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Abstract

This paper attempts to develop four types of acceptance sampling plans
under the objectives of minimizing the total loss to the producer and
consumer and maximizing the rate of approaching to the ideal operat-
ing characteristic (OC) curve when the quality characteristic follows a
normal distribution and has lower speci�cation limit. To provide the
desired protection for both the producer and the consumer, two con-
straints are considered that balance both producer and consumer risks
by using two speci�ed points on OC curve. The �rst objective func-
tion of this model is constructed based on the total expected loss by
incorporating the one-sided minimum speci�cation Taguchi loss func-
tion, and the second one is constructed based on conformity to the ideal
OC curve by using minimum angle method. Also, the optimal solution
of the proposed plans is determined for 10 di�erent scenarios of pro-
cess parameters. Furthermore, the optimal solution of these plans is
determined when only one of the objective functions is considered.
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1. Introduction

Acceptance sampling is a statistical procedure used for sentencing lots of items at con-
tracts and procurement when destructive, time-consuming, or expensive testing should
be used. Many types of acceptance sampling plans have been proposed. The types of
sampling plans discussed here are variables repetitive group sampling plan, variables
multiple dependent (or deferred) state sampling plan, cumulative count of conforming
sampling plan, and sampling plan for resubmitted lot. Sherman (1965) proposed the
repetitive group sampling (RGS) plan and the concept of repetitive group sampling for
variables inspection is introduced by Balamurali and Jun (2006). Recently, the RGS
plans have been studied by many authors. Examples include Aslam et al. (2011), Wu
(2012), and Liu and Wu (2014). Balamurali and Jun (2007) developed a multiple de-
pendent (or deferred) state (MDS) sampling plan for variables inspection of normally
distributed quality characteristics. Zhang et al. (2008) proposed the cumulative count
of conforming (CCC) charts under inspection by samples. Some other applications of
CCC sampling plan are reported by Fallahnezhad et al. (2011) and Fallahnezhad and
Niaki (2013). Govindaraju and Ganesalingam (1997) developed a resubmitted sampling
plan and examined the situation where resampling is permitted on lots not accepted on
original inspection. Liu et al. (2014) develop a sampling scheme by variables inspection
for resubmitted lots based on the process yield index.

Di�erent approaches are proposed for designing the acceptance sampling plans. In one
of these approaches, a sampling plan is designed in such a way that minimize the producer
and consumer loss simultaneously. Ferrell and Chhoker (2002) proposed economically op-
timal acceptance sampling plans based on the Taguchi loss function to determine the pro-
ducer's tolerance that minimizes the total loss to the producer and consumer. Moskowitz
and Tang (1992) developed a Bayesian analysis for variables acceptance sampling using
quadratic loss function. Fallahnezhad and Aslam (2013) proposed a new acceptance sam-
pling model to decide about the received lot based on cost objective function. They used
the Bayesian inference to evaluate the expected cost of di�erent decisions.

Another approach to design acceptance sampling plans is minimum angle method.
The main purpose of this approach is to reach the ideal operating characteristic (OC)
curve. In acceptance sampling plan with the ideal OC curve, the probability of accepting
an acceptable lot is one and the probability of accepting an unacceptable lot is zero.
Therefore, it is obvious that approaching to the ideal OC curve is favorable. Soundarara-
jan and Christina (1997) were �rst authors who proposed a method for the selection of
optimal single sampling plans based on the minimum angle between the lines that joins
[AQL, Pa(AQL)] to [LQL, Pa(LQL)]. This angle (θ) is denoted in Figure 1. By min-
imizing (θ), the OC curve will approach to the ideal OC curve. tan(θ) is obtained as
follows.

tan (θ) =
LQL−AQL

Pa (AQL)− Pa (LQL)

Since (θ) should be minimized, thus by minimizing the value of tan(θ), (θ) will be min-
imized. Ahmadi Yazdi and Fallahnezhad (2014) presented a markove model for accep-
tance sampling plans based on the cumulative count of conforming run length using the
minimum angle method.
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Figure 1. Tangant angle minimizing using AQL, LQL(Soundararajan
and Christina (1997))

In our proposed approach, new sampling plans is presented by considering the total
expected loss and conformity to the ideal OC curve as objective functions. Thus, accord-
ing to this approach, not only the summation of the producer loss and the consumer loss
has been minimized but also the OC curve of the proposed sampling plan approaches
to the ideal OC curve. The cost function of the proposed model is formulated based
on the application of rectifying inspection plan. In the rectifying inspection plan, the
100% inspection will be executed for the items of the rejected lot and the producer must
repair or replace the nonconforming items. Also, the producer must repair or replace the
nonconforming items detected in the sample of accepted lot. The second function is for-
mulated based on the minimum angle method. So, by minimizing the value of tan(θ), the
OC curve will approach to the ideal OC curve. As mentioned above, both the objective
functions should be optimized simultaneously.

There are two kinds of risks. Producer risk is the probability of rejecting an accept-
able lot and consumer risk is the probability of accepting an unacceptable lot. To design
an appropriate sampling plan, these risks should be balanced. For this purpose, the de-
signer speci�es two points on the OC curve which de�ne the acceptable and unacceptable
quality levels (Pearn and Wu (2006)). Wu et al. (2012) developed a variables inspection
scheme for resubmitted lots so that it could satisfy producers and consumers opposing
requirements.

Therefore, the main purpose of this paper is to develop four types of acceptance
sampling plans based on minimizing the total loss to the producer and consumer and
maximizing the rate of approaching to the ideal OC curve simultaneously. In addition,
two constraints are considered to balance both producer risk α and consumer risk β. In
this research, the classical sampling plans are investigated based on the concept of variable
sampling methods for the quality characteristic with one sided speci�cation limit that
usually occurs in practical application like canning problems. The main contributions of
the model can be summarized as follows:
1. Developing cost objective function based on the application of rectifying inspection
plan for the process that its quality characteristic has only lower speci�cation limit.
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2. Developing the minimum angle method for di�erent types of acceptance sampling
plan.
3. Developing a new objective function to consider economical and statistical properties
of sampling plan.
4. Comparison study of di�erent types of acceptance sampling plans in the presence of
each objective function.

The rest of this paper is organized as follows. The required notations to model the
problem are introduced in Section 2. The design and construction of the proposed models
is presented in detail in Section 3. In Section 4, simulation studies are performed to study
the performance of the proposed plans. Finally, the conclusions of our discussion are given
in Section 5.

2. Notations

The following notations will be used in the rest of the paper:
N : The number of items in the submitted lot.
p: The nonconforming proportion of the submitted lot.
x: The quality characteristic.
ć: The cost of inspection.
cp (x): The loss function of producer.
B: The producer's cost to repair or replace an item.
cc (x): The loss function of consumer.
H: The coe�cient of consumer loss function.
K: Average quality loss.
∆: The consumer's tolerance.
L0: The lower speci�cation limit of the quality characteristic.
µ: Mean value of the quality characteristic (Process mean).
σ: Standard deviation of the quality characteristic (Process standard deviation).
nσ: The sample size.
f(x): The probability density function of the normal random variable with mean µ and
standard deviation σ.
φ(y): The cumulative distribution function of a random variable y.
pij : The transition probability from state i to state j in a single step.
P : The transition probability matrix.
A: An identity matrix that its size is equal to the number of absorbing states.
O: A zero matrix.
R: A matrix that includes the transition probabilities from a transient states to an
absorbing states.
Q: A square matrix that its size is equal to the number of transient states and includes
the transition probabilities from a transient state to a transient state.
M : The fundamental matrix that includes the expected number of times in the long-run
that the process resides in the transient states before absorption occurs.
mij (p): The expected number of transitions from a transient state (i) to a transient state
(j) for given lot quality, p, before absorption occurs.
F : The long-run absorption probability matrix.
fij(p): Long-run transition probability from a transient state (i) to an absorbing state
(j) for given lot quality, p.
Pa (p): The proportion of lots that are expected to be accepted for given lot quality, p.
Pr (p): The proportion of lots that are expected to be rejected for given lot quality, p.
ASN : Average sample number.
E(loss): The expected value of total loss.
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δ:The minimum possible value for quality characteristic.
p1: The acceptable quality level (AQL).
p2: The limiting quality level (LQL).
α: The producer's risk.
β: The consumer's risk.

3. Description of the proposed sampling plans

Consider a lot of N items with a quality level p. Random samples are drawn from the
lot for inspection and based on the di�erence between sample average and lower speci�-
cation limit of the quality characteristic, the lot is accepted, rejected, or the inspection
continues. If the lot is rejected during the decision-making process, then rectifying in-
spection will be applied. It is assumed that the cost of inspection, the producer's cost
to repair or replace a nonconforming item, and the consumer's cost associated with a
product which its quality characteristic deviates from the target value are known. The
cost of inspection and cost of repair or replacement of an item, regardless of the value
of the quality characteristic, are ć and B respectively. Further, the one-sided minimum
speci�cation Taguchi loss function called the larger-is-better loss function is assumed to
represent the consumer's loss. In this function, the deviation from the target is allowed
in one direction only. Let cc (x) be the loss function of consumer that is de�ned as (Liao
and Kao, 2010):

cc (x) =
H

x2
,(3.1)

here, cc (x) represents the loss associated with a speci�ed value of the quality charac-
teristic x, and H is given by

H = K∆2,(3.2)

where K is average quality loss and ∆ is the consumer's tolerance.
It is also assumed that the quality characteristic has the lower speci�cation limit L0

and follows a normal distribution with unknown mean µ and known standard deviation
σ. In the following, four sampling plans are proposed under the same conditions.

An example for application of such models is the canning problem where the amount
of an expensive ingredient put into a can is the quality characteristic (for example, the
amount of vitamin C in a juice). Depending on whether the amount of an expensive
ingredient in the can exceed the lower speci�cation limit or not, the can is classi�ed
as conforming or nonconforming. In this problem, the lot of can with the size of N is
submitted for inspection. A samples of size nσ are randomly selected from the lot and
based on the di�erence between sample average and lower speci�cation limit of the quality
characteristic, the lot is accepted, rejected, or the inspection continues. In the cumulative
count of conforming (CCC) sampling plan, in addition to the criteria considered for
other plans, making decisions is also based on the number of conforming samples before
detecting rth nonconforming sample. This means that, at �rst the inspected sample is
classi�ed as conforming or nonconforming based on the di�erence between sample average
and lower speci�cation limit of the quality characteristic and then based on the number
of conforming samples before detecting rth nonconforming sample the lot is accepted,
rejected, or the inspection continues.

3.1. Proposed variables RGS plan. First, a variables RGS plan is proposed based
on minimizing the total loss to the producer and consumer and maximizing the rate
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of approaching to the ideal operating characteristic (OC) curve simultaneously. The
decision-making process is operated as following steps.

Step 1. From each submitted lot, take a random sample of size nσ, say
(x1, x2, . . . , xnσ ) and compute

v=
x − L0

σ
, where x = 1

nσ

∑nσ
i=1 xi.

Step 2. Accept the lot if v≥kaσ and reject the lot if v<krσ. Otherwise, if krσ ≤ v <
kaσ, repeat the steps 1 and 2 (Note: kaσ > krσ) (Balamurali and Jun, 2006).

It is noted that this plan is characterized by three parameters, namely nσ, kaσ and
krσ, that should be determined.

The decision-making process involves three states, as follows:
state 1: krσ ≤ v < kaσ, taking a new sample for further judgment.
state 2: v≥kaσ, accepting the lot.
state 3: v<krσ, rejecting the lot.

So the transition probabilities from the �rst state to all states mentioned above, can
be obtained as follows.
The probability of taking a new sample for further judgment = p11 = P (krσ ≤ v < kaσ).
The probability of accepting the lot = p12 = P (v≥kaσ).
The probability of rejecting the lot = p13 = P (v<krσ).

The item is nonconforming if its quality characteristic falls below the lower speci�ca-
tion limit L0, thus, the nonconforming proportion of the lot can be determined as:

p = P (x < L0) =

∫ L0

−∞
f(x)dx = 1− φ

(
µ− L0

σ

)
,(3.3)

where f(x) is the probability density function of the normal random variable with mean
µ and standard deviation σ and φ(y) is the cumulative distribution function of a random
variable y that is given by

φ (y) =

∫ y

−∞

1√
2π
exp(

−z2

2
)dz.(3.4)

Thus the mean value of quality characteristic µ is obtained using Eq. (3.3) as follows:

µ = σ × φ−1 (1− p) + L0.(3.5)

Since the quality characteristic is normally distributed with mean µ and standard
deviation σ, thus the following is obtained,

P (v ≥ kaσ) = P

(
x − L0

σ
≥ kaσ

)
= P

(
x− µ
σ√
nσ

≥ (kaσ +
L0 − µ
σ

)
√
nσ

)
(3.6)

The probability of accepting the lot at each iteration in Eq. (3.6) can be written as

p12 = P (v ≥ kaσ) = 1− φ (w1) ,(3.7)

where

w1 =

(
kaσ +

L0 − µ
σ

)
√
nσ(3.8)

and
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P (v < krσ) = P

(
x − L0

σ
< krσ

)
= P

(
x− µ
σ√
nσ

< (krσ +
L0 − µ
σ

)
√
nσ

)
(3.9)

The probability of rejecting the lot at each iteration in Eq. (3.9) can be written as

p13 = P (v < krσ) = φ (w2) ,(3.10)

where

w2 =

(
krσ +

L0 − µ
σ

)
√
nσ(3.11)

Finally, the probability of taking a new sample for further judgment can be obtained
using Eq. (3.7) and (3.10) as follows.

p11 = 1− p12 − p13 = φ (w1)− φ (w2)(3.12)

Then, the transition probability matrix used to describe the transitions of a Markov
chain is expressed as follows:

P =

 p11 p12 p13
0 1 0
0 0 1

(3.13)

It can be realized that the �rst state is transient state and states 2 and 3 are absorbing
states. Therefore, the matrix P is an absorbing Markov chain because each transient state
reaches to an absorbing state.

To analyze the above absorbing Markov chain, the arrangement of transition proba-
bility matrix should be changed in to the following form:

[
A O
R Q

]
(3.14)

where A is an identity matrix, O is a zero matrix, R is a matrix that includes transi-
tion probabilities from non-absorbing states to absorbing states and Q is a transition
probability matrix among non-absorbing states.

So by rearranging rows and columns of the P matrix correspondingly, the following
matrix is obtained:

 1 0 0
0 1 0
p12 p13 p11

(3.15)

The fundamental matrix M can be determined as follows (Bowling et al, 2004):

M = m11 (p) = (I −Q)−1 =
1

1− p11
=

1

1− P (krσ ≤ v < kaσ)
,(3.16)

where I is the identity matrix. The value m11 (p) denotes the expected number of times
in the long-run that the process visits the transient state 1 (i.e., continue inspection) for
given value of p, until one of the absorbing states occures (i.e., accepted or rejected),
when the process starts from the transient state 1. The long-run absorption probability
matrix, F , is calculated as follows (Bowling et al, 2004):
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F = M ×R =
[
f12(p) f13(p)

]
=
[ p12

1−p11
p13

1−p11

]
,(3.17)

where f12(p) and f13(p) denote the proportion of lots that are expected to be accepted
and rejected for given lot quality, p, respectively, and can be written as

Pa (p) = f12 (p) =
p12

1− p11
=

P (v ≥ kaσ)

1− P (krσ ≤ v < kaσ)
=

1− φ(w1)

1− φ (w1) + φ (w2)
(3.18)

and

Pr (p) = f13 (p) =
p13

1− p11
=

P (v < krσ)

1− P (krσ ≤ v < kaσ)
=

φ (w2)

1− φ (w1) + φ (w2)
(3.19)

In the repetitive group sampling plan, the number of items sampled is a random
variable. Moreover, as already noted, m11 (p) is the expected number of times in the
long-run that the sampling continues for value of p, until one of the absorbing states
occures, and in each sampling stage, the sample size is nσ. Thus the average sample
number (ASN) can be determined as follows:

ASN = nσ ×m11 (p)(3.20)

The objective functions of this model are written based on minimizing the total loss
to the producer and consumer and approaching to the ideal OC curve simultaneously.

The total expected loss associated with the repetitive group sampling plan can be
obtained as:

Z1RGS = E(loss) = ASN ×
{
ć+

∫ L0

δ

cp (x) f (x) dx+

∫ ∞
L0

cc (x) f (x) dx

}
+

Pa (p)× (N −ASN)×
∫ ∞
δ

cc (x) f (x) dx+

Pr (p)× (N −ASN)×
{
ć+

∫ L0

δ

cp (x) f(x)dx+

∫ ∞
L0

cc (x) f(x)dx

}
,(3.21)

where

cp (x) = B(3.22)

Proof.

total expected loss = A1 +A2 +A3

A1 = E (cost of inspected items)

A1 consists of three parts. The �rst part is related to the cost of inspecting the items.
The second part presents the cost of the inspected items which their quality characteristic
falls below the lower speci�cation limit L0, so these nonconforming items are returned
to the producer and the costs of repair or replacement of them are the responsibility of
the producer. The third part states that if the quality characteristic of the inspected
items is more than L0, then these items will be sent to the consumer and the consumer
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is exposed to the possible losses. Note that the consumer loss will be decreased with
further increase in quality characteristics.

A2 = E {cost of remained items in the lot | accepting the lot and sending to consumer} ×
P (accepting the lot and sending to consumer)

A2 describes the expected cost of remained items in the lot conditioned on the decision
of accepting the lot. When the lot is accepted, then remained items in the lot will not be
inspected and they will be sent to the consumer. So there will be no costs of inspection
for the remaining items. Also, the producer will not have any costs in this condition,
because the consumer is responsible for cost of all remained items in the lot. That is
why the integration limits are the parameter δ and ∞. The limits δ and ∞ denote that
the item is not inspected and we do not have any information about variations interval
of quality characteristics.

A3 = E {cost of remained items in the lot | rejecting the lot and rectifying inspection} ×
P (rejecting the lot and rectifying inspection)

A3 examines the cost of remained items in the lot if it is rejected. In this case,
rectifying inspection will be executed. When rectifying inspection is carried out then all
of the remained items in the lot will be inspected, nonconforming items will be returned
to the producer and the producer must repair or replace them, conforming items will be
sent to the consumer and the consumer is responsible for cost of them. So, we are faced
with three types of costs, the cost of inspection, the producer's cost, and the consumer's
cost.

It is obvious that each quality characteristic has a random value, but we can be
sure that its value is more than zero, also in the industrial applications, each quality
characteristic can not be less than a speci�ed value like δ. According to equation (3.21),
the �rst term represents the costs associated with inspecting the random samples, the
second term denotes the consumer's loss when the lot is accepted and the third term
represents the costs associated with inspecting remained items in the lot when the lot is
rejected (Ferrell and Chhoker, 2002).

In order to approach to the ideal OC curve, the tangent of angle between the line
that joins [p1, Pa (p1)] to [p2, Pa (p2)] is considered. The tangent of this angle, tan (θ) ,
is obtained as (Soundararajan and Christina, 1997):

Z2RGS = tan (θ) =
p2 − p1

Pa (p1)− Pa (p2)
,(3.23)

where

Pa (p1 = AQL) =
1− φ (w11)

1− φ (w11) + φ (w21)
,

Pa (p2 = LQL ) =
1− φ (w12)

1− φ (w12) + φ (w22)
,(3.24)

here, w11 is the value of w1 at p = AQL (or p1), w21 is the value of w2 at p = AQL, w12

is the value of w1 at p = LQL (or p2) and w22 is the value of w2 at p = LQL. That are
determined as following,
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w11 =

(
kaσ +

L0 − µ1

σ

)
√
nσ, w21 =

(
krσ +

L0 − µ1

σ

)
√
nσ,

w12 =

(
kaσ +

L0 − µ2

σ

)
√
nσ, w22 =

(
krσ +

L0 − µ2

σ

)
√
nσ,(3.25)

where µ1 is the value of µ at AQL and µ2 is the value of µ at LQL, as following:

µ1 = σ × φ−1 (1− p1) + L0,

µ2 = σ × φ−1 (1− p2) + L0.(3.26)

As noted by Soundararajan and Christina (1997), it is obvious that if tan (θ) decreases
then OC curve approaches to the ideal OC curve.

To design an appropriate sampling plan, the opposing requirements of both consumer
and producer must be satis�ed. Thus, the producer desires a high probability of accep-
tance (1 − α) when the nonconforming proportion of lot is equal to acceptable quality
level (AQL) and the consumer desires that the probability of acceptance becomes less
than β when the nonconforming proportion of lot is equal to limiting quality level (LQL).
So the following constraints that cover these requirements are added to the model.

Pa (p1 = AQL) ≥ 1− α,
Pa (p2 = LQL ) ≤ β(3.27)

Now the optimization model of the problem can be written as follows:

MinimizeZ1RGS

MinimizeZ2RGS

Subject to

Pa (p1) ≥ 1− α,
Pa (p2) ≤ β,
kaσ > krσ > 0,

nσ ≥ 1.(3.28)

3.2. Proposed variables MDS sampling plan. Balamurali and Jun (2007) originally
proposed the MDS sampling plan for the inspection process. The proposed plan is the
extension of their plan in which the total expected loss and the rate of approaching to
the ideal OC curve are the objective functions. The plan procedure is stated as follows

Step 1: From each submitted lot, take a random sample of size nσ, say
(x1, x2, . . . , xnσ ) and compute

v=
x−L0

σ
, where x = 1

nσ

∑nσ
i=1 xi.

Step 2: Accept the lot if v≥kaσ and reject the lot if v<krσ. If krσ ≤ v < kaσ and if the
preceding mσ lots were accepted on the condition that vj≥kaσ where j = 1, 2, . . . , mσ,
then accept the current lot otherwise reject the lot.

Note that vj is the statistic obtained in the previous mσ lots and can be computed as
follows
vj=

xj−L0

σ
, where xj = 1

nσ

∑nσ
i=1 xij and (x1j , x2j , . . . , xnσj) is the quality charac-

teristic of sample withdrawn in the j-th lot, where j = 1, 2, . . . , mσ.
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Thus, the parameters of this plan are the sample size nσ, acceptance threshold kaσ,
rejection threshold krσ and number of preceding lots mσ.

The nonconforming proportion of the lot is determined as:

p = P {x < L0 | µ} =

∫ L0

−∞
f(x)dx = 1− φ

(
µ− L0

σ

)
(3.29)

Consequently, mean value of quality characteristic µ is calculated as follows:

µ = σ × φ−1 (1− p) + L0(3.30)

According to the second step of the decision-making process, to calculate the pro-
portion of lots that are expected to be accepted for given value of p, both the current
sample from the lot and the sample results from preceding lots must be considered. Thus
following is obtained

Pa (p) =P (v≥kaσ | p) + P (krσ ≤ v < kaσ | p)×
mσ∏
j=1

P (vj≥kaσ | p),(3.31)

Since the quality characteristic is normally distributed with mean µ and standard
deviation σ, the probabilities can be obtained by

P (v ≥ kaσ) = P

(
x− L0

σ
≥ kaσ

)
= P

(
x− µ
σ√
nσ

≥
(
kaσ +

L0 − µ
σ

)
√
nσ

)
(3.32)

The probability of accepting the lot based on a current sample in Eq. (3.32) can be
written as

P (v ≥ kaσ) = 1− φ (w1) ,(3.33)

and

P (v < krσ) = P

(
x− L0

σ
< krσ

)
= P

(
x− µ
σ√
nσ

<

(
krσ +

L0 − µ
σ

)
√
nσ

)
(3.34)

The probability of rejecting the lot based on a current sample in Eq. (3.34) can be
written as

P (v < krσ) = φ (w2) ,(3.35)

where w1 and w2 are de�ned in Eq. (3.8) and (3.11) respectively.
Thus, the probability of considering the preceding lots for decision making can be

obtained using Eq. (3.33) and (3.35) as follows.

P (krσ ≤ v < kaσ) = φ (w1)− φ (w2)(3.36)

Also, the probability of accepting one of the preceding mσ lots on the condition that
vj ≥ kaσ can be obtained by

(3.37) P (vj ≥ kaσ) = P
(
xj−L0

σ
≥ kaσ

)
= P

(
xj−µ
σ√
nσ

≥
(
kaσ + L0−µ

σ

)√
nσ

)
Equation (3.37) can be written as
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P (vj ≥ kaσ) = 1− φ (w1)(3.38)

Now, the acceptance probability of the lot in Eq. (3.31) can be written as

Pa (p) = [1− φ (w1)] + [φ (w1)− φ (w2)] [1− φ (w1)]mσ(3.39)

In this problem, desired objectives are to minimize the total expected loss and to
maximize the conformity to the ideal OC curve that can be formulated as following
functions.

Z1MDS = E(loss) = nσ ×
{
ć+

∫ L0

δ

cp (x) f (x) dx+

∫ ∞
L0

cc (x) f (x) dx

}
+

Pa (p)× (N − nσ)×
∫ ∞
δ

cc (x) f (x) dx+

Pr (p)× (N − nσ)×
{
ć+

∫ L0

δ

cp (x) f (x) dx+

∫ ∞
L0

cc (x) f (x) dx

}
,(3.40)

where

cp (x) = B,

Pr (p) = 1− Pa (p)(3.41)

and

Z2MDS = tan (θ) =
p2 − p1

Pa (p1)− Pa (p2)
,(3.42)

where

Pa (p1 = AQL) = [1− φ (w11)] + [φ (w11)− φ (w21)] [1− φ (w11)]mσ ,

Pa (p2 = LQL) = [1− φ (w12)] + [φ (w12)− φ (w22)] [1− φ (w12)]mσ ,(3.43)

here, w11, w12, w21 and w22 are obtained in equation (3.25).
Also following constraints are considered in the model to balance producers and con-

sumers risks.

Pa (p1 = AQL) ≥ 1− α,
Pa (p2 = LQL) ≤ β,(3.44)

Now the optimization model of the problem can be written as follows:

MinimizeZ1MDS

MinimizeZ2MDS

Subject to

Pa (p1) ≥ 1− α,
Pa (p2) ≤ β,
kaσ > krσ > 0,

nσ ≥ 1.(3.45)
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3.3. Proposed CCC sampling plan. Applying the cumulative count of conforming
(CCC) control chart under inspection by samples for designing a sampling plan is an
e�ective method. In this plan, in addition to the criteria considered for other plans,
making decisions is also based on the number of conforming samples before detecting
rth nonconforming sample. Let y denote the number of conforming samples till the
detection of rth nonconforming sample. It is obvious that y follows negative binomial
distribution. The decision making method is as follows. If the y value is more than the
critical threshold for acceptance U , then the lot is accepted. If the y value is less than the
critical threshold for rejection L, then the lot is rejected. Otherwise, there is no su�cient
information for decision making, so a new sample should be taken for further judgment.
Thus, states of the decision making method are as follows,
State 1: L < y < U , continue inspecting.
State 2: y ≥ U , the lot is accepted.
State 3: y ≤ L, the lot is rejected.

If pkl denotes the probability of going from state k to state l then transition proba-
bilities are obtained as follows,

p11 = P (L < y < U) , p12 = P (y ≥ U) , p13 = P (y ≤ L)

where P (y = i | r, p0) =
(
i+r−1
r−1

)
(1− p0)ip0

r; for i = 0, 1, 2, . . . is the negative bino-

mial distribution and p0 denotes the proportion of nonconforming samples.
To determine the proportion of nonconforming samples, �rst, from each submitted

lot, take a random sample of size nσ, say (x1, x2, . . . , xnσ ) and compute

v=
x − L0

σ
, where x = 1

nσ

∑nσ
i=1 xi,

if v≥kaσ, then the sample is classi�ed as conforming. Otherwise, the sample is classi�ed
as nonconforming.

Note that each observation is a sample instead of item and v is a criterion to determine
that an inspected sample is conforming or nonconforming, so for each inspected sample if
v≥kaσ, then the sample is classi�ed as conforming, otherwise, the sample is classi�ed as
nonconforming. By identifying each conforming sample, one unit is added to the value of
y and the inspection process will continue till the detection of rth nonconforming sample.

Since the quality characteristic is normally distributed with mean µ and standard
deviation σ, thus following is obtained

(3.46) p0 = P (v < kaσ) = P
(
x−L0
σ

< kaσ
)

= P

(
x−µ
σ√
nσ

< (kaσ + L0−µ
σ

)
√
nσ

)
The proportion of nonconforming samples, p0, in Eq. (3.46) can be written as

p0 = P (v < kaσ) = φ (w1)(3.47)

where w1 is de�ned in Eq. (3.8).
Mean value of quality characteristic µ can be obtained based on the equation of

determining the proportion of nonconforming items as following

p = P {x < L0 | µ} =

∫ L0

−∞
f(x)dx = 1− φ

(
µ− L0

σ

)
,(3.48)

So, mean value of quality characteristic µ is obtained as follows:

µ = σ × φ−1 (1− p) + L0(3.49)
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The transition probability matrix is as follows:

P =

 p11 p12 p13
0 1 0
0 0 1

(3.50)

States 2 and 3 are absorbing state and state 1 is transient. Also, it is possible to go to
an absorbing state from each transient state. As a result, the matrix P is an absorbing
Markov chain. For analyzing this absorbing Markov chain, the matrix is rewritten in
following form.

[
A O
R Q

]
(3.51)

By doing so, the following matrix is obtained:

 1 0 0
0 1 0
p12 p13 p11

(3.52)

The fundamental matrix M can be determined as follows (Bowling et al, 2004):

M = m11 (p) = (I −Q)−1 =
1

1− p11
=

1

1− P (L < y < U)
,(3.53)

where I is the identity matrix and m11 (p) denotes the expected number of visits to
transient state 1 (i.e., continue inspection) starting from transient state 1 until being
absorbed (i.e., accepted or rejected). The long-run absorption probability matrix, F , is
calculated as follows (Bowling et al, 2004):

F = M ×R =
[
f12(p) f13(p)

]
=
[ p12

1−p11
p13

1−p11

]
,(3.54)

where f12(p) and f13(p) denote the proportion of lots that are expected to be accepted
and rejected for given value of p respectively, and can be written as

Pa (p) = f12 (p) =
p12

1− p11
=

P (y ≥ U)

1− P (L < y < U)
(3.55)

and

Pr (p) = f13 (p) =
p13

1− p11
=

P (y ≤ L)

1− P (L < y < U)
(3.56)

In this sampling plan, due to the random feature of the number of samples in-
spected, an important performance measure of sampling plans, the average sample num-
ber (ASN), is used. As mentioned before, m11 (p) is the expected number of visits to
transient state 1 until absorption occurs. Moreover, in each visit to transient state, the
average number of samples inspected is r

p0
(the mean value of negative binomial distri-

bution), and the sample size is nσ. Thus the average sample number (ASN) can be
determined as follows:

ASN = nσ

(
r

p0

)
m11 (p)(3.57)
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The objectives of this model are dependent on two factors: minimizing the total loss
and approaching to the ideal OC curve.

The total expected loss can be obtained as:

Z1CCC = E(loss) = ASN ×
{
ć+

∫ L0

δ

cp (x) f (x) dx+

∫ ∞
L0

cc (x) f (x) dx

}
+

Pa (p)× (N −ASN)×
∫ ∞
δ

cc (x) f (x) dx+

Pr (p)× (N −ASN)×
{
ć+

∫ L0

δ

cp (x) f(x)dx+

∫ ∞
L0

cc (x) f(x)dx

}
,(3.58)

where

cp (x) = B(3.59)

The tangent of angle between the line that joins [p1, Pa (p1)] to [p2, Pa (p2)] is con-
sidered as the second objective function.

Z2CCC = tan (θ) =
p2 − p1

Pa (p1)− Pa (p2)
(3.60)

where Pa (p) has been de�ned in Eq. (3.55) and, therefore, it can be deduced that

Pa (p1 = AQL) =
P
(
y ≥ U

∣∣ r, φ [(kaσ − φ−1 (1− p1)
)
×√nσ

])
1− P

(
L < y < U

∣∣ r, φ [(kaσ − φ−1 (1− p1))×√nσ]
)(3.61)

and

Pa (p2 = LQL) =
P
(
y ≥ U

∣∣ r, φ [(kaσ − φ−1 (1− p2)
)
×√nσ

])
1− P

(
L < y < U

∣∣ r, φ [(kaσ − φ−1 (1− p2))×√nσ]
)(3.62)

To ensure that the opposing requirements of both consumer and producer are satis�ed,
following constraints are added to the model.

Pa (p1 = AQL) ≥ 1− α,
Pa (p2 = LQL ) ≤ β(3.63)

In short, the optimization model of the problem can be written as follows:

MinimizeZ1CCC

MinimizeZ2CCC

Subject to

Pa (p1) ≥ 1− α,
Pa (p2) ≤ β,
U > L > 0.(3.64)
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3.4. Proposed sampling plan for resubmitted lot. In this case, the situation of
resampling from lots is examined under the objectives of minimizing the total expected
loss and maximizing the rate of approaching to the ideal OC curve simultaneously. The
operating procedure of the developed resubmitted sampling plan is given as follows

Step 1: From each submitted lot, take a random sample of size nσ, say
(x1, x2, . . . , xnσ ) and compute

v =
x− L0

σ
, where x = 1

nσ

∑nσ
i=1 xi.

Step 2: Accept the lot if v≥kaσ otherwise, go to step 3.
Step 3: Repeat step 1 and step 2 for m − 1 times. If the lot was accepted then stop

sampling else if the lot was not accepted after m − 1 iterations of sampling then reject
the lot.

Note that vj is the statistic obtained in the m− 1 iterations of sampling and can be
computed as follows

vj=
xj−L0

σ
, where xj = 1

nσ

∑nσ
i=1 xij and j = 1, 2, . . . , m− 1.

For this sampling plan, there are three plan parameters, nσ, kaσ and m, needed to be
determined.

The nonconforming proportion of the lot will be determined as:

p = P {x < L0 | µ} =

∫ L0

−∞
f(x)dx = 1− φ

(
µ− L0

σ

)
,(3.65)

Consequently, mean value of quality characteristic µ is calculated as follows:

µ = σ × φ−1 (1− p) + L0(3.66)

Due to this feature of the plan that resubmission is allowed m − 1 times and in the
case of nonacceptance in each inspection, resampling is done, thus the probability of
acceptance is easily calculated as follows.

Pa (p) = 1− P (v<kaσ)×
m−1∏
j=1

P (vj<kaσ)(3.67)

The probability of rejecting the lot based on a single sample is as follows

P (v < kaσ) = P

(
x− L0

σ
< kaσ

)
= P

(
x− µ
σ√
nσ

< (kaσ +
L0 − µ
σ

)
√
nσ

)
(3.68)

It can be written as

P (v < kaσ) = φ (w1)(3.69)

where w1 is de�ned in Eq. (3.8).
It can be easily deduced that

P (vj < kaσ) = φ (w1)(3.70)

Now, the probability of accepting the lot in Eq. (3.67) can be written as
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Pa (p) = 1− [φ (w1)]m(3.71)

The average sample number (ASN) of the proposed plan for given value of p, can be
determined as follows (Govindaraju and Ganesalingam, 1997)

ASN =
nσPa (p)

P (v≥kaσ)
=
nσ [1− [φ (w1)]m]

1− φ (w1)
(3.72)

The objective functions for the problem are written based on the total expected loss
and conformity to the ideal OC curve as given below:

The �rst objective function follows:

Z1resubmitted lot = E(loss) = ASN ×
{
ć+

∫ L0

δ

cp (x) f (x) dx+

∫ ∞
L0

cc (x) f (x) dx

}
+

Pa (p)× (N −ASN)×
∫ ∞
δ

cc (x) f (x) dx+

Pr (p)× (N −ASN)×
{
ć+

∫ L0

δ

cp (x) f(x)dx+

∫ ∞
L0

cc (x) f(x)dx

}
,(3.73)

where

cp (x) = B(3.74)

And the second objective function follows:

Z2resubmitted lot = tan (θ) =
p2 − p1

Pa (p1) − Pa (p2)
(3.75)

where

Pa (p1 = AQL) = 1 − [φ (w11)]
m

Pa (p2 = LQL) = 1 − [φ (w12)]
m

(3.76)

where w11 and w12 are de�ned in equation (3.25).
The same constraints are considered for the optimization model of this plan,

as:

Pa (p1 = AQL) ≥ 1 − α,

Pa (p2 = LQL ) ≤ β(3.77)

Now the optimization model of the problem can be written as follows:
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MinimizeZ1resubmitted lot

MinimizeZ2resubmitted lot

Subject to

Pa (p1) ≥ 1 − α,

Pa (p2) ≤ β,

nσ ≥ 1.(3.78)

4. Simulation studies

In this study, minimizing the total expected loss, E(loss), and the tangent of
angle between the line that joins [p1, Pa (p1)] to [p2, Pa (p2)], tan (θ), are the
objectives that must be met simultaneously. As mentioned, tan (θ) is obtained as
(Soundararajan and Christina, 1997):

tan (θ) =
p2 − p1

Pa (p1) − Pa (p2)

In fact, due to the constancy of the value of (p2 − p1) in each Scenario, our
goal is to maximize the value of (Pa (p1) − Pa (p2)) where Pa (p1) and Pa (p2) are
the probabilities of accepting the lot when the nonconforming proportion of lot is
equal to AQL and LQL respectively. Thus, these two objectives are combined in
one as follows:

Z =
E(loss)

Pa (p1) − Pa (p2)
,

and it is obvious that this function should be minimized.
10 di�erent scenarios of process parameters are randomly generated by uniform

distribution, and the values are listed in Table 1. For them, the optimal solution
of the proposed plans is determined by solving the related nonlinear optimization
model using MATLAB R2015a software and applying a grid search procedure.
Also, the optimal solution of these plans is determined when only one of the ob-
jective functions is considered for all the proposed plans. The results are reported
in Tables 2, 3, 4, 5, 6 and 7.

It is important to be noted that the design parameters are determined with an
accuracy of one decimal place.
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Table 1. Random process parameters

Scenarios p1 p2 p H B ć N L0 σ α β
1 0.013 0.083 0.141 176 37 6 107 5 4 0.061 0.145
2 0.001 0.176 0.006 88 19 3 147 4 2 0.104 0.200
3 0.017 0.170 0.055 172 23 4 145 3 4 0.082 0.243
4 0.018 0.057 0.009 86 29 9 96 3 2 0.079 0.121
5 0.013 0.047 0.019 189 19 4 91 3 3 0.112 0.120
6 0.015 0.134 0.164 102 31 8 129 1 1 0.055 0.231
7 0.015 0.240 0.139 79 22 6 175 2 1 0.098 0.251
8 0.008 0.098 0.063 87 33 9 114 2 2 0.097 0.217
9 0.013 0.154 0.190 142 34 3 138 2 3 0.064 0.161
10 0.004 0.071 0.006 120 35 6 102 3 2 0.081 0.097

Table 2. The results of proposed variables RGS plan

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ krσ kaσ Z1 Z2 ASN nσ krσ kaσ Z1 ASN nσ krσ kaσ Z2 ASN
1 70 1.2 2.4 1275.34 0.07 82.30 5 1.4 2.0 1273.00 6.37 60 1.1 2.5 0.07 104.49
2 6 1.2 2.3 566.60 0.18 8.58 2 0.5 2.0 564.83 2.60 22 0.0 2.7 0.18 116.32
3 43 1.2 1.5 1023.89 0.15 57.74 8 0.8 1.4 1022.64 11.04 127 1.4 1.5 0.15 144.56
4 13 1.4 2.2 528.60 0.04 17.93 8 1.4 2.2 489.60 11.71 90 1.4 2.2 0.04 95.55
5 67 1.8 2.0 615.36 0.03 90.27 29 1.8 2.2 615.24 90.74 67 1.8 2.0 0.03 90.27
6 53 1.0 2.3 3965.18 0.12 94.11 2 0.7 2.1 3826.64 4.96 53 1.0 2.3 0.12 94.11
7 74 1.1 2.1 2746.88 0.23 134.07 15 0.9 3.3 2746.88 63.28 61 1.1 1.8 0.23 111.48
8 27 1.4 1.6 1403.45 0.10 44.43 27 1.3 1.5 1277.24 39.82 84 1.6 2.2 0.09 113.63
9 37 0.8 2.4 1607.16 0.14 116.42 22 0.9 2.6 1607.16 40.64 37 0.8 2.4 0.14 116.42
10 9 1.6 2.3 572.16 0.07 12.15 4 1.2 2.4 556.49 6.74 80 0.0 2.4 0.07 95.00

Table 3. The results of proposed variables MDS sampling plan

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ krσ kaσ mσ Z1 Z2 nσ krσ kaσ mσ Z1 nσ krσ kaσ mσ Z2

1 107 1.6 1.9 1 1275.34 0.07 7 1.3 1.8 2 1272.71 107 1.6 1.9 1 0.07
2 9 1.4 2.0 1 566.87 0.18 3 0.0 1.5 2 564.96 43 0.0 2.2 1 0.18
3 45 1.2 1.5 1 1023.71 0.15 11 0.0 1.2 2 1022.64 145 0.0 1.6 2 0.15
4 19 1.4 1.9 2 536.00 0.05 17 0.0 1.9 2 523.02 96 1.7 1.9 1 0.04
5 91 1.8 2.0 1 615.19 0.03 91 0.0 1.8 3 615.19 91 1.8 2.0 1 0.03
6 129 0.0 1.7 2 3965.18 0.12 3 0.0 1.6 2 3807.08 129 0.0 1.7 2 0.12
7 162 0.0 1.7 1 2746.88 0.23 80 0.0 2.1 1 2746.88 100 0.0 1.6 1 0.23
8 35 1.3 1.6 1 1395.99 0.09 28 1.2 1.5 1 1239.40 114 1.6 2.0 1 0.09
9 138 0.0 1.7 2 1607.16 0.14 42 1.1 2.1 1 1607.16 138 0.0 1.7 2 0.14
10 12 1.6 2.2 1 576.15 0.07 7 0.0 2.0 2 559.44 102 1.8 2.2 1 0.07
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Table 4. The results of proposed CCC sampling plan for r=1

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ L U kaσ Z1 Z2 ASN nσ L U kaσ Z1 ASN nσ L U kaσ Z2 ASN
1 35 0 2 1.7 1275.34 0.07 35.01 7 1 2 1.5 1273.74 8.18 35 0 2 1.7 0.07 35.01
2 2 0 5 1.4 579.65 0.18 43.19 2 0 1 1.7 573.96 17.92 67 0 1 2.5 0.18 145.52
3 47 0 1 1.6 1025.57 0.15 93.08 2 0 3 0.9 1023.50 18.87 72 0 1 1.6 0.15 142.26
4 No solution No solution No solution
5 17 0 2 1.9 615.69 0.04 88.05 3 1 13 1.2 616.28 89.54 17 0 2 1.9 0.04 88.05
6 43 0 2 1.5 3965.18 0.12 43.03 7 0 1 1.4 3837.29 9.11 43 0 2 1.5 0.12 43.03
7 87 0 1 1.6 2746.88 0.23 87.00 7 0 23 1.4 2746.88 11.00 58 0 2 1.3 0.23 64.18
8 8 0 4 1.4 1512.95 0.09 42.51 5 0 2 1.4 1360.41 21.00 38 0 2 1.7 0.09 50.98
9 46 0 2 1.5 1607.16 0.14 46.00 4 0 32 1.1 1607.16 8.87 46 0 2 1.5 0.14 46.00
10 2 0 6 1.5 671.21 0.07 37.63 2 0 4 1.5 654.40 35.06 2 0 16 1.2 0.07 100.22

Table 5. The results of proposed CCC sampling plan for r=2

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ L U kaσ Z1 Z2 ASN nσ L U kaσ Z1 ASN nσ L U kaσ Z2 ASN
1 15 0 5 1.7 1275.34 0.07 30.71 8 0 1 1.9 1273.66 16.48 15 0 5 1.7 0.07 30.71
2 2 0 4 1.9 573.83 0.18 26.25 2 0 1 2.0 571.42 18.63 34 0 1 2.5 0.18 144.14
3 17 0 2 1.6 1025.28 0.15 90.31 2 0 4 1.1 1023.20 27.07 36 1 2 1.6 0.15 142.77
4 2 0 12 1.4 854.42 0.05 66.62 2 0 11 1.4 834.51 66.62 2 0 18 1.3 0.04 94.07
5 8 0 4 1.9 616.31 0.04 85.44 2 10 23 1.0 615.91 89.67 8 0 4 1.9 0.04 85.44
6 25 0 3 1.6 3965.18 0.12 50.14 4 0 1 1.7 3827.21 9.91 25 0 3 1.6 0.12 50.14
7 43 0 2 1.6 2746.88 0.23 86.09 2 0 47 1.2 2746.88 22.21 29 0 4 1.3 0.23 85.95
8 7 0 3 1.6 1490.29 0.09 45.22 4 0 3 1.5 1339.13 37.72 22 0 3 1.8 0.09 60.61
9 23 0 4 1.5 1607.16 0.14 46.20 2 1 35 1.2 1607.16 7.87 23 0 4 1.5 0.14 46.20
10 2 0 5 1.9 635.33 0.07 29.18 2 0 2 2.2 611.73 17.15 2 0 19 1.4 0.07 101.67

Table 6. The results of proposed CCC sampling plan for r=3

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ L U kaσ Z1 Z2 ASN nσ L U kaσ Z1 ASN nσ L U kaσ Z2 ASN
1 7 0 12 1.6 1275.34 0.07 29.67 3 0 2 2.0 1273.59 11.25 7 0 12 1.6 0.07 29.67
2 2 0 3 2.2 572.37 0.18 21.90 2 0 1 2.2 570.98 19.62 34 0 1 2.6 0.18 146.60
3 9 0 3 1.6 1024.99 0.15 86.36 2 0 3 1.4 1023.11 24.64 24 2 3 1.6 0.15 142.99
4 2 0 9 1.7 735.60 0.04 48.72 2 0 8 1.7 713.86 48.72 2 0 18 1.5 0.04 87.82
5 5 0 6 1.9 615.24 0.04 90.78 2 17 26 1.1 615.70 90.54 7 0 4 2.0 0.04 86.69
6 16 0 5 1.6 3965.18 0.12 49.26 4 0 1 1.8 3832.10 14.50 16 0 5 1.6 0.12 49.26
7 19 0 6 1.5 2746.88 0.23 65.78 2 1 43 1.3 2746.88 19.02 25 0 4 1.4 0.23 95.04
8 5 1 4 1.6 1492.77 0.09 41.27 2 2 6 1.3 1337.32 28.86 14 0 5 1.8 0.09 82.67
9 15 0 6 1.5 1607.16 0.14 46.47 2 5 43 1.1 1607.16 10.00 15 0 6 1.5 0.14 46.47
10 2 0 4 2.2 622.82 0.07 25.16 2 0 2 2.3 603.74 20.43 3 0 12 1.8 0.07 101.95
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Table 7. The results of proposed sampling plan for resubmitted lot

Scenarios Proposed plan with two
objective functions

Proposed plan with the �rst
objective function

Proposed plan with the
second objective function

nσ kaσ m Z1 Z2 ASN nσ kaσ m Z1 ASN nσ kaσ m Z2 ASN
1 107 1.8 1 1275.34 0.07 107.00 4 2.4 7 1273.25 27.66 107 1.8 1 0.07 107.00
2 8 2.2 4 567.00 0.18 9.85 2 2.2 6 564.88 2.98 22 2.7 12 0.18 106.92
3 48 1.5 2 1024.08 0.15 59.91 9 1.5 5 1022.71 14.49 145 1.5 1 0.15 145.00
4 16 2.2 10 551.80 0.04 21.44 11 2.2 6 512.68 15.51 95 2.1 22 0.04 95.46
5 72 2.0 2 615.21 0.03 90.91 91 1.8 1 615.19 91.00 72 2.0 2 0.03 90.91
6 129 1.6 1 3965.18 0.12 129.00 4 1.7 2 3826.13 7.70 129 1.6 1 0.12 129.00
7 175 1.4 1 2746.88 0.23 175.00 66 2.1 2 2746.88 132.00 143 1.4 1 0.23 143.00
8 48 1.5 1 1419.19 0.10 48.00 16 1.6 2 1314.85 25.76 114 1.9 1 0.09 114.00
9 131 1.6 1 1607.16 0.14 131.00 23 2.2 6 1607.16 138.00 131 1.6 1 0.14 131.00
10 10 2.3 4 575.64 0.07 13.30 5 2.4 5 562.01 8.26 80 2.4 9 0.07 95.00

According to Tables 2, 3, 4, 5, 6 and 7, the best proposed plan for each random
scenario is provided in terms of average sample number and objective function
value in Table 8. Then, the proposed plan selected as the best plan in most of the
scenarios, is presented as the best.

Table 8. The best proposed plan

Scenarios The best proposed plan with
two objective functions in each

scenario

The best proposed plan with
the �rst objective function in

each scenario

The best proposed plan with
the second objective function

in each scenario
Z ASN Z1 ASN Z2 ASN

1
All of the proposed

plans
CCC sampling
plan for r=3

MDS sampling
plan

RGS plan
All of the proposed

plans
CCC sampling
plan for r=3

2 RGS plan RGS plan RGS plan RGS plan
All of the proposed

plans
MDS sampling

plan

3
MDS sampling

plan
MDS sampling

plan
RGS plan, MDS
sampling plan

MDS sampling
plan

All of the proposed
plans

CCC sampling
plan for r=1

4 RGS plan RGS plan RGS plan RGS plan
All of the proposed
plans except CCC

sampling plan for r=1

CCC sampling
plan for r=3

5
MDS sampling

plan
CCC sampling
plan for r=2

MDS sampling
plan, sampling

plan for
resubmitted lot

CCC sampling
plan for r=1

RGS plan, MDS
sampling plan,

sampling plan for
resubmitted lot

CCC sampling
plan for r=2

6
All of the proposed

plans
CCC sampling
plan for r=1

MDS sampling
plan

MDS sampling
plan

All of the proposed
plans

CCC sampling
plan for r=1

7
All of the proposed

plans
CCC sampling
plan for r=3

All of the proposed
plans

CCC sampling
plan for r=1

All of the proposed
plans

CCC sampling
plan for r=1

8
MDS sampling

plan
MDS sampling

plan
MDS sampling

plan
CCC sampling
plan for r=1

All of the proposed
plans

CCC sampling
plan for r=1

9
All of the proposed

plans
CCC sampling
plan for r=1

All of the proposed
plans

CCC sampling
plan for r=2

All of the proposed
plans

CCC sampling
plan for r=1

10 RGS plan
MDS sampling

plan
RGS plan RGS plan

All of the proposed
plans

RGS plan,
sampling plan for
resubmitted lot

The best
MDS sampling
plan, RGS plan

MDS sampling
plan

MDS sampling
plan

RGS plan

RGS plan, MDS
sampling plan,

sampling plan for
resubmitted lot

CCC sampling
plan for r=1

As can be seen in Table 8, the proposed variables MDS sampling plan has
better performance than the other proposed plans in most of the scenarios and the
proposed variables RGS plan is the second method that has the best performance.

The average sample number of the proposed plans is additionally shown in
graphical form in Figure 2 and 3.
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Figure 2. The average sample number of the proposed plans for dif-
ferent scenarios

Figure 3. The average sample number of the proposed plans for dif-
ferent scenarios



707

5. Conclusion

In this paper, four nonlinear optimization models are proposed for four types of
acceptance sampling plans. The design parameters are determined by minimizing
the total loss to the producer and consumer and maximizing the rate of approach-
ing to the ideal OC curve simultaneously with two constraints which satisfy the
opposing requirements of both consumer and producer. 10 di�erent scenarios of
process parameters are prepared and the optimal solution of the proposed plans is
determined for them. Also, the optimal solution of these plans is determined for
the scenarios when only one of the objective functions is considered. The results
indicate that the proposed variables MDS sampling plan and the proposed vari-
ables RGS plan ranked as the �rst and second method in terms of having a good
performance respectively.

As a future research, proposed acceptance sampling models can be extended by
considering the assumption that the standard deviation of the quality character-
istic is unknown. In this condition, we can take a random sample of size ns from
the submitted lot, say (x1, x2, . . . , xns) and compute v=x − L0

s where s is the
sample standard deviation.

Here x = 1
ns

∑ns
i=1 xi and s =

√∑
(xi−x)2
ns−1 .

All other formulations are the same and only t distribution should be employed
for evaluating the required probabilities. Thus all of the sampling plans can be
developed based on t distribution and their performance can be compared.
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