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Estimation of inequality indices based on ranked
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Abstract

Measuring the income inequality is a major concern of the economists.
Therefore, numerous indices have been devised to show di�erent fea-
tures of the income inequality. In general, the simple random sampling
procedure is commonly utilized to estimate the inequality measures,
while the ranked set sampling is a more cost saving method which in-
creases the precision and the e�ciency of the inequality estimators. In
this paper the advantages of the ranked set sampling when measur-
ing the amount of the income inequality are examined. Through using
Monte Carlo simulation technique, this paper proves that the ranked
set sampling, increases the precision of inequality indices estimations.
In the end, a real income data set is analyzed to illustrate the obtained
results.
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1. Introduction

Poverty is the product of high levels of income inequality in societies. Moreover,
higher levels of income inequality contributes to lower levels of growth. For these rea-
sons, economists have proposed numerous indices to measure the amount of the income
inequality in societies. One major sampling scheme for estimating those indices is the
simple random sampling (SRS). The main reason for the popularity of this sampling
method in economics is simple calculation of inequality indices. However, using this
method is not always feasible or appropriate. As a two-phase sampling procedure, the
ranked set sampling (RSS) (See [4]) can be used to achieve a balance between cost and
e�ciency when estimating the amount of the income inequality with respect to SRS.
There have been many studies which compared RSS with other sampling methods. RSS
is a more e�cient sampling method than SRS for estimating the populations' mean and
variance (See [8, 13, 14, 16, 17]). Comparing RSS with other two-phase sampling methods
shows that unlike them, RSS does not require any particular distributional assumptions.
Therefore, when restrictive assumptions are not satis�ed using RSS is vindicable; other-
wise RSS usually provides less e�cient estimators. (See [5, 6]). The concept of RSS is
nonparametric, but it has been utilized in parametric cases, too. (See [10, 15]).

Al-Talib and Al-Nasser (2008) introduced a RSS estimator for Gini index based on
the Lorenz curve and compared it with SRS only for a speci�c nonstandard Lorenz
curve. Bansal et al. (2013) introduced RSS estimators for Bonferroni index and absolute
Lorenz index based on the Benferroni curve and absolute Lorenz curve, respectively and
compared their RSS estimations with their SRS estimations when the distribution of the
data is known. They considered exponential, Pareto and power distributions to obtain
the presented estimators which have close forms of Lorenz curve, Bonferroni curve and
absolute Lorenz curve; while in practice, the income distribution is not always known
and these curves are not always available in close forms for any income distribution. The
four-parameter generalized beta distribution of the �rst kind (GB1) and the generalized
beta distribution of the second kind (GB2) and the three-parameter generalized gamma
distribution (GG) are the most popular income models which are �tted to income data
of many countries in recent years (See [2]). Furthermore, these distributions include the
other income distributions as special cases (Figure 1), but their Lorenz curves, Benferroni
curves and absolute Lorenz curves are not available in close forms (See [2]). The Gini
index is the most commonly used measure of inequality but it has some limitations.
Beside Gini index, among the various inequality measures in economics, Theil index (See
[3]) is more prominent and practical than the others. In this paper, in addition to the
Gini index, Theil index and mean log deviation (MLD) (See [3]) index, which are based
on entropy concept are chosen. The Atkinson index is also chosen (See [1]) as a weighted
inequality measure with the inequality aversion parameter. The Gini index, MLD index
and Theil index are respectively as:
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1

2µ
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where µ = E(X). The Atkinson family, is de�ned as below

A(ε) = 1−

(∫ ∞
0

(
x

µ

)1−ε

dF (x)

) 1
(1−ε)

, ε > 0, ε 6= 1,(1.4)

where ε controls the inequality aversion. Whenε tends to 1, the Atkinson index is
obtained as

(1.5) A(1) = 1− 1

µ
exp

(∫ ∞
0

log(x)dF (x)

)
.

In economics, the nonparametric estimators of the mentioned indices are usually used
to measure the income inequality. In this paper, the e�ciency of the estimators of these
indices based on SRS and RSS is compared using the Monte Carlo simulation technique in
nonparametric setting. The organization of this article is as follows: in section two, �rst
the estimators of Gini index, Theil index, MLD index and Atkinson index are presented
for both the SRS and RSS. Afterwards, the mentioned indices are expressed in terms of
the distributional parameters of GB1, GB2 and GG. The third section is dedicated to
the simulation study. In the last section, a real data set, consisting of 7200 real gross
domestic product (GDP) per capita of 172 countries in 1970-2012 is analyzed.

2. Estimations of the Inequality Indices

In this section, �rst the SRS and RSS estimators of the mentioned inequality indices
are obtained. Then, the mentioned inequality indices are expressed in terms of the
distributional parameters of GB1, GB2 and GG to derive the mean square error (MSE)
of their estimators in the simulation study.

Suppose that XSRS = (X1, ..., Xn)is a simple random sample of size n. To obtain
a ranked set sample of size n = rm, the m number of simple random samples of size
m should be chosen and ordered. Then the smallest observation from the �rst sample
and the second smallest observation from the second sample are selected and so on.
The vector of observations XRSS = (X1,1, ..., Xm,m) is a one-cycle RSS of size m. Note
thatXi,i's are not necessarily ordered. By repeating this procedure r times, XRSS =
{X(i)j , i = 1, ...,m, j = 1, ..., r}, where X(i)j denotes the ith order statistics in jth cycle
. The estimators of indices (1.1)-(1.5) based on SRS and RSS are summarized in Table
1. This observational process can be described as follows:

1 : X(1:m)1 X(2:m)1 ... X(m:m)1 → X1,1 = X(1:m)1

2 : X(1:m)2 X(2:m)2 ... X(m:m)2 → X2,2 = X(2:m)2

...
...

...
. . .

...
...

...
m : X(1:m)m X(2:m)m ... X(m:m)m → Xm,m = X(m:m)m
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Table 1. SRS and RSS estimators of G, T , MLD, A(ε) and A(1)

SRS RSS

ĜSRS =
1

2n2x̄SRS

n∑
i=1

n∑
j=1

|xi−xj | ĜRSS =
1

2n2x̄RSS
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m∑
i=1

m∑
j=1
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) 1
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exp

(
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n
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x̄RSS
exp

(
1
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r∑
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)

where x̄SRS = 1
n

∑n
i=1 xi and x̄RSS = 1

n

∑r
j=1

∑m
i=1 x(i)j .

McDonald and Ransom (2008) have obtained the Gini index and the Theil index
forGB1, GB2 and GGdistributions. In the following, the MLD and the Atkinson indices
are obtained for these speci�c distributions.

The cumulative distribution function (cdf) of GB1(a, b, p, q) is:

FGB1(x; a, b, p, q) =
B( xb )a (p, q)

β (p, q)
,

where Bx(p, q) =
∫ x

0
tp−1(1− t)q−1dt. The indices (1.3)-(1.5) of GB1 are obtained as:

MLDGB1 =
1

a
(ϕ (p+ q)− ϕ (p)) + log

β
(
p+ 1

a
, q
)

β (p, q)
,

A(ε)GB1 = 1−
β1− 1

1−ε (p, q)β
1

1−ε
(
p+ 1−ε

a
, q
)

β
(
p+ 1

a
, q
) , ε 6= 1,

A(1)GB1 = 1− β (p, q)

bβ
(
p+ 1

a
, q
) exp

(
ϕ (p)

a
− ϕ (p+ q)

a
+ log b

)
,

respectively, where ϕ(z) = Γ′(z)
Γ(z)

and Γ′(z) = d
dx

Γ(x).

The cumulative distribution function of GB2(a, b, p, q) is:

FGB2(x; a, b, p, q) = 1−
B

(1+( xb )a)−1 (p, q)

β (p, q)
.

Indices (1.3)-(1.5) are

MLDGB2 = −1

a
(ϕ (p)− ϕ (q)) + log

Γ
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a

)
Γ
(
q − 1

a

)
Γ(p)Γ(q)

,
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Γ

1
1−ε

(
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a

)
Γ

1
1−ε

(
q − 1−ε

a

)
Γ1− 1

1−ε (p)Γ1− 1
1−ε (q)
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(
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Γ
(
q − 1

a

) , ε 6= 1,

A(1)GB2 = 1− Γ (p) Γ(q)

bΓ
(
p+ 1

a

)
Γ
(
q − 1

a

) exp

(
ϕ (p)

a
− ϕ (q)

a
+ log b

)
,

respectively.
The cumulative distribution function of GG(a, b, p) is:

FGG(x; a, b, p) = Γ( xb )a (p, 1) ,
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where Γx(α, λ) =
∫ x

0
tα−1e

−t
λ

λαΓ(α)
dt. Its (1.3)-(1.5) indices are derived as follows:

MLDGG = −1

a
ϕ (p) + log

Γ
(
p+ 1

a

)
Γ(p)

,

A(ε)GG = 1−
Γ

1
1−ε

(
p+ 1−ε

a

)
Γ1− 1

1−ε (p)

Γ
(
p+ 1

a

) , ε 6= 1,

A(1)GG = 1− Γ (p)

bΓ
(
p+ 1

a

) exp

(
ϕ (p)

a
+ log b

)
.

According to the Figure 1, these indices can be found for other distributions related to
the GB1,GB2 and GG.
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Figure 1. Some related distributions of GB1 and GB2

3. Simulation Study

In this section, the performance of the estimators of the Gini, Theil, MLD and Atkin-
son indices based on SRS and RSS procedures is compared. The inverse cdf simu-
lation technique is used in order to generate data from GB1, GB2 and GG distribu-
tions. Simple random samples of sizes 10, 30, 45, 60, 80, 100 and ranked set samples with
(m, r) = (2, 5), (3, 10), (3, 15), (4, 15), (4, 20), (5, 20) are considered, where m is the set
size and r is the number of cycles. In this paper, since perfect ranking is considered, m is
chosen up to 5 to reduce the ranking error. To analyze the sensitivity of the results, the
simulation is performed for the mentioned distributions with some di�erent selections of
the parameters. The MSE and the bias of estimators in Section 2 were computed for
both of the sampling procedures, using the Monte Carlo method with 10000 replications.
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The relative e�ciency (RE) is calculated for all the estimators as follows

RE(θ̂SRS , θ̂RSS) =
MSE(θ̂RSS)

MSE(θ̂SRS)
.

The results are presented in the Figures 2-4. The bias of estimators are summarized
in Table 1-12 in the Appendix. It can be seen that RSS estimations perform better
than the SRS estimations in all cases. The results are independent from both the type
of distribution and values of parameters. Also, it is observed that RE decreases as n
increases which means for a large sample size, the RSS estimators are much better than
their counterparts in the SRS scheme.
Remark: In general, Cowell and Flachaire (2007) studied the e�ect of the extreme values
(both large and small incomes) on Gini index, Atkinson index and generalized entropy
family (Theil index and MLD index) using bootstrap method based on some distributions
with heavy or light tail.

4. Real Data

To illustrate the results obtained in the previous sections, a real data set consisting
of 7200 GDP (million dollars) per capita of 172 countries in 1970-2012 has been consid-
ered (the data were extracted from http://www.unctadstat.unctad.org). The maximum
likelihood estimations of the parameters, the P-value of the Kolmogorov-Smirnov (KS)
test and the Akaike information criterion (AIC) for each distribution are calculated
and their results are summarized in Table 2. It is concluded that all the distributions
can be �tted on the data; but according to the AIC, GB2 provides the best �t to the
data. Simple random samples of sizes 3600, 2400, 1800, 1440 and ranked set samples with
(m, r) = (2, 1800), (3, 800), (4, 450), (5, 288) are chosen from the data set. The estimation
of Gini, Theil, MLD and Atkinson indices based on RSS and SRS are summarized in
Table 4. Comparing the results in Table 4 with the values of indices from Table 3, which
are estimated based on GB2 distribution, shows that the inequality indices' estimations
based on the RSS are slightly closer to the GB2 than their counterparts.

Table 2. The values of â, b̂, p̂, q̂ and the corresponding AIC and the
P-value of the KS test

distribution â b̂ p̂ q̂ P-value AIC

GB1 0.0276 15192536.1287 28.1417 6.7575 0.2315 160252.952

GB2 0.0619 15159394.5785 61.4665 99.9399 0.7099 159133.6884

GG 0.3970 28644.3062 0.9581 ��� 0.5627 159408.5400

Table 3. The estimates of the indices G, T , MLD, A(0, 1) and A(1)
in the data set

index G T MLD A(0,1) A(1)

GB2 0.4618 0.4183 0.5267 0.2812 0.9653
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Table 4. The estimations of G, T , MLD,A(0, 1) and A(1) based on
the SRS and RSS

r m n GSRS GRSS TSRS TRSS MLDSRS MLDRSS A(0, 1)SRS A(0, 1)RSS A(1)SRS A(1)RSS

1800 2 3600 0.3806 0.4307 0.3961 0.4066 0.4905 0.4973 0.2069 0.2322 0.9547 0.9568

800 3 2400 0.3827 0.4009 0.3527 0.3828 0.4819 0.4909 0.2091 0.2208 0.9551 0.9548

450 4 1800 0.3741 0.4126 0.3368 0.3831 0.4162 0.4918 0.1990 0.2211 0.9263 0.9551

288 5 1440 0.3818 0.4019 0.2602 0.2433 0.4030 0.4468 0.1681 0.2156 0.9205 0.9491
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Figure 2. The plot of RE of the estimations of G, T , MLD, A(2) and
A(1) versus the sample size n
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Figure 3. The plot of RE of the estimations of G, T , MLD, A(2) and
A(1) versus the sample size n
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Figure 4. The plot of RE of the estimations of G, T , MLD, A(2) and
A(1) versus the sample size n

5. Conclusion

Comparing the RSS to SRS, in terms of both di�erent sample sizes and various under-
lyingþ income distributions indicates that the ranked set estimations of income inequality
indices outperforms the traditional simple random estimations of them. In addition, as
sample size increases, RSS estimators become more e�cient than SRS estimators.
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6. Appendix

Table 1. The bias of the Gini, Theil, MLD and Atkinson indices for
GB1(2, 2, 2, 2)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00221 -0.00185 0.00117 0.04225 0.00035 -0.00237 -0.00098 0.00222 0.04457 0.00137

3 10 -0.00260 -0.00075 0.00323 0.05039 0.00236 -0.00253 -0.00026 0.00385 0.05187 0.00297

3 15 -0.00264 -0.00032 0.00367 0.05158 0.00322 -0.00246 -0.00002 0.00406 0.05253 0.00359

4 15 -0.00259 -0.00077 0.00438 0.05103 0.00407 -0.00231 -0.00055 0.00467 0.05178 0.00436

4 20 -0.00274 -0.00098 0.00523 0.05205 0.00365 -0.00220 -0.00082 0.00544 0.05260 0.00386

5 20 -0.00266 -0.00038 0.00497 0.05340 0.00472 -0.00217 -0.00027 0.00512 0.05384 0.00487

Table 2. The bias of the Gini, Theil, MLD and Atkinson indices for
GB1(1, 2, 2, 3)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.01162 -0.00858 -0.01251 0.07942 -0.01351 -0.00930 -0.00563 -0.00809 0.07126 -0.00966

3 10 -0.00395 -0.00261 0.00389 0.03669 -0.00431 -0.00246 -0.00094 0.00130 0.03098 -0.00198

3 15 -0.00233 -0.00156 0.00221 -0.02622 0.00256 -0.00138 -0.00052 0.00060 -0.02247 0.00109

4 15 -0.00254 -0.00164 0.00259 0.02394 0.00271 -0.00179 -0.00093 0.00144 0.02086 0.00163

4 20 -0.00205 -0.00124 0.00202 -0.01986 0.00210 -0.00150 -0.00075 0.00121 -0.01758 0.00133

5 20 -0.00104 -0.00052 0.00075 0.01476 0.00095 -0.00060 -0.00016 0.00014 0.01272 0.00035
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Table 3. The bias of the Gini, Theil, MLD and Atkinson indices for
GB1(10, 2, 8, 6)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -2.8e-05 -2.5e-05 -3.1e-05 0.00024 -3.1e-05 -1.9e-05 -1.6e-05 -2.2e-05 0.00025 -2.1e-05

3 10 -9.3e-06 -1.0e-05 -1.2e-05 0.00028 -1.4e-05 -3.6e-06 -4.3e-06 -6.3e-06 0.00029 -8.9e-06

3 15 -5.4e-06 -4.2e-06 -8.6e-06 0.00028 -5.2e-06 -1.7e-06 -5.7e-07 -4.9e-06 0.00029 -1.5e-06

4 15 -5.7e-06 -8.3e-06 -1.2e-06 0.00028 5.2e-06 -3.2e-06 -5.8e-06 1.2e-06 0.00028 3.7e-06

4 20 -5.7e-06 -1.0e-05 4.5e-06 0.00029 -3.7e-06 -3.2e-06 -8.8e-06 6.3e-06 0.00029 -1.8e-06

5 20 -4.5e-06 -5.8e-06 2.5e-06 0.00029 9.1e-06 -2.6e-06 -4.4e-06 3.9e-06 0.00030 1.0e-05

Table 4. The bias of the Gini, Theil, MLD and Atkinson indices for
GB1(0.5, 2, 10, 30)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.03597 -0.01413 -0.00665 0.10434 -0.01499 -0.02849 -0.01008 -0.00189 0.11182 -0.01087

3 10 -0.01279 -0.00609 0.00444 0.12564 -0.00758 -0.00775 -0.00362 0.00738 0.13068 -0.00497

3 15 -0.00812 -0.00376 0.00860 0.13040 -0.00442 -0.00478 -0.00204 0.01057 0.13375 -0.00268

4 15 -0.00706 -0.00442 0.01009 0.13112 0.00052 -0.00479 -0.00331 0.01133 0.13339 0.00059

4 20 -0.00551 -0.00376 0.01240 0.13604 -0.00017 -0.00387 -0.00302 0.01326 0.13768 0.00060

5 20 -0.00334 -0.00245 0.01014 0.13659 0.00017 -0.00194 -0.00185 0.01083 0.13799 0.00082

Table 5. The bias of the Gini, Theil, MLD and Atkinson indices for
GB2(2, 2, 2, 2)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.03694 -0.03095 -0.03113 0.07518 -0.06033 -0.03027 -0.02507 -0.02513 0.08325 -0.05531

3 10 -0.01399 -0.01489 -0.01116 0.09366 -0.03431 -0.01025 -0.01128 -0.00747 0.09912 -0.03112

3 15 -0.00988 -0.00657 -0.00726 0.10025 -0.02367 -0.00778 -0.00366 -0.00454 0.10409 -0.02132

4 15 -0.00642 -0.01029 -0.00822 0.10231 -0.02415 -0.00436 -0.00817 -0.00650 0.10472 -0.02267

4 20 -0.00460 -0.00630 -0.00368 0.11329 -0.01815 -0.00353 -0.00510 -0.00261 0.11492 -0.01722

5 20 -0.00454 -0.01023 -0.01072 0.10686 -0.01971 -0.00210 -0.00923 -0.00986 0.10828 -0.01893

Table 6. The bias of the Gini, Theil, MLD and Atkinson indices for
GB2(5, 4, 4, 3)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00931 -0.00300 -0.01204 0.01070 -0.00840 -0.00641 -0.00260 -0.01127 0.01163 -0.00668

3 10 -0.00330 -0.00254 -0.00806 0.01240 -0.00733 -0.00140 -0.00218 -0.00693 0.01300 -0.00556

3 15 -0.00212 -0.00216 -0.00629 0.01273 -0.00451 -0.00081 -0.00209 -0.00504 0.01314 -0.00301

4 15 -0.00166 -0.00188 -0.00521 0.01272 -0.00280 -0.00090 -0.00170 0.00380 0.01296 -0.00145

4 20 -0.00127 -0.00162 0.00323 0.01320 -0.00139 -0.00074 -0.00130 0.00202 0.01337 -0.00100

5 20 -0.00073 -0.00129 0.00196 0.01321 0.00067 -0.00030 -0.00098 0.00113 0.01335 0.00043

Table 7. The bias of the Gini, Theil, MLD and Atkinson indices for
GB2(2, 4, 5, 8)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00276 -0.00564 -0.00685 0.03321 -0.00789 -0.00184 -0.00393 -0.00518 0.03031 -0.00630

3 10 -0.00096 -0.00255 -0.00280 0.03729 -0.00523 -0.00037 -0.00148 -0.00175 0.03539 -0.00421

3 15 -0.00060 -0.00143 -0.00141 0.03802 -0.00352 -0.00020 -0.00066 -0.00067 0.03671 -0.00281

4 15 -0.00051 -0.00178 -0.00112 0.03774 -0.00254 -0.00027 -0.00131 -0.00069 0.03699 -0.00213

4 20 -0.00040 -0.00146 -0.00039 0.03952 -0.00221 -0.00023 -0.00116 -0.00010 0.03899 -0.00194

5 20 -0.00021 0.00136 -0.00139 0.03876 -0.00197 -0.00007 -0.00111 -0.00115 0.03833 -0.00174
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Table 8. The bias of the Gini, Theil, MLD and Atkinson indices for
GB2(0.5, 2, 10, 20)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.06493 -0.07821 -0.07300 0.08027 -0.14257 -0.05355 -0.06800 -0.06152 0.06888 -0.13442

3 10 -0.02375 -0.03937 -0.02808 0.10300 -0.09633 -0.01577 -0.03269 -0.02083 0.09502 -0.09087

3 15 -0.01581 -0.01882 -0.01885 0.11344 -0.07466 -0.01024 -0.01329 -0.01346 0.10786 -0.07063

4 15 -0.01230 -0.02545 -0.02230 0.11695 -0.07627 -0.00872 -0.02133 -0.01887 0.11337 -0.07371

4 20 -0.00937 -0.01537 -0.01256 0.13841 -0.06240 -0.00692 -0.01307 -0.01041 0.13597 -0.06077

5 20 -0.00645 -0.02530 -0.02803 0.12224 -0.06855 -0.00421 -0.02323 -0.02623 0.12000 -0.06708

Table 9. The bias of the Gini, Theil, MLD and Atkinson indices for
GG(2, 2, 2)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.01996 -0.00597 0.00735 0.08164 -0.00382 -0.01585 -0.00446 -0.00693 0.08283 -0.00427

3 10 -0.00729 -0.00227 0.00704 0.08279 -0.00325 -0.00529 -0.00150 0.00698 0.08356 0.00338

3 15 -0.00449 -0.00186 0.00644 0.08269 0.00396 -0.00310 -0.00134 0.00611 0.08258 0.00226

4 15 -0.00340 -0.00185 0.00557 0.07945 0.00298 -0.00242 -0.00108 0.00568 0.08074 0.00263

4 20 -0.00242 -0.00137 0.00444 0.07963 0.00139 -0.00141 -0.00074 0.00466 0.08149 0.00113

5 20 -0.00219 -0.00091 0.00628 0.07736 0.00139 -0.00123 -0.00063 0.00304 0.08020 0.00168

Table 10. The bias of the Gini, Theil, MLD and Atkinson indices for
GG(6, 2, 1)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00570 -0.00158 0.00181 0.02033 -0.00092 -0.00396 -0.00082 0.00169 0.02165 0.00172

3 10 -0.00195 -0.00058 0.00157 0.02470 0.00163 -0.00083 -0.00052 0.00151 0.02386 0.00138

3 15 -0.00119 -0.00029 0.00160 0.02489 0.00097 -0.00045 -0.00023 0.00155 0.02435 0.00103

4 15 -0.00109 -0.00050 0.00143 0.02443 0.00121 -0.00062 -0.00035 0.00126 0.02405 0.00109

4 20 -0.00085 -0.00063 0.00108 0.02490 0.00102 -0.00051 -0.00044 0.00084 0.02462 0.00097

5 20 -0.00044 -0.00031 0.00092 0.02541 0.00097 -0.00016 -0.00031 0.00084 0.02519 0.00055

Table 11. The bias of the Gini, Theil, MLD and Atkinson indices for
GG(2, 2, 5)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00500 -0.00232 -0.00216 0.02421 -0.00234 -0.00369 0.00032 -0.00127 0.02247 -0.00148

3 10 -0.00165 -0.00095 -0.00035 0.02730 -0.00100 -0.00081 -0.00042 0.00020 0.02619 -0.00046

3 15 -0.00095 -0.00057 0.00024 0.02755 -0.00031 -0.00041 -0.00022 0.00061 0.02682 0.00004

4 15 -0.00104 -0.00074 0.00067 0.02718 0.00036 -0.00065 -0.00053 0.00090 0.02671 0.00059

4 20 -0.00084 -0.00077 0.00110 0.02783 0.00021 -0.00056 -0.00062 0.00127 0.02749 0.00037

5 20 -0.00039 -0.00040 0.00081 0.02807 0.00071 -0.00016 -0.00028 0.00094 0.02779 0.00084

Table 12. The bias of the Gini, Theil, MLD and Atkinson indices for
GG(8, 2, 10)

SRS RSS

m r G T MLD A(2) A(1) G T MLD A(2) A(1)

2 5 -0.00016 -7.6e-05 -6.3e-05 0.00081 -8.8e-05 -0.00010 -4.89e-05 -9.1e-05 0.00077 -6.0e-05

3 10 -0.00005 -3.0e-05 -1.7e-05 0.00081 -4.6e-05 -0.00002 -1.2e-05 -3.5e-05 0.00079 -2.8e-05

3 15 -0.00003 -1.7e-05 -8.0e-06 0.00080 -2.1e-05 -0.00001 -5.9e-06 -1.9e-05 0.00078 -1.0e-05

4 15 -0.00003 -2.3e-05 3.3e-06 0.00081 4.9e-06 -0.00001 -1.6e-05 -3.8e-06 0.00080 -2.2e-06

4 20 -0.00002 -2.6e-05 1.4e-05 0.00082 -2.1e-05 -0.00001 -2.1e-05 8.8e-06 0.00081 -5.3e-06

5 20 -0.00001 -1.4e-05 6.1e-06 0.00081 -1.0e-05 -8.4e-06 -1.0e-05 2.0e-06 0.00081 1.7e-05


