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selection for partially linear quantile regression

models with missing responses
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Abstract

In this paper, we consider variable selection for partially linear quantile
regression models with missing response at random. We �rst propose a
pro�le penalized empirical likelihood based variable selection method,
and show that such variable selection method is consistent and satis-
�es sparsity. Further more, to avoid the in�uence of nonparametric
estimator on the variable selection for the parametric components, we
also propose a double penalized empirical likelihood variable selection
method. Some simulation studies and a real data application are under-
taken to assess the �nite sample performance of the proposed variable
selection methods, and simulation results indicate that the proposed
variable selection methods are workable.
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1. Introduction

Quantile regression, �rst studied by Koenker and Bassett [1], is less sensitive to out-
liers, and has been proved to be a useful alternative to mean regression models. Since
its �exibility and ability of describing the entire conditional distribution of the response,
quantile regression has been deeply investigated in the literature and extensively ap-
plied in econometrics, social sciences and biomedical studies. For example, statistical
inferences for parametric quantile regression models and pure nonparametric quantile re-
gression models are considered by [1]-[4] and [5]-[7], respectively. In addition, because of
the more �exibility of partially linear models, many authors are interested in the quantile
regression modeling for the following partially linear model

(1.1) Yi = XT
i β + θ(Ui) + εi, i = 1, · · · , n,

where β = (β1, · · · , βp)T is a p × 1 vector of unknown parameters, θ(·) is an unknown
smooth function, Xi and Ui are covariates, Yi is the response, and εi is the model error
with P (εi ≤ 0|Xi, Ui) = τ .

For model (1.1), Lee [8] proposes an estimation method of the parametric compo-
nent, and proves the proposed estimator is semiparametric e�cient. Sun [9] improves the
estimation procedure proposed by Lee [8], and proposes a new semiparametric e�cient
estimation method. He and Liang [10] proposes a quantile regression estimation proce-
dure for model (1.1) when some covariates are measured with errors. Chen and Khan [11]
proposes a quantile regression estimation method for model (1.1) with censored data. In
addition, based on empirical likelihood method, Lv and Li [12] considered the con�dence
interval construction for model (1.1) with missing response. However, the variable selec-
tion for such partially linear quantile regression models with missing responses seems not
to be studied in the above references. Taking this issue into account, in this paper, we
consider the variable selection for such partially linear quantile regression models with
missing responses.

Variable selection is an important topic in high-dimensional statistical modeling.
Many variable selection methods have been developed in the literature, including the
sequential approach, penalized likelihood approach and information-theoretic approach.
But most of these variable selection methods are computationally expensive. In addi-
tion, although the penalized likelihood based variable selection method is computational
e�ciency and stability, in many situations a well-de�ned likelihood function is not easy
to construct. The empirical likelihood based variable selection procedure, which is con-
structed based on a set of estimating equations, can overcome this problem, and is more
robust.

Recently, the penalized empirical likelihood based variable selection methods have
been considered by some authors. For example, Tang and Leng [13] propose a penalized
empirical likelihood method for parameter estimation and variable selection problems
with diverging numbers of parameters. Ren and Zhang [14] considered the variable selec-
tion for moment restriction model based on the penalized empirical likelihood method.
Variyath et al. [15] proposed a variable selection method by combining the information
criteria and empirical likelihood method. Wu et al. [16] considered the variable selec-
tion for the linear regression model with censored data by using the empirical likelihood
method. More works for the empirical likelihood based variable selection studies can be
found in [17]-[19], and among others.

This article also contributes to the rapidly growing literature on the penalized em-
pirical likelihood, and proposes a class of penalized empirical likelihood based variable
selection methods for partially linear quantile regression models with missing response at
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random. More speci�cally, we assume that the covariates Xi and Ui can be observed di-
rectly, and the response Yi may be missing. That is, we have the incomplete observations
{Yi, δi, Xi, Ui}, i = 1, · · · , n from model (1.1), where δi = 0 if Yi is missing, otherwise
δi = 1. In addition, we assume that Yi is missing at random (MAR). Here, the MAR
mechanism means that

(1.2) P (δi = 1|Yi, Xi, Ui) = P (δi = 1|Xi, Ui).

Under the assumption (1.2), we �rst propose a pro�le penalized empirical likelihood
method to select important variables in model (1.1), and show that such variable selection
method is consistent and satis�es the sparsity. Further more, to avoid the in�uence of
nonparametric estimator on the variable selection for the parametric components, we
also propose a double penalized empirical likelihood variable selection method, which
is also consistent and satis�es the sparsity in theory. In addition, we carry out some
simulation studies to assess the performance of the proposed variable selection method,
and simulation results indicate that our proposed methods are workable.

The rest of the paper is organized as follows. In Section 2, a pro�le penalized empirical
likelihood based variable selection method is proposed, and some asymptotic properties,
such as the consistency and sparsity, of the proposed variable selection method are de-
rived. In Section 3, a double penalized empirical likelihood based variable selection
method is proposed, and some asymptotic properties of the variable selection method
are derived, including the consistency and sparsity. In Section 4, some simulation studies
and a real data analysis are conducted to assess the performances of the proposed vari-
able selection procedures. The proofs of all asymptotic results are provided in Section
5.

2. Variable selection via pro�le penalized empirical likelihood

Note that P (εi ≤ 0|Xi, Ui) = τ , then invoking model (1.1), it is easy to prove that

(2.1) E{τ − I(Yi −XT
i β − θ(Ui) ≤ 0)|Xi, Ui} = 0,

where I(·) is the indicator function. To present the penalized empirical likelihood based
variable selection method, we introduce a penalized auxiliary random vector as follows

(2.2) ηi(β) = δiXi[τ − I(Yi −XT
i β − θ(Ui) ≤ 0)]− bλ(β),

where bλ(β) = (p′λ11
(|β1|)sgn(β1), . . . , p′λ1p

(|βp|)sgn(βp))
T, sgn(w) means the sign func-

tion for w, and p′λ(w) is a penalty function, which can govern the sparsity of model by
taking suitable tuning parameters λ11, · · · , λ1p. The notation δiXi means the scalar mul-
tiplication of matrix, that is, δiXi = (δiXi1, · · · , δiXip)T , where Xij is the jth component
of Xi.

Various penalty functions have been used in the variable selection literature such as
the Lq penalty proposed by Frank and Friedman [20], the Lasso penalty proposed by
Tibshirani [21], the SCAD penalty proposed by Fan and Li [22] and the MCP penalty
proposed by Zhang [23]. In addition, it has been shown that the SCAD penalty has
many perfect properties, such as the consistence and sparsity of SCAD penalty based
estimation, in many situations. Then, in this paper, we suggest the penalty function is
taken as the SCAD penalty function, which is de�ned as follows

p′λ(w) = λ{I(w ≤ λ) +
(aλ− w)+
(a− 1)λ

I(w > λ)},

for some a > 2, w > 0 and pλ(0) = 0, where λ is a tuning parameter which can govern
sparsity of the estimation of model, and the notation (z)+ means the positive part of z.
In addition, Fan and Li [22] suggested using a = 3.7 for the SCAD penalty function.
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However, note that (2.2) contains the nonparametric component θ(u), then ηi(β)
cannot be used directly to construct the penalized empirical likelihood ratio for selecting
the important variables of parametric components. To overcome this inconvenience,
we give an estimator of θ(u) by using basis functions approximation method. More
speci�cally, let W (u) = (B1(u), · · · , BL(u))T be B-spline basis functions with the order
of M , where L = K + M + 1, and K denotes the number of interior knots. Then, θ(u)
can be approximated by

(2.3) θ(u) ≈W (u)T γ,

where γ = (γ1, · · · , γL)T is a vector of basis function coe�cients. Hence, invoking (2.1)
and (2.3), an estimating equation for β and θ(·) can be given as follows

(2.4)
n∑
i=1

δi(X
T
i ,W

T
i )T [τ − I(Yi −XT

i β −WT
i γ ≤ 0)] = 0,

where Wi = W (Ui) = (B1(Ui), · · · , BL(Ui))
T .

2.1. Remark. When we estimate β and γ by using (2.4), the number of interior knots
K should be chosen. Here we suggest estimating K by minimizing the following cross-
validation score

(2.5) CV (K) =

n∑
i=1

δiρτ (Yi −XT
i β̂

[i] −WT
i γ̂

[i]),

where ρτ (u) = u(τ−I(u < 0)) is the quantile loss function, and β̂[i] and γ̂[i] are estimators
for β and γ, respectively, based on (2.4) after deleting the ith subject.

Let γ̂ be the solution of (2.4), then the estimator of θ(u) can be given by

(2.6) θ̂(u) = W (u)T γ̂.

Hence, a modi�ed auxiliary random vector can be given by

(2.7) η̂i(β) = δiXi[τ − I(Yi −XT
i β − θ̂(Ui) ≤ 0)]− bλ(β).

Then, a pro�le penalized empirical log-likelihood ratio function for β can be de�ned as

(2.8) R(β) = −2 max

{
n∑
i=1

log(npi)

∣∣∣∣∣pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piη̂i(β) = 0

}
.

Next, we represent some asymptotic properties of the maximum empirical likelihood

estimator β̂, which is the solution by maximizing {−R(β)}. We �rst give some notations.
Let β0 be the true value of β with βk0 6= 0 for k ≤ d and βk0 = 0 for k > d. The following

theorem states the existence of a consistent solution β̂.

2.2. Theorem. Suppose that conditions C1−C7 in Section 5 hold. Then, the maximum

empirical likelihood estimator β̂ is consistent, that is,

β̂ = β0 +Op(n
−1/2).

Furthermore, under some conditions, the following theorem shows that such consistent
estimator must possess the sparsity property.

2.3. Theorem. Suppose that conditions C1−C7 in Section 5 hold. Then, with probability

tending to 1, β̂ must satisfy

β̂k = 0, k = d+ 1, · · · , p.
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2.4. Remark. Theorem 2.3 indicates that, with probability tending to 1, some com-

ponents of the maximum empirical likelihood estimator β̂ are set to be zeros. Then,
the corresponding covariates will be removed from the �nal model. Hence, the proposed
penalized empirical likelihood procedure can be used for variable selection.

To implement this variable selection method, the tuning parameters a and λ11, · · · , λ1p

in the penalty functions should be chosen. Similar to [22], we take a = 3.7. In addition,
to reduce the computation task, we de�ne adaptive tuning parameters for λ11, · · · , λ1p,
as

(2.9) λ1k =
λ

β̂
(0)
k

, k = 1, · · · , p,

where β̂(0) = (β̂
(0)
1 , · · · , β̂(0)

p )T is the naive estimator of β based on (2.4), and λ is obtained
by minimizing the following BIC criteria

BIC(λ) = log(RSS(λ)/n) + d(λ) log(n)/n,

where RRS(λ) =
∑n
i=1 ρτ (Yi −XT

i β̂ − θ̂(Ui)) , and d(λ) = tr{X[XTX + nΣλ(β̂)]−1XT }
is the e�ective number of parameters, where X = (X1, . . . , Xn)T and

Σλ(β̂) = diag{p′λ11
(|β̂1|)/|β̂1|, . . . , p′λ1p

(|β̂p|)/|β̂p|}.

3. Variable selection via double penalized empirical likelihood

From the de�nition of R(β) in Section 2, we can see that a consistent estimator θ̂(u)
should be given. However, if the missing rate of data is very large, then we cannot give a
workable consistent estimator of θ(u), which will in�uence the variable selection for the
parametric components. In addition, note that if the number of interior knots K is large,
the vector of basis function coe�cients γ may be also sparse. Hence, this prompts us to
give a penalty term on γ and β simultaneously, and propose a double penalized empirical
likelihood based variable selection procedure.

To present the double penalized empirical likelihood based variable selection method,
we introduce a double penalized auxiliary random vector as follows

(3.1) η̃i(β, γ) = δi(X
T
i ,W

T
i )T [τ − I(Yi −XT

i β −WT
i γ ≤ 0)]− bλ(β, γ),

where bλ(β, γ) = (p′λ11
(|β1|)sgn(β1), . . . , p′λ1p

(|βp|)sgn(βp), p
′
λ21

(|γ1|)sgn(γ1), . . . ,

p′λ2L
(|γL|)sgn(γL))T is the penalty vector for parametric components and basis func-

tion coe�cients, and λ11, · · · , λ1p, λ21, · · · , λ2L are tuning parameters. Then, a double
penalized empirical log-likelihood ratio function can be de�ned as

(3.2) R̃(β, γ) = −2 max

{
n∑
i=1

log(npi)

∣∣∣∣∣pi ≥ 0,
n∑
i=1

pi = 1,

n∑
i=1

piη̃i(β, γ) = 0

}
.

Let β̃ and γ̃ be the solution by maximizing {−R̃(β, γ)}. Then, β̃ is the penalized
maximum empirical likelihood estimator of β, and the penalized maximum empirical
likelihood estimator of θ(u) can be given by θ̃(u) = W (u)T γ̃. Next, we study some

asymptotic properties of the resulting penalized least squares estimators β̃ and γ̃. Similar
to Section 2, we write the true regression coe�cients of β and γ as β0 and γ0, respectively.
Without loss of generality, we also assume that βk0 = 0, k = d+ 1, · · · , p, and βk0, k =
1, · · · , d are all nonzero components of β0. Furthermore, we assume that γl0 = 0, l =
s+1, · · · , L, and γl0, l = 1, · · · , s are all nonzero components of γ0. The following theorem
shows that such penalized maximum empirical likelihood estimator β̃ also possesses the
sparsity property, then we can use this double penalized empirical likelihood method for
variable selection.
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3.1. Theorem. Suppose that conditions C1−C7 in Section 5 hold. Then, with probability

tending to 1, β̃ satis�es

β̃k = 0, k = d+ 1, · · · , p.

In addition, the following theorem shows that the penalized maximum empirical like-
lihood estimator θ̃(u) is consistent, and achieves the optimal nonparametric convergence
rate (see Schumaker [24]).

3.2. Theorem. Suppose that conditions C1 − C7 in Section 5 hold. Then, the double

penalized empirical likelihood based nonparametric estimator θ̃(u) satis�es

‖θ̃(u)− θ0(u)‖ = Op(n
−r

2r+1 ).

In addition, similar to Section 2, we suggest that the tuning parameter a is also taken
as 3.7, and de�ne the adaptive tuning parameters for λ1k and λ2l as

(3.3) λ1k =
λ

β̂
(0)
k

, λ2l =
λ

γ̂
(0)
l

, k = 1, · · · , p, l = 1, · · · , L,

where β̂(0) = (β̂
(0)
1 , · · · , β̂(0)

p )T and γ̂(0) = (γ̂
(0)
1 , · · · , γ̂(0)

L )T are naive estimators of β and
γ, respectively, obtained by (2.4). In addition, the number of interior knots K and the
tuning parameter λ used in (3.3) are obtained by minimizing the following BIC criteria

BIC(λ,K) = log(RSS(λ,K)/n) + d(λ,K) log(n)/n,

where RRS(λ,K) =
∑n
i=1 ρτ (Yi −XT

i β̃ −WT
i γ̃), and d(λ,K) is the e�ective number of

parameters.

4. Numerical results

In this section, we assess the �nite sample performance of the procedure by presenting
several simulation experiments, and consider a real data application for further illustra-
tion.

4.1. Simulation studies. In this section, we conduct some simulations to study the
�nite sample performance of the proposed estimation method. We �rst evaluate the �nite
sample performance of the proposed quantile regression based pro�le penalized empirical
likelihood (Q-PEL) variable selection procedure in terms of model complexity and model
selection accuracy comparing with the mean regression based penalized empirical likeli-
hood (M-PEL) variable selection procedure which proposed by [14]. In this simulation,
data are generated from the following model

(4.1) Y = XTβ + θ(U) + ε,

where U ∼ U(0, 1), X follows the 10−dimensional normal distribution with zero mean

and covariance between the sth and tth elements being ρ|s−t| with ρ = 0.5. Furthermore,
the nonparametric component is taken θ(u) = 0.8u(1−u), and the parametric component
is taken β = (3.5, 2.5, 1.5, 0.5, 0, 0, 0, 0, 0, 0)T . The response Y is generated according
to the model, and the model error ε is generated according to ε = e − bτ , where bτ
is the τth quantile of e. In the following simulation, the quantile τ is taken as 0.25,
0.5 and 0.75, respectively, and e follows the normal distribution N(0, 0.5) (symmetrical
error distribution) and chi-square distribution χ2(1) (unsymmetrical error distribution),
respectively. In addition, we take the selection probability as P (δ = 1|X = x, U = u) =
0.8 + 0.2(u− 0.5), and the corresponding missing rate is approximately 0.2. Throughout
our simulation, we use the cubic B-splines for basis functions approximation, and the
number of interior knots K is obtained by (2.5). In addition, we generate n = 200, 400
and 600 respectively, and repeat 1000 simulation runs for each case.
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Table 1. Variable selection results for the parametric component by
di�erent variable selection methods when τ = 0.25.

Q-PEL M-PEL

Err. Dist. n C I FSR GMAD C I FSR GMAD

Normal 200 5.325 0.001 0.057 0.235 5.336 0.001 0.051 0.203
400 5.787 0 0.011 0.134 5.782 0 0.014 0.135
600 5.925 0 0.007 0.112 5.919 0 0.009 0.119

Chi-square 200 5.346 0 0.052 0.209 3.212 0 0.393 0.567
400 5.785 0 0.017 0.134 3.489 0 0.335 0.528
600 5.918 0 0.005 0.122 3.619 0 0.292 0.502

The performance of estimator β̂ will be assessed by using the generalized mean abso-
lute deviation (GMAD), which is de�ned as follows

GMAD =
1

n

n∑
i=1

∣∣∣XT
i β̂ −XT

i β0

∣∣∣ .
In addition, the performance of model complexity will be assessed by using the aver-
age false selection rate (FSR), which is de�ned as FSR = IN/TN, where �IN" is the
average number of the true zero coe�cients incorrectly set to nonzero, and �TN" is the
average total number set to nonzero. In fact, FSR represents the proportion of falsely
selected unimportant variables among the total variables selected in the variable selection
procedure.

The simulation results for the average number of zero coe�cients, with 1000 simulation
runs, are reported in Tables 1-3, where Table 1 presents the results for the case of τ = 0.25,
Table 2 presents the results for the case of τ = 0.5, and Table 3 presents the results for
the case of τ = 0.75. In Tables 1-3, the column labeled �C" gives the average number of
coe�cients, of the six true zeros, correctly set to zero, and the column labeled �I" gives
the average number of the four true nonzeros incorrectly set to zero. In addition, Tables
1-3 also present the average false selection rate (FSR) and the average generalized mean
absolute deviation (GMAD) based on 1000 simulation runs.

From Tables 1-3, we can make the following observations:

(i) For any given quantile τ , the performance of the Q-PEL method becomes more
and more better in terms of model error and model complexity as n increases. In
addition, for given n, the performance of Q-PEL does not depend sensitively on
the error distributions, which implies that the proposed Q-PEL variable selection
method is robust.

(ii) For any given quantile τ , when the error distribution is a symmetrical distri-
bution (normal distribution), the results based on Q-PEL are similar to that
based on M-PEL. However, for the unsymmetrical error distribution (chi-square
distribution), the Q-PEL method outperforms the M-PEL method. The latter
method is less discriminative, and cannot eliminate some unimportant variables.
This is mainly because the mean of chi-square distribution is not zero, which
may a�ect the variable selection of M-PEL method.

(iii) For the given error distribution and sample size, the results based on the Q-PEL
method are very similar for all considered quantiles. In addition, the estimation
procedure of M-PEL is independent of all quantiles.
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Table 2. Variable selection results for the parametric component by
di�erent variable selection methods when τ = 0.5.

Q-PEL M-PEL

Err. Dist. n C I FSR GMAD C I FSR GMAD

Normal 200 5.331 0.002 0.054 0.205 5.336 0.001 0.051 0.203
400 5.781 0 0.015 0.138 5.782 0 0.014 0.135
600 5.929 0 0.008 0.110 5.919 0 0.009 0.119

Chi-square 200 5.344 0.001 0.053 0.204 3.212 0 0.393 0.567
400 5.786 0 0.013 0.131 3.489 0 0.335 0.528
600 5.928 0 0.008 0.112 3.619 0 0.292 0.502

Table 3. Variable selection results for the parametric component by
di�erent variable selection methods when τ = 0.75.

Q-PEL M-PEL

Err. Dist. n C I FSR GMAD C I FSR GMAD

Normal 200 5.317 0.002 0.052 0.207 5.336 0.001 0.051 0.203
400 5.782 0 0.014 0.136 5.782 0 0.014 0.135
600 5.914 0 0.008 0.118 5.919 0 0.009 0.119

Chi-square 200 5.345 0.001 0.052 0.202 3.212 0 0.393 0.567
400 5.784 0 0.014 0.135 3.489 0 0.335 0.528
600 5.932 0 0.007 0.110 3.619 0 0.292 0.502

Next, we compare the performance of the double penalized empirical likelihood (Q-
DEL) variable selection method, proposed by (3.2), with the pro�le penalized empirical
likelihood (Q-PEL) variable selection method. In this simulation, we also generate data
from model (4.1), and use the cubic B-splines for nonparametric approximation. The
number of interior knots is �xed at K = K0, 2K0, 3K0 and 4K0 respectively, where
K0 is the number of interior knots which is obtained by (3.3). In addition, the tuning
parameter λ is obtained by (3.3) for given K. Here, we only present the results when
τ = 0.5 and the error distribution follows the chi-square distribution with one degree.
Since the results for other cases are similar, then are not shown. Based on 1000 repeated
simulation runs, the simulation results are reported in Table 4. From Table 4, we can
see that

(i) The performances of the Q-DEL method are similar to the performances of the
Q-PEL method in terms of model error and model complexity, when the number
on interior knots K is chosen correctly (K = K0).

(ii) If K is misspeci�ed, the performance of Q-DEL is better than that of Q-PEL.
The latter cannot eliminate some unimportant variables and gives larger models
errors. This implies that the Q-PEL procedure cannot give an e�ective esti-
mators for the nonparametric function when the number of interior knots is
misspeci�ed.

(iii) The performance of the Q-DEL method becomes more and more better in terms
of model error and model complexity as n increases. Furthermore, for given
n, the Q-DEL variable selection procedure performs similar for all cases of the
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Table 4. Variable selection results for the parametric component by
di�erent variable selection methods.

Q-PEL Q-DEL

n K C I FSR GMAD C I FSR GMAD

200 K0 5.344 0.001 0.053 0.204 5.401 0.001 0.045 0.197
2K0 5.053 0.001 0.084 0.223 5.398 0 0.051 0.201
3K0 4.564 0.002 0.102 0.268 5.395 0.001 0.051 0.201
4K0 4.239 0 0.084 0.296 5.385 0 0.052 0.202

400 K0 5.786 0 0.013 0.131 5.783 0 0.013 0.134
2K0 5.443 0 0.057 0.162 5.782 0 0.013 0.134
3K0 5.109 0 0.081 0.217 5.778 0 0.014 0.136
4K0 4.787 0 0.093 0.253 5.774 0 0.016 0.139

600 K0 5.928 0 0.008 0.112 5.929 0 0.008 0.109
2K0 5.642 0 0.012 0.141 5.927 0 0.008 0.109
3K0 5.206 0 0.061 0.189 5.927 0 0.008 0.111
4K0 4.918 0 0.076 0.231 5.925 0 0.007 0.112

number of interior knots, which implies that our penalty scheme on the non-
parametric function is workable.

4.2. Application to a real data example. Now we illustrate the newly proposed
procedure through an analysis of dataset from the Multi-Center AIDS Cohort study.
The dataset contains the human immunode�ciency virus (HIV) status of 283 homosexual
men who were infected with HIV during a follow-up period between 1984 and 1991. The
observed variables in this data are cigarette smoking status, age at HIV infection, pre-
infection CD4 percentage and post-infection CD4 percentage. More details of the related
design, methods and medical implications for the Multi-Center AIDS Cohort study have
been described by Kaslow et al. [25]. The objective of the study is to describe the trend
of the mean CD4 percentage depletion over time and evaluate the e�ects of smoking,
the pre-HIV infection CD4 percentage, and age at HIV infection on the mean CD4
percentage after infection. This dataset has been used by many authors to illustrate
varying coe�cient models (see [26, 27]), varying coe�cient partially linear models (see
[28, 29]) and partially linear models (see [30, 31]).

We take Y to be the individual's CD4 percentage, X1 to be the centered preCD4
percentage, X2 = X2

1 to be the quadratic e�ect of the centered preCD4 percentage, X3

to be the centered age at HIV infection, and X4 to be quadratic e�ect of the centered age.
Note that Huang et al. [26] indicates that, at signi�cance level 0.05, the smoking status
has not a signi�cant impact on the mean CD4 percentage, then the possible e�ects of
other available covariates are omitted. We consider the following partially linear model

(4.2) Y = X1β1 +X2β2 +X3β3 +X4β4 + θ(t),

where t means the years over the HIV infection, and θ(t) represents the mean CD4
percentage t years after the infection.

In order to illustrate our approach, similar to Xue [32], we arti�cially make 20% Y val-
ues missing, and neglect the dependency of the repeated measurements for each subject.
We �rst apply the proposed Q-PEL variable selection procedure to model (4.2). Here
we take the quantile τ as 0.1, 0.2, · · · , 0.9, respectively. The variable selection results
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Table 5. Application to AIDS data. The regularized estimators for
parametric components based on the Q-PEL method with di�erent
quantiles.

τ

Variable 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X1 0.241 0.303 0.345 0.389 0.479 0.443 0.484 0.467 0.477
X2 0 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 0 0 0

Table 6. Application to AIDS data. The regularized estimators for
parametric components based on the Q-DEL method with di�erent
quantiles.

τ

Variable 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X1 0.251 0.308 0.354 0.431 0.443 0.442 0.493 0.479 0.465
X2 0 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 0 0
X4 0 0 0 0 0 0 0 0 0

for the parametric components are shown in Table 5, where nonzero estimators repre-
sent the selected important variables in �nal model, and zeros represent the eliminated
unimportant variables from �nal model.

From Table 5, we can see that the preCD4 percentage has a signi�cant e�ect on the
mean CD4 percentage at all quantiles. The age, and the quadratic e�ects of age and
preCD4 percentage have no signi�cant impact on the mean CD4 percentage at all quan-
tiles, which basically agrees with that was discovered by [29] based on varying coe�cient
partially linear models. In addition, the curve of estimated θ(t) is shown in Figure 1(a).
Here we only show the results for the case of τ = 0.2, 0.5 and 0.8, respectively. The
results for other cases are similar, and then are not shown. From Figure 1(a), we �nd
that the mean CD4 percentage is signi�cantly time-varying for all considered quantile
levels. We also can see that the rate of variation is very quickly at the beginning of HIV
infection for all considered quantiles, and the rate of variation slows down two years after
infection.

Furthermore, we also apply the proposed Q-DEL variable selection method to model
(4.2). The regularized estimators for parametric components based on Q-DEL method
are shown in Table 6. From Table 6, we can see that the Q-DEL method identi�es
one nonzero regression coe�cient β1 for parametric components. This indicates that
only the preCD4 percentage has signi�cant impact on the mean CD4 percentage, which
agrees with that was discovered based on the Q-PEL method. In addition, the regularized
estimator of θ(t) based on the Q-DEL method is shown in Figure 1(b). From Figure 1(b),
we can see that the regularized estimator of θ(t) based on the Q-DEL method is similar
to that based on the Q-PEL method.
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Figure 1. Application to AIDS data. The regularized estimators for
the mean CD4 percentage θ(t), based on the Q-PEL (Fig(a)) and Q-
DEL (Fig(b)), for the cases τ = 0.2 (dotted curve), τ = 0.5 (dot-dashed
curve) and τ = 0.8 (dashed curve).

5. Proofs of Theorems

In this section, we present the technical proofs of Theorems 2.2, 2.3, 3.1 and 3.2. For
convenience and simplicity, let c denote a positive constant which may be di�erent value
at each appearance throughout this paper. To prove these asymptotic properties, the
following technical conditions are needed.

C1. The nonparametric function θ(u) is rth continuously di�erentiable for u ∈ (0, 1),
where r > 1/2.

C2. The number of interior knots satis�es K = O(n1/(2r+1)). In addition, let
c1, · · · , cK be the interior knots of (0, 1), and denote c0 = 0, cK+1 = 1 and
hk = ck − ck−1, then there exists a constant c such that

maxhk
minhk

≤ c, max{|hk+1 − hk|} = o(K−1).

C3. Let f(·|X,U) be the conditional density function of ε given X and U , then
f(·|X,U) has a continuous and uniformly bounded derivative.

C4. Let π(x, u) = E(δi|Xi = x, Ui = u), then π(x, u) has continuous bounded second
partial derivatives. Furthermore, we assume that π(x, u) > 0 for all x and u.

C5. Let

an = max
k,l
{p′λ1k

(|βk0|), p′λ2l
(|γl0|) : βk0 6= 0, γl0 6= 0},

and

bn = max
k,l
{|p′′λ1k

(|βk0|)|, |p′′λ2l
(|γl0|)| : βk0 6= 0, γl0 6= 0},

then we have nr/(2r+1)an → 0 and bn → 0, as n→∞.
C6. The penalty function satis�es lim infn→∞ lim infw→0+ λ

−1p′λ(|w|) > 0. Let λmin =
min{λ1k, λ2l : k = 1, · · · , p, l = 1, · · · , L} and λmax = max{λ1k, λ2l : k =

1, · · · , p, l = 1, · · · , L}. Then λmin and λmax satisfy λmax → 0 and nr/(2r+1)λmin →
∞ as n→∞.

C7. The covariate X is a centered random vector, and is bounded in probability.
In addition, we assume that the matrix E{π(X,U)XXT } is a nonsingular and
�nite matrix.
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These conditions are commonly adopted in the nonparametric literature and vari-
able selection methodology. Condition C1 is a smoothness condition for θ(u), which

determines the rate of convergence of the spline estimator θ̂(u) = W (u)T γ̂. Condition
C2 implies that c0, · · · , cK+1 is a C0-quasi-uniform sequence of partitions on [0, 1] (see
Schumaker [24]). Conditions C3, C4 and C7 are some regularity conditions used in our
estimation procedure, which are similar to those used in Lv and Li [12], Ren and Zhang
[14] and Xue and Zhu [25]. Conditions C5 and C6 are assumptions for the penalty func-
tion, which are similar to those used in Ren and Zhang [14], Zhao [17] and Fan and Li
[22]. The proofs of the main results rely on the following lemma.

5.1. Lemma. Suppose that the conditions C1-C7 hold. Then we have

‖θ̂(u)− θ(u)‖ = Op
(
n

−r
2r+1

)
,

where θ̂(u) is de�ned in (2.6), and r is de�ned in condition C1.

Proof. Let κ = n−r/(2r+1), β̆ = β + κM1, γ̆ = γ + κM2 and M = (MT
1 , M

T
2 )T , we �rst

show that, for any given ε > 0, there exists a large constant c such that

(5.1) P

{
inf

‖M‖=C
(βT − β̆T , γT − γ̆T )

n∑
i=1

η̃i(β̆, γ̆) > 0

}
≥ 1− ε,

where

η̃i(β̆, γ̆) = δi(X
T
i ,W

T
i )T [τ − I(Yi −XT

i β̆ −WT
i γ̆ ≤ 0)].

invoking the de�nition of η̃i(β̆, γ̆), a simple calculation yields

η̃i(β̆, γ̆) = δi(X
T
i ,W

T
i )T [τ − I(Yi −XT

i β̆ −WT
i γ̆ ≤ 0)]

= δi(X
T
i ,W

T
i )T [τ − I(XT

i β + θ(Ui) + εi −XT
i β̆ −WT

i γ̆ ≤ 0)]

= δi(X
T
i ,W

T
i )T [τ − I(εi +XT

i (β − β̆) +WT
i (γ − γ̆) +R(Ui) ≤ 0)]

= δif(0|Xi, Ui)(XT
i ,W

T
i )T [XT

i (β − β̆) +WT
i (γ − γ̆) +R(Ui)]

+Op(‖β − β̆‖2) +Op(‖γ − γ̆‖2).(5.2)

Let ∆(β̆, γ̆) = K−1
(
βT − β̆T , γT − γ̆T

) n∑
i=1

η̃i(β̆, γ̆), then a simple calculation yields

∆(β̆, γ̆) =
−κ
K

(MT
1 ,M

T
2 )

n∑
i=1

δif(0|Xi, Ui)(XT
i ,W

T
i )T [XT

i (−κM1) +WT
i (−κM2)]

+
−κ
K

(MT
1 ,M

T
2 )

n∑
i=1

δif(0|Xi, Ui)(XT
i ,W

T
i )TR(Ui) +Op(nK

−1κ2)

=
κ2

K

n∑
i=1

δif(0|Xi, Ui)(XT
i M1 +WT

i M2)2

+
−κ
K

n∑
i=1

δif(0|Xi, Ui)(XT
i M1 +WT

i M2)R(Ui) +Op(1)

≡ I1 + I2,(5.3)

where R(Ui) = θ(Ui) −WT
i γ. From conditions C1, C4 and Corollary 6.21 in [24], we

get that ‖R(Ui)‖ = O(K−r). Then, invoking condition C3, a simple calculation yields
I1 = Op(κ

2nK−1)‖M‖2 = Op(‖M‖2), and I2 = Op(κnK
−1−r)‖M‖ = Op(‖M‖). Hence,
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by choosing a su�ciently large C, I1 dominates I2 uniformly in ‖M‖ = C. This implies
that for any given ε > 0, if we choose C large enough, then

(5.4) P

{
inf

‖M‖=C
∆(β̆, γ̆) > 0

}
≥ 1− ε.

Hence (5.1) holds, and this implies, with probability at least 1 − ε, that there exists a

local minizer β̂ and γ̂ such that

(5.5) ‖β̂ − β‖ = Op(τ) = Op
(
n−r/(2r+1)

)
, ‖γ̂ − γ‖ = Op(τ) = Op

(
n−r/(2r+1)

)
.

In addition, note that

‖θ̂(u)− θ(u)‖2 =

∫ 1

0

{θ̂(u)− θ(u)}2du

=

∫ 1

0

{BT (u)γ̂ −BT (u)γ +R(u)}2du

≤ 2

∫ 1

0

{BT (u)γ̂ −BT (u)γ}2du+ 2

∫ 1

0

R(u)2du

= 2(γ̂ − γ)TH(γ̂ − γ) + 2

∫ 1

0

R(u)2du,(5.6)

where H =
∫ 1

0
B(u)BT (u)du. It is easy to show that ‖H‖ = Op(1). Then invoking (5.5),

a simple calculation yields

(5.7) (γ̂k − γk)TH(γ̂k − γk) = Op
{
n

−2r
2r+1

}
.

In addition, invoking ‖R(Ui)‖ = O(K−r), it is easy to show that

(5.8)

∫ 1

0

R(u)2du = Op(n
−2r
2r+1 ).

Invoking (5.6)-(5.8), we complete the proof of this lemma. �

Proof of Theorem 2.2

Proof. With the similar argiments as in Xue and Zhu [31], we have that the solution to

maximizing {−R̂(β)} can be given by the following penalty estimating equation

(5.9)
n∑
i=1

δiXi[τ − I(Yi −XT
i β − θ̂(Ui) ≤ 0)]− nbλ(β) = 0.

Let U(β) =
∑n
i=1 δiXi[τ − I(Yi − XT

i β − θ̂(Ui) ≤ 0)], UP (β) = U(β) − nbλ(β) and

β = β0 + n−1/2M , where β0 means the true value of β. Similar to the argument in
the proof of Lemma 5.1, we want to show that for any given ε > 0, there exists a large
constant c such that ‖M‖ = c and

(5.10) P

{
min

‖β0−β‖=cn−1/2
(β0 − β)TUP (β) > 0

}
> 1− ε,

With probability at least 1 − ε, (5.10) implies that there exists a local solution to

UP (β) = 0 in the ball {β0 + n−1/2M : ‖M‖ ≤ c}. That is, there exists a local solution

β̂ of UP (β) = 0 with β̂ = β0 + Op(n
−1/2). Invoking the de�nition of η̂i(β), and some
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calculations yield

η̂i(β) = δiXi[τ − I(Yi −XT
i β − θ̂(Ui) ≤ 0)]− bλ(β)

= δiXi[τ − I(XT
i β0 + θ0(Ui) + εi −XT

i β − θ̂(Ui) ≤ 0)]− bλ(β)

= δiXi[τ − I(εi +XT
i (β0 − β) + (θ0(Ui)− θ̂(Ui)) ≤ 0)]− bλ(β)

= δif(0|Xi, Ui)XiXT
i (β0 − β) + δif(0|Xi, Ui)Xi(θ0(Ui)− θ̂(Ui))

−bλ(β) +Op(‖β0 − β‖2).(5.11)

Hence we have

UP (β) =

n∑
i=1

δif(0|Xi, Ui)XiXT
i (β0 − β)

+

n∑
i=1

δif(0|Xi, Ui)Xi(θ0(Ui)− θ̂(Ui))− nbλ(β) + op(1).(5.12)

Note that p′λ(0)sgn(0) = 0, then condition C5 implies that
√
nbλ(β0) → 0. Hence, it is

easy to show that

(5.13) −
√
nbλ(β) =

√
n{bλ(β0)− bλ(β)}+ op(1).

If βk0 6= 0, then sgn(βk0) = sgn(βk). Hence,

(5.14) p′λ1k
(|βk0|)sgn(βk0)− p′λ1k

(|βk|)sgn(βk) = {p′λ1k
(|βk0|)− p′λ1k

(|βk|)}sgn(βk).

If βk0 = 0, the above equation holds naturally. Then, invoking (5.13) and (5.14), a simple
calculation yields

(5.15) −
√
nbλ(β) =

√
n{bλ(β0)− bλ(β)}+ op(1) =

√
nΛλ(β∗)(β0 − β) + op(1),

where Λλ(β∗) = diag{p′′λ11
(|β∗1 |)sgn(β1), . . . , p′′λ1p

(|β∗p |)sgn(βp)}, and β∗k lies between βk
and βk0. From (5.12) and (5.15), we can get that

(β0 − β)TUP (β) =

n∑
i=1

δif(0|Xi, Ui)(β0 − β)TXiX
T
i (β0 − β)

+

n∑
i=1

δif(0|Xi, Ui)(β0 − β)TXi(θ0(Ui)− θ̂(Ui))

+n(β0 − β)TΛλ(β∗)(β0 − β) + op(1)

≡ A1 +A2 +A3 + op(1).(5.16)

Note that E{π(X,U)XXT } is a nonsingular and �nite matrix, then invoking β =

β0 + n−1/2M and Conditions C3 and C7, it is easy to show that

(5.17) A1 = Op(1)‖M‖2.

Next we consider A2. Note that Xi is the centered covariate, then by Lemma A.2 in
[33], we have that

(5.18) max
1≤s≤n

∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥ = Op(
√
n logn).

In addition, by Lemma 5.1 we have that

(5.19) ‖θ̂(u)− θ0(u)‖ = Op
(
n

−r
2r+1

)
.



735

Then invoking (5.18) and (5.19), and using the Abel inequality, it is easy to show that

|A2| ≤
n∑
i=1

∣∣∣δif(0|Xi, Ui)(β0 − β)TXi(θ0(Ui)− θ̂(Ui))
∣∣∣

≤ ‖β0 − β‖ max
1≤i≤n

‖δif(0|Xi, Ui)[θ0(Ui)− θ̂(Ui)]‖ max
1≤s≤n

∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥
= Op(n

−1/2‖M‖ · n−r/(2r+1) · n1/2 · logn) = op(1)‖M‖.(5.20)

By condition C5, we have maxk p
′′
λ1k

(|β∗k |)→ 0. Hence we have

(5.21) |A3| = n(β0 − β)TΛλ(β∗)(β0 − β) = op(1)‖M‖2.

Note that ‖M‖ = c, if we choose c large enough, A2 and A3 can be dominated A1

uniformly in ‖M‖ = c. In addition, note that the sign of A1 is positive, then by choosing
a su�ciently large c, (5.10) holds. This implies, with probability at least 1−ε, that there
exists a local solution β̂−β0 = Op(n

−1/2), which completes the proof of this theorem. �

Proof of Theorem 2.3

Proof. For this theorem, it su�ces to show that for any ε > 0, when n is large enough,

we have P{β̂k 6= 0} < ε, k = d+ 1, . . . , p. Since β̂k = Op(n
−1/2), when n is large enough,

there exists some c such that

P{β̂k 6= 0} = P{β̂k 6= 0, |β̂k| ≥ cn−1/2}+ P{β̂k 6= 0, |β̂k| < cn−1/2}
< ε/2 + P{β̂k 6= 0, |β̂k| < cn−1/2}.(5.22)

Using the kth component of (5.12), and note that UP (β̂) = 0, we can obtain that

√
np′λ1k

(|β̂k|)sgn(β̂k) =
1√
n

n∑
i=1

δif(0|Xi, Ui)XikXT
i (β0 − β̂)

+
1√
n

n∑
i=1

δif(0|Xi, Ui)Xik(θ0(Ui)− θ̂(Ui)) + op(1).(5.23)

The �rst two terms on the right-hand side are of order Op(1). Hence, for large n, there
exists some c such that

(5.24) P (
√
np′λ1k

(|β̂k|) > c) < ε/2.

In addition, by condition C6, we have that

(5.25) inf
|β̂k|≤cn−1/2

√
np′λ1k

(|β̂k|) =
√
nλ1k inf

|β̂k|≤cn−1/2
λ−1
1k p
′
λ1k

(|β̂k|)→∞.

That is, β̂k 6= 0 and |β̂k| < cn−1/2 imply that
√
np′λ1k

(|β̂k|) > c for large n. Then,
invoking (5.22), we have that

P{β̂k 6= 0} < ε/2 + P (
√
np′λ1k

(|β̂k|) > c) < ε.

This completes the proof of this theorem. �

5.2. Lemma. Suppose that the conditions C1-C7 hold. Then we have

β̃ = β0 +Op
(
n

−r
2r+1

)
, γ̃ = γ0 +Op

(
n

−r
2r+1

)
,

where β̃ and γ̃ are obtained by maximizing {−R̃(β, γ)} which is de�ned in (3.2).
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Proof. As in the proof of Theorem 2.2, the solution to maximizing {−R̃(β, γ)} can be
given by the following penalty estimating equation

n∑
i=1

η̃i(β, γ) = 0.

The following proof is very similar to the proof of Lemma 5.1, but some details need
slight modi�cation. Here, we also use some similar denotes which are de�ned in the proof
of Lemma 5.1. Let κ = n−r/(2r+1), β = β0 +κM1, γ = γ0 +κM2 and M = (MT

1 , M
T
2 )T ,

we �rst show that, for any given ε > 0, there exists a large constant c such that

(5.26) P

{
inf
‖M‖=c

(βT0 − βT , γT0 − γT )

n∑
i=1

η̃i(β, γ) > 0

}
≥ 1− ε.

Using the same argument as in the proof of (5.15), we have that

−
√
nbλ(β, γ) =

√
n{bλ(β0, γ0)− bλ(β, γ)}+ op(1)

=
√
nΛλ(β∗, γ∗)((β0 − β)T , (γ0 − γ)T )T + op(1),(5.27)

where Λλ(β∗, γ∗) = diag{p′′λ11
(|β∗1 |)sgn(β1), . . . , p′′λ1p

(|β∗p |, )sgn(βp), p
′′
λ21

(|γ∗1 |)sgn(γ1),

. . . , p′′λ2L
(|γ∗L|, )sgn(γL)}, β∗k lies between βk and βk0, and γ

∗
l lies between γl and γl0.

Invoking (5.27) and the de�nition of η̃i(β, γ), a simple calculation yields

n∑
i=1

η̃i(β, γ) =

n∑
i=1

δi(X
T
i ,W

T
i )T [τ − I(Yi −XT

i β −WT
i γ ≤ 0)]− nbλ(β, γ)

=

n∑
i=1

δif(0|Xi, Ui)(XT
i ,W

T
i )T [XT

i (β0 − β) +WT
i (γ0 − γ) +R(Ui)]

+nΛλ(β∗, γ∗)(β0 − β, γ0 − γ) +Op(nκ
2).(5.28)

Let ∆(β, γ) = K−1
(
βT0 − βT , γT0 − γT

) n∑
i=1

η̃i(β, γ), then we can obtain that

∆(β, γ) =
−κ
K

(MT
1 ,M

T
2 )

n∑
i=1

δif(0|Xi, Ui)(XT
i ,W

T
i )T [XT

i (−κM1) +WT
i (−κM2)]

+
1

K
(−κMT

1 ,−κMT
2 )

n∑
i=1

δif(0|Xi, Ui)(XT
i ,W

T
i )TR(Ui)

+
n

K
(−κMT

1 ,−κMT
2 )Λλ(β∗, γ∗)(−κMT

1 ,−κMT
2 )T +Op(nK

−1κ2)

=
κ2

K

n∑
i=1

δif(0|Xi, Ui)(XT
i M1 +WT

i M2)2

+
−κ
K

n∑
i=1

δif(0|Xi, Ui)(XT
i M1 +WT

i M2)R(Ui)

+
nκ2

K
(MT

1 ,M
T
2 )Λλ(β∗, γ∗)(MT

1 ,M
T
2 )T +Op(1)

≡ I1 + I2 + I3,(5.29)

where R(Ui) = θ0(Ui) −WT
i γ0. Note that ‖R(Ui)‖ = O(K−r), then some calculations

yield I1 = Op(κ
2nK−1)‖M‖2 = Op(‖M‖2), and I2 = Op(κnK

−1−r)‖M‖ = Op(‖M‖).
In addition, by condition C5, we get that maxk p

′′
λ1k

(|β∗k |)→ 0 and maxl p
′′
λ2l

(|γ∗l |)→ 0.

Then we have I3 = op(κ
2nK−1)‖M‖2 = op(‖M‖2). Hence, by choosing a su�ciently
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large c, I1 dominates I2 and I3 uniformly in ‖M‖ = c. This implies that for any given
ε > 0, if we choose c large enough, then we have

(5.30) P

{
inf
‖M‖=c

∆(β, γ) > 0

}
≥ 1− ε.

Hence (5.26) holds, and this implies, with probability at least 1 − ε, that there exists a
local minizer β̃ and γ̃ such that

‖β̃ − β‖ = Op(τ) = Op
(
n−r/(2r+1)

)
, ‖γ̃ − γ‖ = Op(τ) = Op

(
n−r/(2r+1)

)
.

�

Proof of Theorem 3.1

Proof. From the proof of Theorem 2.3, we know that it is su�cient to show that, for
any ε > 0, when n is large enough, we have P{β̃k 6= 0} < ε, k = d + 1, . . . , p. Since

β̃k = Op(n
−r/(2r+1)), when n is large enough, there exists some c such that

P{β̃k 6= 0} = P{β̃k 6= 0, |β̃k| ≥ cn−r/(2r+1)}+ P{β̃k 6= 0, |β̃k| < cn−r/(2r+1)}
< ε/2 + P{β̃k 6= 0, |β̂k| < cn−r/(2r+1)}.(5.31)

Using the same arguments as in the proof of (5.23), we can obtain that

n
r

2r+1 p′λ1k
(|β̃k|)sgn(β̃k) = n

−r−1
2r+1

n∑
i=1

δif(0|Xi, Ui)XikXT
i (β0 − β̃)

+n
−r−1
2r+1

n∑
i=1

δif(0|Xi, Ui)XikWT
i (γ0 − γ̃)

+n
−r−1
2r+1

n∑
i=1

δif(0|Xi, Ui)XikR(Ui) + op(1).(5.32)

From Lemma 5.2, we have ‖β̃−β0‖ = Op(n
−r

2r+1 ), ‖γ̃−γ0‖ = Op(n
−r

2r+1 ) and ‖R(Ui)‖ =

Op(n
−r

2r+1 ). Hence, the three terms on the right-hand side are of order Op(n · n
−r−1
2r+1 ·

n
−r

2r+1 ) = Op(1). Hence, for large n, there exists some c such that

(5.33) P (n
r

2r+1 p′λ1k
(|β̃k|) > c) < ε/2.

By condition C6, we have that

(5.34) inf
|βk|≤cn−r/(2r+1)

n
r

2r+1 p′λ1k
(|βk|) = n

r
2r+1 λ1k inf

|βk|≤cn−r/(2r+1)
λ−1
1k p
′
λ1k

(|βk|)→∞.

That is, β̃k 6= 0 and |β̃k| < cn−r/(2r+1) imply that nr/(2r+1)p′λ1k
(|β̃k|) > c for large n.

Then, invoking (5.33), we have that

P{β̂k 6= 0} < ε/2 + P (nr/(2r+1)p′λ1k
(|β̂k|) > C) < ε.

This completes the proof of this theorem. �

Proof of Theorem 3.2

Proof. From the proof of Lemma 5.1, we know that

(5.35) ‖θ̃(u)− θ(u)‖2 ≤ 2(γ̃ − γ)TH(γ̃ − γ) + 2

∫ 1

0

R(u)2du,
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where H =
∫ 1

0
B(u)BT (u)du. From Lemma 5.2, we get that ‖γ̃ − γ‖ = Op(n

−r/(2r+1)).

Hence invoking ‖R(Ui)‖ = O(K−r) = Op(n
−r/(2r+1)), a simple calculation yields

(5.36) ‖θ̃(u)− θ(u)‖2 = Op
{
n

−2r
2r+1

}
.

Then, we complete the proof of this theorem. �
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