(t), then ρ is a multiplier.

5.2. Theorem. System (2.3) has a σω−periodic solution if and only if there exists a
multiplier ρ such that ρσ = 1, σ ∈ Z.

We can say that the spring-mass system (2.4) has a unique ω-periodic solution under
the assumptions given in the next theorem.

5.3. Theorem. If unity is not one of the multipliers, then (2.4) has a unique ω−periodic
solution z(t) such that

z(0) = z0 = [I − Z(ω)]−1

∫ ω

0

Z(ω, s)f(s)ds.(5.1)

Moreover, for the solutions of (2.3), it is possible to analyze stability by Floquet
multipliers as given below.

5.4. Theorem. The solutions of (2.3) are

(i) stable if |ρj | ≤ 1 for ∀j = 1, 2 and ρj is simple when |ρj | = 1;
(ii) asymptotically stable if and only if |ρj | < 1, ∀j = 1, 2;
(iii) unstable if there exists a multiplier for some j = 1, 2 such that |ρj | > 1.

If, for example, ω belongs to one of the intervals [θi, θi+1], [θi−1, θi] or [θi+1, θi+2],
i ∈ Z, then the monodromy matrix and thus multipliers can be computed by using the
equations (4.1), (4.2) and (4.3), respectively. It is possible to �nd the multipliers for
other cases similarly.

6. The numerical simulations

In this section, we give examples with simulations to see more concrete results. Take
the initial value t0 = 0 for all of these examples.
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6.1. Example. First, let the parameters be m = c = A = 1, k = 40 and the sequences

be θi = ζi =
1

10
i. In other words, consider the damped spring mass system

x′′ + x′ + 40x = x(γ(t)).(6.1)

Considering z1 = x and z2 = x′, spring-mass system (6.1) can be reduced to the
following �rst order di�erential equation

z′(t) =

[
0 1
−40 −1

]
z(t) +

[
0 0
1 0

]
z(γ(t)).(6.2)

Since the conditions (A1) and (A3) are satis�ed, the equation (6.1) and so the system
(6.2) are 0.1−periodic. t = ω = 0.1 ∈ [θ0, θ1] = [0, 0.1]. Then, for t ∈ [0, 0.1], the
monodromy matrix is in the following form

Z(0.1) =

[
0.8187863983 0.08894511882
−3.468859634 0.7238801333

]
.

Thus, we �nd the multipliers ρ1 = 0.7713332658+0.5534314163i and ρ2 = 0.7713332658−
0.5534314163i. So, |ρ1| = |ρ2| = 0.9493373159 < 1. According to Theorem 5.1., there
exist nontrivial solutions z(t+0.1) = ρ1z(t) and z(t+0.1) = ρ2z(t) of the system (6.2). It
is seen that the solutions of (6.2) are asymptotically stable, in particular, the �xed point
(0, 0) of the system (6.2) is asymptotically stable. The simulations showing asymptotic
stability of the trivial solution of (6.2) are given in Figure 1.
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Figure 1. Simulations showing the asymptotic stability of the trivial
solution of (6.2) for t ∈ [0, 18] with m = c = A = 1, k = 40, θi = ζi =
1

10
i, i ∈ Z starting at (z1(0), z2(0)) = (1, 0)

If we continue for more intervals, we obtain the simulations given in Figure 2.

6.2. Example. Second, let m = 1, c = 0.00000002, k = 25.0000000000001, A = 1 and

the sequences be θi = ζi =
1

10
i. So, consider the spring mass system

x′′ + 2× 10−8x′ + 25× 10−13x = x(γ(t)).(6.3)

Considering z1 = x and z2 = x′, spring-mass system (6.3) can be reduced to the
following �rst order di�erential equation

z′(t) =

[
0 1

−25× 10−13 −2× 10−8

]
z(t) +

[
0 0
1 0

]
z(γ(t)).(6.4)

It can be shown that the conditions (A1) and (A3) are satis�ed. Hence, the equation
(6.3) and so the system (6.4) are 0.1−periodic. t = ω = 0.1 ∈ [θ0, θ1] = [0, 0.1]. Then,
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Figure 2. Simulations showing the asymptotic stability of the trivial
solution of (6.2) for t ∈ [0, 80] with m = c = A = 1, k = 40, θi = ζi =
1

10
i, i ∈ Z starting at (z1(0), z2(0)) = (1, 0)

for t ∈ [0, 0.1], the monodromy matrix is

Z(0.1) =

[
0.8824792595 0.09588510762
−2.301242583 0.8775825600

]
.

Thus, the multipliers are ρ1 = 0.88003091 + 0.4697327946i and ρ2 = 0.88003091 −
0.4697327946i. So, |ρ1| = |ρ2| = 0.9975486457 < 1. Then Theorem 5.1. implies that
there exist nontrivial solutions z(t+ 0.1) = ρ1z(t) and z(t+ 0.1) = ρ2z(t) of the system
(6.4). It is seen that the solutions of (6.4) are asymptotically stable, in particular, the
�xed point (0, 0) of the system (6.4) is asymptotically stable. The simulations showing
asymptotic stability of the trivial solution of (6.4) are given in Figure 3.
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Figure 3. Simulations showing the asymptotic stability of the triv-
ial solution of (6.4) for t ∈ [0, 20] with m = 1, c = 0.00000002,

k = 25.0000000000001, A = 1, θi = ζi =
1

10
i, i ∈ Z starting at

(z1(0), z2(0)) = (2870.48457639202570,−0.0158952790662500004)

If we continue for more intervals, we see that the solution z1(t) is asymptotically stable
with the simulation in Figure 4. Similarly, for more intervals, it can be seen that the
other solution is also asymptotically stable.
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Figure 4. Simulation showing the asymptotic stability of the triv-
ial solution of (6.4) for t ∈ [0, 350] with m = 1, c = 0.00000002,

k = 25.0000000000001, A = 1, θi = ζi =
1

10
i, i ∈ Z starting at

(z1(0), z2(0)) = (2870.48457639202570,−0.0158952790662500004)

6.3. Example. For k = 10, m = 1, c = 0.01, A = 0.00000001 and the sequences

θi = ζi =
1

10
i, consider the linear nonhomogeneous spring-mass system with piecewise

constant argument of generalized type

x′′ + 0.01x′ + 10x = 10−8x(γ(t)) + 4 cos(20πt).(6.5)

Taking z1 = x and z2 = x′, spring-mass system (6.5) can be reduced to the following
nonhomogeneous di�erential equation

z′(t) =

[
0 1
−10 −0.01

]
z(t) +

[
0 0

10−8 0

]
z(γ(t)) +

[
0

4cos(20πt)

]
.(6.6)

Since the conditions (A1) and (A3) are satis�ed, the equation (6.5) and so the system
(6.6) are 0.1−periodic. t = ω = 0.1 ∈ [θ0, θ1] = [0, 0.1]. Then, for t ∈ [0, 0.1], the
monodromy matrix is in the form

Z(0.1) =

[
0.9504317768 0.09829249245
−0.9829249236 0.9494488518

]
.

Frommonodromy matrix, the multipliers are found as ρ1 = 0.9499403143+0.3108277644i
and ρ2 = 0.9499403143 − 0.3108277644i, so, |ρ1| = |ρ2| = 0.99950013 < 1. Since unity
is not one of the multipliers, the spring-mass system (6.6) has a unique 0.1−periodic
solution with the initial value (z1(0), z2(0)) = (−0.001015784822, 0.00001018364466)
evaluated by using the equation (5.1). The simulations showing 0.1−periodic solution of
(6.6) are given in Figure 5.
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Figure 5. Simulations showing the 0.1−periodic solutions of (6.6)
for t ∈ [0, 10] with k = 10, m = 1, c = 0.01, A =

0.00000001, θi = ζi =
1

10
i, i ∈ Z starting at (z1(0), z2(0)) =

(−0.001015784822, 0.00001018364466)

Besides, the simulation according to the solutions z1(t) and z2(t) in Figure 6 shows
the existence of periodic solution.
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Figure 6. Simulation according to the solutions z1(t) and z2(t) show-
ing the 0.1−periodic solutions of (6.6) for t ∈ [0, 10] with k = 10,

m = 1, c = 0.01, A = 0.00000001, θi = ζi =
1

10
i, i ∈ Z starting at

(z1(0), z2(0)) = (−0.001015784822, 0.00001018364466)

6.4. Example. Let m = 1, c = 1, k = 100, A = 101 and the sequences θi = ζi =
1

10
i.

In other words, consider the spring mass system

x′′ + x′ + 100x = 101x(γ(t))(6.7)

Taking z1 = x and z2 = x′, spring-mass system (6.7) can be reduced to the following
form

z′(t) =

[
0 1
−100 −1

]
z(t) +

[
0 0

101 0

]
z(γ(t)).(6.8)

Since the conditions (A1) and (A3) are satis�ed, the equation (6.7) and so the system
(6.8) are 0.1−periodic. t = ω = 0.1 ∈ [θ0, θ1] = [0, 0.1]. Then, for t ∈ [0, 0.1], the
monodromy matrix is in the form

Z(0.1) =

[
1.056233890 0.08007901070
0.08007901070 0.4749127097

]
.

Thus, we �nd the multipliers ρ1 = 1.067063311 and ρ2 = 0.4640832890. So, according
to Theorem 5.1., there exists nontrivial solutions z(t+0.1) = ρ1z(t) and z(t+0.1) = ρ2z(t)
of the system (6.8). It is seen that the spring-mass system (6.8) has unstable solutions, in
particular, the trivial solution of the system (6.8) is unstable. The simulations showing
instability of the trivial solution of (6.8) are given in Figure 7.
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Figure 7. Simulation showing the unstable solutions of (6.8) for t ∈
[0, 10] with m = 1, c = 1, k = 100, A = 101, θi = ζi = 0.1i, i ∈ Z
starting at (z1(0), z2(0)) = (2, 2)
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