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Abstract – Real-time multi-object detection and tracking is one of the main challenges in analysing aerial imagery from platforms 

such as unmanned aerial vehicles (UAVs) and satellite systems. Traditional tracking algorithms are inadequate, especially in 

complex and dynamic environments, which necessitates the development of more powerful and flexible methods. This study 

proposes a deep learning-based solution aligned with the objectives of high extraction rate and sufficient accuracy. Within the 

scope of the study, the YOLOv11 model, a single-stage object detection architecture, is integrated with the ByteTrack algorithm 

for tracking detected objects. This approach is evaluated against the two-stage Faster R-CNN architecture (MobileNetV3-large 

FPN backbone), known for its high accuracy in object detection. The models were trained on a comprehensive dataset created 

by combining the challenging VisDrone and DOTA datasets containing objects of various sizes. The results demonstrate that 

YOLOv11s achieved an mAP@0.5 of 27.7% with an inference speed exceeding 15 FPS, while Faster R-CNN reached a 

substantially higher mAP@0.5 of approximately 47% but processed frames more slowly, at around 8 FPS. These FPS values 

represent the number of frames each model can process per second under the same hardware conditions, and do not correspond 

to the frame rate of the input video. The ByteTrack algorithm, employed in the tracking phase, improves tracking accuracy by 

successfully identifying detected objects. In this context, the advantages and limitations of both models are evaluated, and it is 

concluded that the choice of model should be based on the specific application requirements—favoring YOLOv11 for real-time 

use with limited computational resources, and Faster R-CNN for applications where high detection precision is paramount. 
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I. INTRODUCTION 

Today, real-time multi-object detection and tracking (MOT) 

has gained significant importance in a wide range of 

applications, including autonomous systems, unmanned aerial 
vehicles (UAVs), security cameras, and smart city 

infrastructures. Particularly in dynamic and complex 

environments—such as aerial and satellite imagery—the 

ability to accurately, rapidly, and continuously detect and track 

multiple objects is critical for ensuring the reliability, 

efficiency, and performance of these systems. However, 

conventional object detection and tracking algorithms often 

fall short in scenarios involving rapid object motion, 

occlusion, or temporary disappearance. Along with the high 

accuracy rates of deep learning-based models in the field of 

Classification [1-6] significant success has also been achieved 
in object detection. 

In recent years, novel methods based on the YOLO 

architecture have emerged as powerful solutions for the 

efficient and accurate detection of small objects. For instance, 

the Rotating-YOLO approach improves accuracy while 

reducing model complexity by addressing rotated objects [7]. 

PETNet introduces multi-scale feature fusion to minimize 

information loss in small object detection [8]. EL-YOLO 

distinguishes itself with a lightweight architecture, enabling 

fast inference on edge devices [9]. SDMNet leverages 

attention mechanisms and advanced convolutional techniques 

to improve detection across varying object sizes [10]. 
Furthermore, enhancements in YOLOv8 have led to 

significant improvements in detecting small-scale targets [11]. 

These studies underscore the strengths of deep learning models 

in balancing speed and accuracy while tackling key challenges 

such as small object detection. 

    In this study, a real-time multi-object detection and tracking 

system has been developed specifically for use with aerial and 

satellite imagery. The system evaluates the single-stage, high-

speed YOLOv11 architecture against the two-stage Faster R-

CNN architecture—employing the MobileNetV3-large FPN 
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backbone—which is known for its high accuracy in complex 

scenarios. 

    The YOLOv11 model offers advantages for real-time 

applications due to its high inference speed, while the Faster 

R-CNN model enables more accurate object detection, 

particularly in complex scenes. The ByteTrack algorithm used 
for tracking ensures continuity by assigning unique identifiers 

 to objects detected by YOLOv11, enabling reliable tracking 

of even temporarily invisible or fast-moving objects. 

    Model training was performed on a challenging and 

comprehensive dataset created by combining the VisDrone 

and DOTA datasets, which include objects of different sizes 

and various environmental conditions. In addition, a lighter 

YOLOv11 model trained only with the VisDrone dataset was 

also evaluated. The results of the experiments revealed the 

performance of each model in terms of accuracy and speed, 

highlighting their suitability for different application 
scenarios. 

    The primary objective of this study is to develop a 

YOLOv11-based object detection system on datasets 

containing high-resolution aerial and satellite images, 

integrate it with the ByteTrack algorithm, and perform multi-

object tracking. Additionally, the system's performance will be 

evaluated by comparing it with the Faster R-CNN architecture, 

with the goal of comparing the training characteristics, 

inference speeds, and accuracy performance of different deep 

learning architectures. In this context, the developed system 

aims to create a robust infrastructure for the defence industry 

by enabling the effective use of AI-supported decision-making 
mechanisms in tasks such as navigation and target tracking for 

autonomous UAVs. 

II. MATERIALS AND METHOD 

 

2.1. Deep Learning Models 

 

In this study, two popular deep learning-based object 

detection algorithms, YOLOv11 and Faster R-CNN, were 

used for multi-object detection and tracking from aerial and 

satellite images. Although these models are based on different 

artificial intelligence approaches, both provide successful 
results for object detection in complex scenes. 

 

2.1.1. YOLOv11 

 

YOLOv11 (You Only Look Once version 11) is a recent 

deep learning architecture introduced by Ultralytics, known 

for its fast and effective solutions to real-time object detection 

problems through a single-stage structure. Compared to 

previous versions, YOLOv11 features a lighter architecture, 

improved speed, and enhanced small object detection 

capability. These characteristics make it a balanced model in 
terms of detection accuracy and inference time, especially in 

complex aerial and satellite imagery containing multiple 

objects. 

Although YOLOv11 has not yet been presented in a peer-

reviewed academic publication, it has been officially released 

and documented by Ultralytics on their website. This release 

includes detailed architectural improvements and performance 

benchmarks, providing a solid basis for research and 

application in real-time scenarios. 

    In this study, YOLOv11 is preferred for multi-object 

detection due to its high performance and updated architecture. 

Prior research and community applications have also begun to 

explore its potential. For instance, the LP-YOLO algorithm 

has been adapted to enhance pedestrian detection efficiency in 

real-time applications [12], and the SDS-YOLO architecture 

has shown improvement in tasks requiring positional accuracy 

under unstable conditions [13]. Additionally, it has been 
applied successfully in areas such as fire and smoke detection 

[14]. 

All these findings, supported by the latest release from 

Ultralytics, confirm that YOLOv11 is a fast, accurate, and 

reliable method for multi-object detection in aerial imagery. 

 

2.1.2. Faster R-CNN 

 

Faster R-CNN (Region-based Convolutional Neural 

Network) is a widely used, region-based two-stage deep 

learning architecture for object detection tasks. In the first 
stage of the model, the Region Proposal Network (RPN) is 

used to identify potential object locations in the image. The 

RPN generates region proposals (regions with high object 

probability) using a sliding window approach on convolutional 

feature maps. 

In the second stage, these candidate regions are resized to 

fixed dimensions using the Region of Interest (RoI) Pooling 

method, followed by classification and bounding box 

regression operations. This two-stage structure enables Faster 

R-CNN to deliver superior performance in applications 

requiring high accuracy and detailed analysis of small objects. 

Although it requires more computational resources 
compared to single-stage models (YOLO, SSD, etc.), it offers 

advantages in terms of regional accuracy and classification 

accuracy. For this reason, Faster R-CNN is preferred in areas 

such as infrastructure monitoring, agricultural analysis, and 

high-resolution aerial images, where complex scene structures 

are present. 

For example, it has achieved high accuracy in infrastructure 

monitoring studies such as detecting bridge cracks in aerial 

images [15], and has been effectively used in agricultural 

applications such as identifying weeds [16] and counting 

wheat heads [17]. In these studies, Faster R-CNN’s success in 
detecting small objects stands out. 

 

2.2. Data Sets 

 

2.2.1.VisDrone 

 

VisDrone is a comprehensive dataset consisting of high-

resolution aerial images captured by unmanned aerial vehicles 

(UAVs) in different urban environments, under various 

weather conditions and at different density levels. In the field 

of computer vision, it is considered a critical reference point 
for tasks such as object detection in aerial images and multi-

object tracking (MOT) [18]. In this study, the VisDrone-MOT 

subset was used, and the dataset was divided into 25,607 

images for training, 9,304 for validation, and 6,474 for testing. 

Fig. 1 presents a typical aerial image from the VisDrone 

dataset, providing a visual representation of the complex 

scenes and diverse object categories contained within the 

dataset. 
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Fig. 1. An example aerial image from the VisDrone dataset. 

 

    VisDrone dataset contains a total of 12 different object 

classes covering a wide range of objects commonly 

encountered in urban environments. These classes include 

‘ignored,’ ‘pedestrian,’ ‘people,’ ‘bicycle,’ ‘car,’ ‘van,’ 

‘truck,’ ‘tricycle,’ ‘awning-tricycle,’ ‘bus,’ ‘motor,’ and 

‘others.’ This diversity enables the testing of algorithms' 

generalisability in real-world scenarios. 
The VisDrone dataset is divided into two main sub-sets: 

VisDrone-DET focuses on object detection tasks on static 

images, while VisDrone-MOT covers multi-object tracking 

tasks from sequential video frames. This segmentation 

provides a unique resource for addressing challenging 

conditions such as small object detection and object tracking 

continuity in dynamic scenes, particularly in images captured 

from a UAV perspective. 

The images in the dataset are commonly used to evaluate 

the performance of small object detection and real-time 

tracking algorithms (e.g., ByteTrack) due to their low altitude 
and complex background conditions. This makes VisDrone an 

important benchmark for testing the practical effectiveness of 

methods developed in the field of multi-object tracking 

(MOT). 

The challenges presented by VisDrone significantly guide 

current research and development activities. For example, 

studies focusing on the domain shift problem in aerial images 

have provided comprehensive experimental results on the 

VisDrone dataset, analysing the impact of image- and 

instance-level shifts on detection performance [18]. Proposed 

innovations for the YOLOv8 architecture have also been tested 

on the VisDrone dataset, achieving significant improvements 
of 10.5% in mAP50 and 6.9% in mAP95, thereby enhancing 

performance in small target detection [19]. Furthermore, 

ablation experiments conducted on the VisDrone and AI-TOD 

datasets improved the metrics of YOLOv8-based anchor-free 

detectors by 2.2% and 1.9%, respectively, achieving a 

performance increase of 13.75% and 13.97% compared to the 

baseline [20]. These developments clearly demonstrate the 

critical role of VisDrone's challenging structure in enhancing 

the robustness and accuracy of object detection and tracking 

algorithms. 

 
2.2.2. DOTA 

 

Object detection in aerial images has gained significant 

importance in recent years due to strategic applications in civil 

and military fields [22]. The DOTA dataset plays a 

fundamental role in developments in this field due to its 

comprehensive structure consisting of high-resolution aerial 

images [21]. DOTA successfully reflects complex real-world 

scenarios by incorporating images obtained from different 

platforms such as unmanned aerial vehicles (UAVs), satellites, 

and fixed-wing aircraft [22]. The DOTA dataset is designed to 

address the unique challenges of object detection in aerial 

imagery. 
In this study, a total of 1,411 images from the DOTA dataset 

were used for training, 458 for validation, and 937 for testing. 

The dataset includes classes such as ‘plane,’ ‘ship,’ ‘storage 

tank,’ ‘baseball diamond,’ ‘tennis court,’ ‘basketball court,’ 

‘ground track field,’ ‘harbour,’ ‘bridge,’ ‘large vehicle,’ ‘small 

vehicle,’ ‘helicopter,’ ‘roundabout,’ ‘soccer ball field,’ 

‘swimming pool,’ and ‘container crane.’ The use of rotated 

bounding boxes for object labelling has made DOTA a 

standard reference point for rotated object detection problems. 

Additionally, its inclusion of small objects at different 

resolutions provides a critical test environment for research in 
small object detection [23] [24] 

DOTA's contribution to the field lies in its ability to provide 

a benchmark for the development and evaluation of deep 

learning-based algorithms. Object detection models in aerial 

images face challenges such as complex backgrounds, limited 

long-range contextual information, and high pixel similarity 

between objects and backgrounds [23] [24]. DOTA provides a 

standardised platform to objectively evaluate the performance 

of models aimed at overcoming these challenges. For example, 

YOLO-based detectors such as YOLO-SM have demonstrated 

their effectiveness in experiments conducted on the DOTA-

v1.0 and DOTA-v1.5 datasets [23]. Additionally, dynamic 
YOLO-based models incorporating the Luna development 

mechanism and innovative modules achieved significant 

improvements in small and flat object detection performance, 

reaching an average precision (mAP_0.5) of 90.6% on DOTA-

v1.5 [24]. 

The DOTA dataset is considered an indispensable resource 

for research and development activities in the field of object 

detection in aerial images. Its rich and challenging data 

structure provides a critical foundation for testing, comparing, 

and designing new-generation deep learning-based algorithms. 

This dataset will continue to play a significant role in shaping 
future research directions in computer vision problems related 

to aerial images. 

 

 
Fig. 2. Example aerial image from the DOTA dataset. 
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2.3. Performance Metrics 

 

    Various metrics are commonly used in computer vision to 

evaluate the performance of object detection models. These 

include precision, recall, mean mAP@0.5 (IoU), and 

mAP@0.5:0.95. Precision refers to the ratio of correctly 
detected objects to all predictions made by the model, while 

recall indicates how many of the objects that actually exist 

were correctly detected [27]. These two metrics allow for the 

separate evaluation of false positives (false alarms) and false 

negatives (misses) by the model. 

The mAP@0.5 metric measures the average precision of all 

classes with a specified IoU (Intersection over Union) 

threshold value of 0.5 and quickly reflects the overall detection 

performance of the model [26] [28]. However, this fixed 

threshold value may not fully show how consistent and 

accurate the model performs at different IoU levels. To address 
this limitation, the mAP@0.5:0.95 metric is used. This metric 

calculates IoU values from 0.5 to 0.95 in increments of 0.05, 

enabling a more comprehensive and detailed analysis of model 

performance [25] [27] [28]. This allows for a comparison of 

the model's performance at both loose and strict thresholds, 

providing a better understanding of its robustness under real-

world conditions. 

The correct and detailed use of these metrics is critical, 

especially in challenging tasks such as object detection and 

tracking in aerial images, due to the density of small objects 

and class imbalances. Such challenges are among the key 

factors determining the effectiveness of object detection 
algorithms in real-world conditions. Metrics such as precision 

and recall separately highlight false detections and missed 

objects, enabling the identification of the model's weaknesses, 

while mAP values summarise the model's overall accuracy and 

sensitivity. 

 

2.4. Object Tracking Algorithm 

 

ByteTrack is a prominent algorithm in the field of multi-

object tracking (MOT) that distinguishes itself by 

incorporating low-confidence detection results into the 
tracking process. While traditional MOT methods typically 

eliminate detections below a certain confidence threshold—

leading to the exclusion of small, occluded, or low-resolution 

objects—ByteTrack takes a different approach. By retaining 

almost all detection outputs, it improves the association of 

objects across frames and enables more complete and 

continuous tracking results. 

This strategy aligns with the 'tracking-by-detection' 

paradigm and significantly enhances the robustness of tracking 

in dynamic scenes. Unlike conventional approaches, which 

risk losing critical visual information due to strict filtering, 
ByteTrack increases reliability by preserving even uncertain 

detections. This enables the tracking of objects that would 

otherwise be missed due to partial occlusion or low visual 

quality[29]. 

Moreover, ByteTrack can be seamlessly integrated with 

high-performance object detectors such as YOLOv11 or Faster 

R-CNN, facilitating precise temporal tracking in real-time 

systems. Its compatibility with modern deep learning models 

and its ability to maintain object continuity under challenging 

conditions make it a highly effective solution for various real-

world applications, including autonomous navigation, aerial 

surveillance, and intelligent monitoring systems. 

 

2.5. Experimental Setup 

 

    All training and evaluation processes were conducted using 

the available hardware infrastructure, which includes NVIDIA 
GTX 1080 Ti and RTX 3050 GPUs. The YOLOv11 models 

were trained using the official Ultralytics YOLO 

implementation, and all models were developed using the 

Python programming language. 

Due to differences in GPU memory capacity—11 GB on the 

GTX 1080 Ti and 4 GB on the RTX 3050—the datasets were 

allocated accordingly during the training phase. The relatively 

smaller VisDrone-DET dataset was trained on the RTX 3050 

GPU, while the training involving the combined VisDrone-

MOT and DOTA datasets was carried out on the GTX 1080 Ti 

to meet the higher memory requirements. 
 

III. EXPERIMENTAL STUDIES 

    In this study, YOLOv11 and Faster R-CNN models were 

employed for multi-object detection. The models were trained 

and evaluated on the VisDrone and DOTA datasets, and a 

lightweight YOLOv11 variant trained solely on the VisDrone-

DET dataset was also included for comparison. 

 

    Following the detection stage, the outputs of the YOLOv11 

model were processed using the ByteTrack algorithm to assign 
unique IDs to objects, enabling consistent tracking across 

frames. All tracking results were visually evaluated, and the 

system’s real-time performance was tested. 

 

 
Fig. 3. YOLOv11n Training Convergence Graphs 

    Fig. 3. presents the performance metrics of the YOLOv11n 

model during training with a batch size of 4 and an image size 

of 640x640 pixels for 100 epochs. While the training losses 

show a steady decline, the validation losses (especially after 

the 60th epoch) exhibit a slight upward trend. 

    This indicates potential overfitting of the model to the 

training data. When examining the final performance metrics 
of the model, precision is acceptable at 0.44964, while recall 

is quite low at 0.2285. The average precision values, 

mAP50(B) 0.23604 and mAP50-95(B) 0.12141, indicate that 

the model's overall detection capability and, in particular, the 

accuracy of bounding box positioning need to be improved. 

The low sensitivity and mAP50-95 values reveal that the 

model misses many real objects and is insufficient in precise 

positioning. 
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Fig. 4. YOLOv11s Training Convergence Graphs 

    Fig. 4. presents the performance metrics of the YOLOv11s 

model during training with a batch size of 4 and an image size 

of 640x640 pixels over 100 epochs. While training losses show 

a steady decline, validation losses (val/box_loss, val/cls_loss, 

val/dfl_loss) have stabilised relatively after the initial drop; 

this indicates a less pronounced overfitting tendency compared 

to the previous YOLOv11n model. 

    When examining the final performance metrics of the model 

at 100 epochs, precision was recorded as 0.48174. Sensitivity 

(recall) was 0.25666, mAP50(B) was 0.27768, and mAP50-

95(B) was 0.15492, showing significant improvements in all 

metrics compared to the previous YOLOv11n model. In 

particular, the increase in recall and mAP50-95 values 

indicates that the model can detect more objects and achieve a 

significant improvement in the positional accuracy of 
bounding box predictions. These findings confirm that 

YOLOv11s offers a more effective solution in terms of object 

detection performance. 

 
Fig. 5. YOLOv11m Training Convergence Graphs 

    Fig. 5. summarises the training process of the YOLOv11m 
model over 100 epochs, with a batch size of 1 and an image 

size of 640x640 pixels. While the training losses decrease, a 

significant increase in the validation classification loss 

(val/cls_loss) is observed after approximately 30 epochs, 

indicating overfitting. 

    The final metric results of the model are precision 0.4942, 

recall 0.26545, mAP50(B) 0.29258, and mAP50-95(B) 

0.14758. These values show an improvement over the previous 

YOLOv11s model, particularly in terms of recall and 

mAP50(B), but indicate that position accuracy still needs to be 

improved at high IoU thresholds (mAP50-95). The single 

batch size (batch size 1) may have a limiting effect on the 

model's optimisation stability and generalisation performance. 

Strategies such as larger batch sizes and early stopping are 

recommended to reduce overfitting and improve performance. 

 
Fig. 6. YOLOv11l Training Convergence Graphs 

   

    Fig. 6. shows the training performance of the YOLOv11l 
model with 50 epochs, a batch size of 4, and an image size of 

416x416 pixels. While training losses show a decreasing 

trend, the slight increase observed in validation losses 

(val/box_loss, val/cls_loss) after approximately 25 epochs 

indicates a potential overfitting issue. 

    The final metric results of the model are precision 0.49895, 

recall 0.20676, mAP50(B) 0.20003, and mAP50-95(B) 

0.08892. These values indicate that the model's accuracy is 

moderate, but sensitivity and, in particular, positioning 

accuracy at high IoU thresholds (mAP50-95) need to be 

significantly improved. The model's overall performance is 

lower compared to larger YOLO models, particularly in terms 

of recall and mAP values. Strategies such as early stopping and 

hyperparameter optimisation are recommended to reduce 

overfitting and improve model performance 

 
Fig. 7. YOLOv11l Training Convergence Graphs 
 

    Fig. 7. summarises the training performance of the 

YOLOv11l model with 50 epochs, a batch size of 8, and an 

image size of 480x480 pixels. While the training losses show 

the expected decrease, the slight increase observed in the 

validation classification loss (val/cls_loss) after approximately 

25 epochs indicates a potential overfitting issue. 

    The model's final metric results are relatively good with 

precision at 0.51493, but recall at 0.21355 and mAP50(B) at 

0.21512 are moderate, while mAP50-95(B) at 0.09579 is low. 

These values indicate that the model's object detection 

accuracy is acceptable, but it requires significant improvement 

in terms of sensitivity and, especially, localization accuracy at 

high IoU thresholds. Strategies such as early stopping and 

hyperparameter optimisation are recommended to reduce 
overfitting and improve model performance. 
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Fig. 8. YOLOv11s Training Convergence Graphs 

 

    Fig. 8. presents the training results obtained by the 
YOLOv11s model over 50 epochs with a 480x480 image size, 

a batch size of 10, and a final learning rate of 0.001. While 

training losses show a decreasing trend, the slight increase 

observed in the validation classification loss (val/cls_loss) 

after approximately 25 epochs indicates a potential overfitting 

issue. The model's final metrics (precision: 0.44296, recall: 

0.19971, mAP50(B): 0.1935, mAP50-95(B): 0.08987) 

demonstrate lower performance compared to previous 

YOLOv11 configurations. In particular, the low precision and 

mAP values indicate that significant improvements are needed 

in the model's detection coverage and precise localisation 
ability. The combination of hyperparameters used (especially 

the large batch size and relatively short training time) may 

have contributed to this decline. Strategies such as early 

stopping and hyperparameter optimisation are recommended  

to improve performance. 

 

 
Fig. 9. YOLOv11l Training Convergence Graphs 

 

    The graphs shown in Fig. 9. and the obtained metric results 

reflect the training performance of the YOLOv11l model with 

a 480x480 pixel image size, a batch size of 8, and a final 

learning rate of 0.001 over 50 epochs. While the training losses 

show the expected decrease, the slight increase observed in the 
validation classification loss (val/cls_loss) after approximately 

25 epochs indicates a potential overfitting issue. The model's 

final metrics are recorded as precision 0.50947, recall 0.21647, 

mAP50(B) 0.21431, and mAP50-95(B) 0.09652. These values 

indicate that the model's detection sensitivity is relatively 

acceptable, but there is a need for significant improvements in 

sensitivity and, in particular, object localisation accuracy 

(mAP50-95) at high IoU thresholds. Considering the observed 

overfitting tendency and relatively low performance metrics, 

it is recommended to apply strategies such as early stopping 

and more comprehensive hyperparameter optimisation to 
enhance the model's generalisation ability. 

 

 
Fig. 10. YOLOv11l Training Convergence Graphs 

 

    The graphs and metric results presented in Fig. 10. 
summarise the training performance of the YOLOv11l model 

over 50 epochs with a 416x416 pixel image size, a batch size 

of 10, and a final learning rate of 0.001. While the training 

losses show the expected decrease, the slight increases 

observed in the validation losses (val/box_loss, val/cls_loss) 

after approximately 25 epochs indicate a potential overfitting 

issue. The model's final metrics are recorded as precision 

0.51083, recall 0.20005, mAP50(B) 0.20298, and mAP50-

95(B) 0.09214. These values indicate that the model's 

detection accuracy is relatively acceptable, but there is a need 

for significant improvements in sensitivity and, in particular, 
object localisation accuracy (mAP50-95) at high IoU 

thresholds. Considering the observed overfitting tendency and 

relatively low performance metrics, especially when using a 

large batch size of 10 and a relatively small image size 

(416x416), it is recommended to apply strategies such as early 

stopping and hyperparameter optimisation to enhance the 

model's generalisation ability. 

Model  Epoch Batch - 

Size 

İmage - 

Size 

lr0 lrf mAP50(B) mAP50-

95(B) 

  

precision(B) recall(B) 

YOLOv11n 100 4 640 0.01  0.01 0.23604 0.12141 0.44964 0.2285 

YOLOv11s 100 4 640 0.01  0.01 0.27768 0.15492 0.48174 0.25666 

YOLOv11m 100 1 640 0.01  0.01 0.29258 0.14758 0.4942 0.26545 

YOLOv11l 50 4 416 0.01 0.01 0.20003 0.08892 0.49895 0.20676 

YOLOv11l 50 8 480 0.01 0.01 0.21512 0.09579 0.51493 0.21355 

YOLOv11s 50 10 480 0.01 0.001 0.1935 0.08987 0.44296 0.19971 

YOLOv11l 50 8 480 0.01 0.001 0.21431 0.09652 0.50947 0.21647 

YOLOv11l 50 10 416 0.01 0.001 0.20298 0.09214 0.51083 0.20005 

Table 1. Training Parameters with the YOLOv11 Model 

 

    As detailed in Table 1, various YOLOv11 model variants 

were trained under different configurations, including varying 

batch sizes, image resolutions, and number of epochs. To 

improve the models’ generalisation ability and robustness 

against variations in input data, a comprehensive set of data 

augmentation techniques was employed consistently across all 

training experiments. 

    Specifically, horizontal flipping was applied with a 

probability of 0.5 (fliplr=0.5), while vertical flipping was 

disabled (flipud=0.0). In addition, the training pipeline 

included random rotations up to ±10 degrees (degrees=10), as 
well as color space augmentations in the HSV domain—
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namely, hue adjustment within ±0.015 (hsv_h=0.015), 

saturation variation up to ±0.7 (hsv_s=0.7), and brightness 

variation up to ±0.4 (hsv_v=0.4). Geometric transformations 

such as random scaling (scale=0.8, i.e., between 0.8 and 1.2) 

and translation (translate=0.1, i.e., up to ±10% of the image 

dimensions) were also incorporated. These augmentation 

parameters were activated using the augment=True setting. 

    The consistent application of these augmentation strategies 

aimed to increase the diversity of training samples artificially, 

thereby enhancing the models’ performance under real-world 
conditions. The resulting detection metrics—such as precision, 

recall, mAP50, and mAP50-95—demonstrate the impact of 

these techniques, as shown in Table 1. 

 
Fig. 11. Faster R-CNN Training Convergence Graphs 

    The Faster R-CNN model has demonstrated remarkable 

performance in object detection tasks. Following a training 

process of 50 epochs, the model achieved average precision 
(mAP) values of mAP@0.5≈47% and mAP@0.5:0.95≈20.2%. 

However, the model's inference speed is limited to an average 

of 8 frames per second (FPS), which poses a constraint for 

real-time system integration. The training graph is shown in 

Fig. 11. 

    When examining the training dynamics, a steady decrease 

in the loss functions (both training and validation losses) was 

observed over 50 epochs. This trend indicates that the model 

successfully converged to the data distribution and maintained 

its generalisation ability without a significant increase in 

overfitting. The precision and recall metrics showed a 

relatively slow increase in the early stages of the training 

process, but followed a noticeable upward trend from 

approximately the 10th epoch onwards, indicating a gradual 

improvement in the model's target detection capability. The 

average precision (mAP) value also exhibited a similar trend. 

    The model was trained on images with a resolution of 

512x512 pixels, processed in batches of 8 examples each. The 

optimisation algorithm used was Stochastic Gradient Descent 
(SGD), with an initial learning rate of 0.005 and a final 

learning rate of 0.01. 

 
Fig. 12. Object Detection with YOLOv11 

An example image of object detection performed with the 

YOLOv11 model is shown in Fig. 12. 

 
Fig. 13. Faster R-CNN Object Detection 

Fig. 13 shows an image of object detection performed with 

Faster R-CNN. 

 

 
Fig. 14. Object Tracking with ByteTrack 

Fig. 14 shows a visual representation of tracking performed 
with ByteTrack. 
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Fig. 15. YOLOv11s Training Convergence on VisDrone-DET 

Dataset 

    The graphs and metric results presented in Fig. 15. detail the 

training performance of the YOLOv11s model on the 

VisDrone DET dataset, using a 480x480 pixel image size, a 

batch size of 10, and a final learning rate of 0.001 over 25 

epochs. The training losses (train/box_loss, train/cls_loss, 
train/dfl_loss) exhibit the expected decreasing trend 

throughout the training period, while the validation losses 

(val/box_loss, val/cls_loss, val/dfl_loss) show no significant 

overfitting trend during this short training period. The final 

performance metrics of the model are recorded as precision 

0.36863, recall 0.24646, mAP50(B) 0.23819, and mAP50-

95(B) 0.12821. These values indicate that the model's overall 

detection capability is moderate, but significant improvements 

are needed in both object coverage (recall) and, especially, 

bounding box positioning accuracy at high IoU thresholds 

(mAP50-95). It is considered that the performance achieved 
can be attributed to the limited training time (25 epochs) and 

that the model has potential for further optimisation. 

    In this study, three different training scenarios were 

considered for object detection and tracking tasks. First, 
YOLOv11 models were trained on a combination of the 

VisDrone MOT and DOTA datasets. Second, the same 

combined dataset was trained using the Faster R-CNN model. 

Third, the YOLOv11 model was trained only on the VisDrone 

DET dataset. The training outputs of all three models were 

carefully evaluated graphically in terms of metrics such as 

Precision, Recall, mAP, and loss, and recorded throughout the 

training. Finally, object tracking was performed using the 

ByteTrack algorithm based on the results obtained from these 

detection models, and the tracking results demonstrated that 

objects were reliably identified and high accuracy was 

achieved during the tracking process. 

IV. DISCUSSION 

 

This study offers a comprehensive assessment of 

contemporary deep learning-based object detection and 

tracking paradigms, with a particular emphasis on real-time 

applications. Within this framework, both single-stage 

(YOLOv11 variants) and two-stage (Faster R-CNN) detection 

architectures were evaluated using a combined dataset 

comprising VisDrone and DOTA. Additionally, standalone 
experiments on the VisDrone DET dataset were conducted 

exclusively with YOLOv11 models to investigate the 

performance of lightweight architectures in resource-

constrained scenarios. 

    Following the detection phase, the ByteTrack algorithm was 

utilized to perform multi-object tracking. Its integration 

enabled reliable and continuous tracking by maintaining 

consistent object identities, even in the presence of rapid 

motion or temporary occlusion. 

The training dynamics of different-sized (n, s, m, l) and 
configured models of the YOLOv11 family were examined in 

detail through the evolution of loss functions. In general, 

training losses showed a steady decrease across all variants, 

indicating that the models effectively learned the patterns in 

the training data. However, changes in validation losses 

provided critical insights into the models' generalisation 

ability. For example, in the 100-epoch training of the 

YOLOv11n model, a slight increase in validation losses 

starting after approximately 60 epochs indicated a potential 

overfitting tendency. This situation carried the risk of 

negatively affecting the model's performance on test data by 
over-adapting to the training data. The final metrics, 

particularly the low sensitivity (0.20005) and mAP50-95(B) 

(0.09214) values, indicated significant limitations in the 

model's target detection coverage and bounding box 

positioning accuracy. 

In the 100-epoch training of the YOLOv11s model, 

validation losses followed an initial decline and then stabilised 

relatively, indicating better generalisation ability. This model 

showed significant improvements over the previous 

YOLOv11n in all basic metrics (precision: 0.48174, recall: 

0.25666, mAP50(B): 0.27768, mAP50-95(B): 0.15492), 

proving that more objects can be detected and that there is a 
significant increase in location accuracy. 

When trained with a small batch size of 1, the YOLOv11m 

model showed serious overfitting symptoms with a significant 

increase in validation classification loss (val/cls\_loss) after 

approximately 30 epochs. This indicates that small batch sizes 

may negatively affect training stability and limit generalisation 

ability. Metrics (precision: 0.4942, recall: 0.26545, 

mAP50(B): 0.29258, mAP50-95(B): 0.14758) showed an 

improvement in mAP50 compared to the previous YOLOv11s 

model, but it was emphasised that accuracy and positional 

accuracy at high IoU thresholds still need to be improved. 
Different 50-epoch configurations of the YOLOv11l model 

were also investigated. Training with a 416x416 image size 

and a batch size of 4 (precision: 0.49895, recall: 0.20676, 

mAP50(B): 0.20003, mAP50-95(B): 0.08892), slight 

overfitting symptoms were observed after approximately 25 

epochs in validation losses. When a larger image size 

(480x480) and a batch size of 8 were used (precision: 0.51493, 

recall: 0.21355, mAP50(B): 0.21512, mAP50-95(B): 

0.09579), while precision improved slightly, sensitivity and 

mAP50-95 values still require further improvement. Reducing 

the final learning rate (lrf) to 0.001 (for the 480x480, batch 8 
configuration) did not result in significant changes in the 

metrics, and the overfitting tendency persisted (precision: 

0.50947, recall: 0.21647, mAP50(B): 0.21431, mAP50-95(B): 

0.09652). Similarly, the performance of the YOLOv11l model 

trained with a 416x416 image size and a batch size of 10 

(lrf=0.001) also showed signs of overfitting with low precision 

and mAP values (precision: 0.51083, recall: 0.20005, 

mAP50(B): 0.20298, mAP50-95(B): 0.09214) showed signs 

of overfitting with low precision and mAP values. The 

YOLOv11s model trained on the VisDrone DET dataset for 25 

epochs did not show significant overfitting in its losses within 

this short timeframe; however, its metric values (precision: 
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0.36863, recall: 0.24646, mAP50(B): 0.23819, mAP50-95(B): 

0.12821) indicate that the model still has significant 

optimisation potential. 

The Faster R-CNN model has demonstrated very high 

performance in object detection tasks. Following a 50-epoch 

training process, it achieved average accuracy (mAP) values 
of mAP@0.5≈47% and mAP@0.5:0.95≈20.2%. During 

training, it was observed that the loss functions continuously 

decreased and the model maintained its generalisation ability 

without a significant increase in overfitting. The accuracy and 

recall metrics also showed a noticeable upward trend starting 

from approximately the 10th epoch. However, the inference 

speed of Faster R-CNN is limited to an average of 8 frames per 

second (FPS), which poses a significant constraint for real-

time system integration. The training of this model was 

performed on 512x512 pixel image size and 8-sample mini-

batches. 
In the object tracking phase of the study, the ByteTrack 

algorithm processed the detection outputs from the YOLOv11 

model to assign identities to objects and enable tracking across 

different frames. The tracking results demonstrated that 

objects were reliably identified and high accuracy was 

achieved during the tracking process. This finding confirms 

that ByteTrack, integrated with a powerful detection model, 

can provide reliable multi-object tracking even in dynamic and 

complex scenes. 

In general, the YOLOv11 and Faster R-CNN models offer 

unique advantages and disadvantages in object detection tasks. 

Faster R-CNN excels in detection accuracy with higher mAP 
values but is limited in real-time applications due to its lower 

inference speed. YOLOv11 family models, while generally 

achieving higher inference speeds compared to Faster R-CNN, 

exhibit performance variability depending on different sizes 

and training configurations. Overfitting issues and lower 

sensitivity/mAP values are particularly noticeable in variants 

with small models (YOLOv11n) or specific hyperparameter 

combinations (e.g., single batch size in YOLOv11m). Larger 

YOLOv11 variants (s, l) demonstrate better overall 

performance while maintaining improvement potential, 

particularly in fine-grained localization (mAP50-95) metrics. 
These results highlight the importance of carefully balancing 

accuracy and speed depending on application requirements. 

The overfitting tendencies observed during training highlight 

the importance of early stopping, more advanced learning rate 

schedules, and enriched data augmentation techniques. This 

comprehensive evaluation on diverse datasets of varying 

scales and complexities, such as VisDrone and DOTA, has 

provided valuable insights into the models' adaptability to 

different scenarios. Finally, the successful integration of 

outputs from detection models with the ByteTrack algorithm 

demonstrates the practical applicability of multi-object 
tracking in fields such as autonomous systems and surveillance 

applications. Future work could focus on architectural 

optimisations and custom loss functions to improve the 

performance of YOLOv11 models at high sensitivity and high 

IoU thresholds. Additionally, minimising accuracy loss while 

increasing inference speeds through model compression and 

quantisation techniques will open up broader application areas 

in real-time systems. 

 

 

 

 

V. CONCLUSION 

 

This study aims to comprehensively examine the 

performance of current deep learning-based approaches, such 

as the YOLOv11 family of models and Faster R-CNN, in the 

field of multi-object detection and tracking using the VisDrone 

and DOTA datasets. The findings provide valuable insights 

into the capabilities and limitations of these models, while also 

evaluating the impact of integrating detection algorithms with 

ByteTrack on tracking performance. 

Experimental results reveal that different variants and 
hyperparameter configurations of YOLOv11 models exhibit 

variable performance. While training losses generally show a 

consistent decrease, significant overfitting tendencies are 

observed in validation losses, particularly during long training 

periods or with small batch sizes (e.g., a batch size of 1 in 

YOLOv11m). This indicates that the models are overly 

adapted to the training data, limiting their generalisation 

ability. In particular, low sensitivity and mAP50-95 values in 

YOLOv11n and some YOLOv11l configurations indicate that 

the models are unable to detect all objects and localise them 

with high accuracy. In contrast, the 100-epoch training of the 

YOLOv11s model demonstrated more stable validation losses 
and significant improvements in overall metrics (precision: 

0.48174, recall: 0.25666, mAP50(B): 0.27768, mAP50-95(B): 

0.15492), demonstrating more effective performance. The 

Faster R-CNN model achieved very high mAP values 

(mAP@0.5≈47%, mAP@0.5:0.95≈20.2%) in the object 

detection task, demonstrating strong performance in terms of 

accuracy. 

The continuous decrease in loss functions and gradual 

improvement in metrics observed during training support the 

model's strong generalisation ability. However, the inference 

speed of 8 frames per second (FPS) on average poses a 
significant constraint for real-time system integration. 

The ByteTrack algorithm, an integral part of the study, 

demonstrated successful performance in object tracking using 

outputs from detection models. The tracking results showed 

that objects were reliably identified and high accuracy was 

achieved during the tracking process. This finding confirms 

that ByteTrack, combined with a robust detection model, 

offers an effective solution for reliable multi-object tracking in 

dynamic environments.  

In conclusion, this study has thoroughly demonstrated the 

object detection capabilities of both the YOLOv11 family and 

Faster R-CNN models, highlighting the fundamental trade-
offs between speed and accuracy. The excessive convergence 

tendencies and metric variability in the training processes of 

different YOLOv11 variants confirm the critical role of 

strategies such as hyperparameter optimisation and early 

stopping. While Faster R-CNN achieves superior detection 

accuracy, its lower inference speed limits its applicability in 

certain domains. 

The successful integration with ByteTrack's detection 

outputs demonstrates the feasibility of building a 

comprehensive object detection and tracking system. Future 

work may explore more advanced data augmentation 
techniques, learning rate schedules, and architectural 

improvements to improve the performance of YOLOv11 

models, particularly on critical metrics such as sensitivity and 

mAP50-95. 

Additionally, improving inference speeds through model 

compression and hardware acceleration methods for high-
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accuracy models like Faster R-CNN could expand their 

potential in real-time applications. Specialised detection heads 

or multi-scale feature fusion approaches for detecting small 

and dense objects in complex datasets such as VisDrone could 

also be a focus of future research. Finally, advanced metrics 

and comparative analyses could be used to more 
comprehensively evaluate the performance of tracking 

algorithms under different challenges (e.g., long-term 

occlusions, identity change scenarios). 
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