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Abstract. A radical class R of rings is elementary if it contains precisely

those rings whose singly generated subrings are in R. Many examples of ele-

mentary radical classes are presented, and all those which are either contained

in the Jacobson radical class or disjoint from it are described. There is a dis-

cussion of Mal’tsev products of radical classes in general, in which it is shown,

among other things, that a product of elementary radical classes need not be

a radical class, and if it is, it need not be elementary.
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1. Introduction

The Mal’tsev-Neumann product of classes X and Y is the class X ◦ Y of rings

A having an ideal I ∈ X such that A/I ∈ Y.

There are two such products, X ◦Y and Y ◦X , and in general they are not equal.

This concept was introduced by Mal’tsev [11] for general algebras and about the

same time for groups by Neumann [13], so it seems appropriate to associate both

names with these products. More usually they have been called Malt’sev products.

For brevity, and as it introduces no ambiguity, we shall call them simply products

in the sequel.

Mal’tsev [11] proved that for algebras with commuting congruences, if X and Y
are varieties, then so is X ◦ Y. (In the general version the role of ideals is played

by congruence classes which are subalgebras.) The case of groups was exploited in

[13].

The nature of products of radical classes is of some interest, particularly radical

classes which have some resemblance to varieties. This seems not to have been
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directly investigated, though there are a couple of examples in the literature of

radical classes which are products of radical subclasses (see the next section).

A radical class R is elementary if it contains a given ring A precisely when it

contains all singly generated subrings of A. Such classes are exemplified by the nil

radical class N and the class of boolean rings, or, more generally, a semi-simple

radical class (SSR-class) [15]. The SSR-classes are varieties and elementary radical

classes generally are examples of locally equational classes in the sense of Hu [8].

Further information on elementary radical classes can be obtained from [5].

We shall show that the product of two elementary radical classes may be an

elementary radical class, a non-elementary radical class or not a radical class at all.

Thus such a product need not be a locally equational class, so Mal’tsev’s result on

products of varieties does not generalize to locally equational classes. We also have

a result for radicals in general. If R and U are radical classes then both R◦ U and

U ◦ R are radical classes if and only if they are equal.

All radical classes in this paper are radical classes of associative rings. Our

notation and terminology are generally consistent with those of [6] and are identical

with those of [5].

2. Results

While the Mal’tsev product of varieties is always a variety (not just for rings, but

for all algebraic structures with permutable congruences; see [11, Teorema 7]) not

much is known about Mal’tsev-Neumann products of radical classes. An example

of a radical class of abelian groups which is a Mal’tsev-Neumann product of two

such is given by Proposition 4.6 of [4] (and via A-radicals this gives an example for

rings), while in [12] it is shown that the classes TE ◦ J , where J is the Jacobson

radical class, TE is the class of torsion rings with non-zero p-components only for

p ∈ E and E is finite, are radical classes. As elementary radical classes are in a sense

generalized varieties (see Introduction) it is interesting that the Mal’tsev-Neumann

product of two elementary radical classes need not be elementary, even when it is

a radical class, as we shall see shortly. We begin, though, with some results about

Mal’tsev-Neumann products of radical classes in general.

Lemma 2.1. Let R and U be radical classes. If R ◦ U is a radical class, then

U ◦ R ⊆ R ◦ U .

Proof. As radical classes are closed under extensions R ◦ U is the lower radical

class defined by R∪ U , and for the same reason it contains U ◦ R. �
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The product of two radical classes satisfies “most of” the requirements for a

radical class.

Proposition 2.2. Let R,U be radical classes. Then R ◦ U is

(i) homomorphically closed and

(ii) closed under unions of ascending chains of ideals.

Proof. (i) If I / A ∈ R ◦ U , then

R 3 R(A)/R(A) ∩ I ∼= (R(A) + I)/I / A/I

and

(A/I)/((R(A) + I)/I) ∼= A/(R(A) + I) ∼= (A/R(A)/((R(A) + I)/R(A)) ∈ U

as A/R(A) ∈ U (Proposition 2.14).

(ii) Let I1 ⊆ I2 ⊆ . . . ⊆ Iα ⊆ . . . be a chain of ideals of a ring A with each

Iα ∈ R ◦ U , and let I =
⋃
α Iα. If Iα ⊆ Iβ then Iα / Iβ so R(Iα) ⊆ R(Iβ). Let

J =
⋃
αR(Iα). Then each R(Iα) ∈ R and each is an ideal of A, so J ∈ R. Also

if Iα ⊆ Iβ , then Iα + J ⊆ Iβ + J so the Iα + J form a chain of ideals of A and

hence the (Iα + J)/J form a chain of ideals of A/J . But (Iα + J)/J ∼= Iα/(Iα ∩ J)

for all α, while R(Iα) ⊆ Iα ∩ J , so each (Iα + J)/J , as a homomorphic image of

Iα/R(Iα), is in U . Hence U also contains⋃
α

((Iα + J)/J) = (
⋃
α

Iα + J)/J =
⋃
α

Iα/J,

whence
⋃
α Iα ∈ R ◦ U . �

Theorem 2.3. Let R, U be radical classes. Then R◦U and U ◦R are both radicals

if and only if R ◦ U = U ◦ R.

Proof. By Proposition 2.2, both R◦U and U ◦R are homomorphically closed and

closed under unions of chains of ideals. Suppose they are equal. Let J be an ideal

of a ring A with J and A/J ∈ R ◦ U . Let R(A/J) = W/J . Note that R(J) / A as

J / A. Also W / A. For the series

0 ⊆ R(J) ⊆ J ⊆W ⊆ A

we have R(J)/A, R(J) ∈ R, J/R(J) ∈ U , W/J ∈ R and A/W ∈ U by Proposition

2.14 of [5]. Now J/R(J) ∈ U and (W/R(J))/(J/R(J)) ∼= W/J ∈ R, so W/R(J) ∈
U ◦ R = R ◦ U . Let R(W/R(J)) = M/R(J). Then

W/M ∼= (W/R(J))/(M/R(J)) = (W/R(J))/R(W/R(J)) ∈ U .
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Here M /W /A. Also M/R(J) ∈ R, so M ∈ R and thus M ⊆ R(W ) ⊆ R(A). Let

M∗ be the ideal of A generated by M . Then M∗ ⊆ R(A) and M∗ ⊆W .

Now W/M ∈ U , so W/M∗ ∈ U . Also (A/M∗)/(W/M∗) ∼= A/W ∈ U so A/M∗ ∈
U . But then, as M∗ ⊆ R(A), we have A/R(A) ∈ U , i.e. A ∈ R ◦ U . Thus R ◦ U
(= U ◦ R) is closed under extensions and is therefore a radical class.

The converse follows from Lemma 2.1. �

We shall call a set E of subrings of a ring A a local family if E is up-directed

by inclusion and A =
⋃
{B : B ∈ E}. The set of all finitely generated subrings is

always a local family, though the set of one-generator subrings generally is not.

Freidman [2] considered a hereditary supernilpotent radical class R with the

following extra property.

Local Radical Condition. If a ring A has a local family of R-subrings, then

A is itself in R.

Radical classes satisfying this condition include the locally nilpotent, Jacobson

and Brown-McCoy radical classes and N .

Freidman showed that if R satisfies the Local Radical Condition, then R ◦ C is

also a radical class satisfying this condition, where C is the class of commutative

rings.

We shall now prove that if V is an SSR-class then N ◦ V is a radical class.

Although the overall plan of the proof mimics that of Freidman, the details are

quite different, so we shall present the proof in a fair amount of detail.

Lemma 2.4. Let U be an elementary radical class, A a ring with a local family E
of U-subrings. Then A ∈ U .

Proof. If a ∈ A then there is a subring B ∈ E with a ∈ B. But then < a >∈ U
and it follows that A ∈ U . �

Corollary 2.5. Under the conditions of Lemma 2.4, if A is the union of an as-

cending chain of U-subrings, then A ∈ U .

Lemma 2.6. Let A be a ring with a series

0 = B0 ⊆ B1 ⊆ . . . ⊆ Bα ⊆ Bα+1 ⊆ . . . ⊆ Bµ = A

labelled by ordinals, such that Bα /Bα+1 for all α and Bγ =
⋃
α<γ Bα if γ is a limit

ordinal. If α < β ≤ µ, then N (Bα) ⊆ N (Bβ).

Proof. Clearly 0 = N (B0) ⊆ N (B1). If for all β < δ we have

α < β ⇒ N (Bα) ⊆ N (Bβ),
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then we consider two cases.

(1) If δ is a limit ordinal, then for each α < β < δ we have N (Bα) ⊆ N (Bβ) so

by Corollary 2.5,
⋃
α<δN (Bα) ∈ N . If b ∈ N (Bθ) for some θ < δ and d ∈ Bδ, then

d ∈ Bβ for some β < δ, so for ε = max{θ, β} we have b ∈ N (Bε) and d ∈ Bε, so

bd, db ∈ N (Bε) ⊆
⋃
α<δN (Bα). Thus

⋃
α<δN (Bα) / Bδ, so N (Bα) ⊆ N (Bδ).

(2) If δ = γ + 1 for some γ, then for α < δ we have either α = γ or α < γ.

In the first case N (Bα) = N (Bγ) ⊆ N (Bγ+1) = N (Bδ) by ADS. In the second,

the inductive hypothesis says that N (Bα) ⊆ N (Bγ), and since by ADS N (Bγ) ⊆
N (Bδ), we have N (Bα) ⊆ N (Bδ). �

Corollary 2.7. Under the conditions of Lemma 2.6, N (Bα) ⊆ N (A) for all α. In

particular, if N (A) = 0 then N (Bα) = 0 for all α.

Lemma 2.8. Let V be an SSR-class, A a ring with N (A) = 0. If A has an ideal

I with I ∈ V and A/I ∈ V ∪ N , then A ∈ V (and so A/I ∈ V).

Proof. (i) If A/I ∈ V then A ∈ V, as I ∈ V.

(ii) If A/I ∈ N , let J be an ideal of A with J ∩ I = 0. Then J ∼= J/J ∩ I ∼=
(J + I)/I / A/I ∈ N , so J = 0 (as N (A) = 0). Thus A is an essential extension of

I, so A ∈ V [10]. �

We shall call a series with the properties of the one in Lemma 2.6 a (V,N )-series

for a SSR-class V if all its factors are in V ∪ N .

Lemma 2.9. If

0 = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bα ⊆ . . . ⊆ Bµ = A

is a (V,N )-series for a ring A, then A ∈ N ◦ V.

Proof. Let A = A/N (A). Then A has the series

0 = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cα ⊆ Cα+1 ⊆ . . . ⊆ Cµ = A,

where Cα = (Bα +N (A))/N (A) for each α. We have Cα / Cα+1 for every α and

when δ is a limit,

Cδ = (Bδ+N (A))/N (A) = (
⋃
α<δ

Bα+N (A))/N (A) =
⋃
α<δ

(Bα+N (A))/N (A) =
⋃
α<β

Cα.

Also for each α we have

Cα+1/Cα ∼= (Bα+1 +N (A))/(Bα +N (A)) = Bα+1 +Bα +N (A))/(Bα +N )

∼= Bα+1/Bα+1 ∩ (Bα +N (A)) ∈ V ∪ N , as it is a homomorphic image of Bα+1/Bα.

Thus the Cα form a (V,N )-series for A. By Corollary 2.7, N (Cα) = 0 for each α.
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Now C1
∼= C1/C0 ∈ V ∪ N and N (C1) = 0 so (C1 = 0 or) C1 ∈ V. Suppose

Cα ∈ V for all α < δ. If δ is a limit, then Cδ =
⋃
α<δ Cα ∈ V by Corollary 2.5. If

δ = γ + 1 for some γ, then Cγ ∈ V, Cγ / Cδ,N (Cδ) = 0 and Cδ/Cγ ∈ V ∪ N , so

by Lemma 4.8, Cδ ∈ V. By induction all Cα ∈ V, so in particular A/N (A) = A =

Cµ ∈ V. �

Lemma 2.10. Let W be any variety, not necessarily a SSR-class. For each ring

R, let R(W) =
⋂
{I / R : R/I ∈ W}. If {Bλ : λ ∈ Λ} is a local family of subrings

of R, then {Bλ(W) : λ ∈ Λ} is a local family for R(W).

Proof. Every homomorphism f : R→W ∈ W induces a homomorphism from Bλ

to W for each λ, so each Bλ(W) ⊆ Ker(f). Therefore each Bλ(W) is a subring of

R(W). In the same way, if Bλ ⊆ Bθ then Bλ(W) ⊆ Bθ(W). It follows that the set

of Bλ(W) is up-directed.

Let J =
⋃
λ∈ΛBλ(W). If a ∈ J and r ∈ R, let a be in Bν(W), r ∈ Bτ . If

Bν , Bτ ⊆ Bσ then a ∈ Bσ(W) and r ∈ Bσ so ra, ar ∈ Bσ(W) ⊆ J . Thus J / R.

Letf(x1, x2, . . . , xn) = 0 be an equation satisfied by W. If a1, a2, . . . , an ∈ R, then

there is a ρ ∈ Λ such that a1, a2, . . . , an ∈ Bρ. Hence a1 + J, a2 + J, . . . , an +

J ∈ (Bρ + J)/J ∼= Bρ/Bρ ∩ J . But Bρ(W) ⊆ Bρ ∩ J and Bρ/Bρ(W) ∈ W, so

(Bρ+J)/J ∈ W. Hence f(a1+J, a2+J, . . . , an+J) = 0. This means that R/J ∈ W
and so R(W) ⊆ J . The reverse inclusion was established at the beginning of the

proof. �

Proposition 2.11. Let I be an ideal of a ring A. Then A has a (V,N )-series if

and only if I and A/I have such series.

Proof. Let

0 = B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ Bµ = A

be a (V,N )-series. Consider the series

0 = B0 ∩ I ⊆ B1 ∩ I ⊆ . . . ⊆ Bµ ∩ I = I.

For each α we have Bα ∩ I / Bα+1 ∩ I and

Bα+1∩I/Bα∩I = Bα+1∩I/Bα+1∩I∩Bα ∼= (Bα+1 ∩ I +Bα)/Bα/Bα+1/Bα ∈ V ∪ N .

If δ is a limit ordinal, then Bδ ∩ I = (
⋃
α<δ Bα) ∩ I =

⋃
α<δ(Bα ∩ I), so this is a

(V,N )-series for I. As in the proof of Lemma 2.9,

0 = (B0 + I)/I ⊆ (B1 + I)/I ⊆ . . . ⊆ (Bµ + I)/I = A/I

is a (V,N )-series for A/I.
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Conversely, if I and A/I have (V,N )-series

0 = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cν = I

and

0 = D0/I ⊆ D1/I ⊆ D2/I ⊆ . . . ⊆ Dλ/I = A/I

respectively, we consider the series

0 = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cν = I = D0 ⊆ D1 ⊆ D2 ⊆ . . . ⊆ Dλ = A.

The terms of this series are well ordered with order type ν + λ. We can therefore

label its terms by the ordinals in an initial segment by re-naming each Dβ as Cν+β .

the series behaves as a (V,N )-series as far as Cν . For each relevant β we have

Cν+β+1/Cν+β = Dβ+1/Dβ
∼= (Dβ+1/I)/(Dβ/I) ∈ V ∪ N .

If δ is a limit, then so is ν + δ and Cν+δ = Dδ, while Dδ/I =
⋃
β<δ(Dβ/I) =

(
⋃
β<δDβ)/I, so

Cν+δ =
⋃
β<δ

Cν+β =
⋃

α<ν+δ

Cα.

We therefore have a (V,N )-series for A. �

Lemma 2.12. If a ring A has a local system E of subrings, each of which has a

(V,N )-series, then also A has such a series.

Proof. By Lemma 2.9, B/N (B) ∈ V for all B ∈ E , so B(V) ⊆ N (B), and hence

B(V) / N (B) and finally B(V) is nil for every B ∈ E . By Lemma 2.10 A(V) =⋃
{B(V) : B ∈ E} ∈ N (since N satisfies the Local Radical Condition). Hence

A(V) ⊆ N (A), so A/N (A) ∈ V. But then

0 ⊆ N (A) ⊆ A

is a (V,N )-series for A. �

Corollary 2.13. If

0 = I0 ⊆ I1 ⊆ . . . ⊆ Ij ⊆ . . .

is a chain of ideals in some ring and each Ij has a (V,N )-series, then so does
⋃
j Ij.

Now we have all the ingredients of the principal result of this section.

Theorem 2.14. (i) A ring A has a (V,N )-series if and only if A ∈ N ◦ V.

(ii) N ◦ V is a strongly hereditary radical class satisfying (∗).
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Proof. (i) If A ∈ N ◦ V then A/N (A) ∈ V ([5, Proposition 2.14]), so

0 ⊆ N (A) ⊆ A

is a (V,N )-series. The converse is given by Lemma 2.9 .

(ii) By Proposition 2.11, N ◦V is closed under extensions. The other requirements

for a radical class are given by Proposition 2.2 or by Proposition 2.11 and Corollary

2.13. If B is a subring of a ring A ∈ N ◦ V, then B∩N (A) ∈ N and B/B∩N (A) ∼=
(B +N (A))/N (A) ⊆ A/N (A) ∈ V so B ∈ N ◦ V. The condition involving (∗) is

just Lemma 2.12. �

Condition (∗) is weaker than the elementary property: for instance the locally

nilpotent radical class L satisfies (∗), but N is the smallest elementary radical class

containing L. Moreover, N ◦ V need not be elementary.

Example 2.15. N ◦ V AR(K(4)) is not an elementary radical class. We’ll show

this by examining M2(K(2)). It is a routine matter to show that all one-generator

subrings of M2(K(2)) except those generated by

[
1 1

1 0

]
and

[
0 1

1 1

]
are in

N ,B or N ◦B. Also

[
1 1

1 0

]2

=

[
0 1

1 1

]
,

[
0 1

1 1

]2

=

[
1 1

1 0

]
,

[
1 1

1 0

]
+[

0 1

1 1

]
=

[
1 0

0 1

]
and

[
1 1

1 0

]
and

[
0 1

1 1

]
are inverse to each other. It

follows that the subring generated by

[
1 1

1 0

]
(or

[
0 1

1 1

]
) is a four-element

field. Thus all singly-generated subrings of M2(K(2)) are in N ◦ V AR(K(4)). But

as M2(K(2)) is simple and neither nil nor commutative, it is not in N◦V AR(K(4)).

On the other hand, the radical class N ◦B is elementary. This follows from our

next theorem, which makes use of a ring theoretic property we now introduce.

A ring A is (strongly) nil-clean [1] if for each a ∈ A there exist an idempotent e

and a nilpotent element z such that

a = e+ z (and ez = ze).

It has recently been shown [9] that the strongly nil-clean rings are precisely the rings

in N ◦ B. The (strongly) nil-clean property is a generalization of the (strongly)

clean property [1]. All of these properties have been mostly studied for rings with

identity; the paper of Nicholson and Zhou [14] extended cleanness to rings generally,

and in subsequent papers some attention has been given to the wider setting.
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Theorem 2.16. The following conditions are equivalent for a ring A.

(i) < a >∈ N ◦B for all a ∈ A.

(ii) A is strongly nil-clean.

(iii) A ∈ N ◦B.

Proof. (i) ⇒ (ii) If a ∈ A then < a + N (< a >) >=< a > /N (< a >) ∈ B so

a +N (< a >) is idempotent, possibly 0. In any case, a +N (< a >) can be lifted

to an idempotent ea ∈ < a >. Thus a− ea ∈ N (< a >). Let za = a− ea. Then za

is nilpotent, a = ea + za and (as both elements are in < a >) eaza = zaea.

(ii) ⇒ (iii) [9, Theorem 5.6].

(iii) ⇒ (i) This is clear because N ◦B is strongly hereditary (Theorem 2.14). �

If K is a field in a non-trivial SSR-class V and K0 the zeroring on its additive

group, let K0 ∗K be the ring obtained by the adjunction to K0 of the identity of

K in the usual way:

(K0 ∗K)+ = K+ ⊕K+; (a, b)(c, d) = (ad+ bc, bd).

Then K0 ∗K ∈ N ◦ V. But V(K0 ∗K) = 0 and K0 ∗K /∈ N , so K0 ∗K /∈ V ◦ N .

By Theorem 2.3 we therefore have

Proposition 2.17. If V is a non-trivial SSR-class, then V ◦ N is not a radical

class.

There do exist pairs of radical classes for which the two Mal’tsev products are

equal.

Proposition 2.18. Let V and W be non-trivial SSR-classes such that there are

no prime fields K(p) ∈ V ∩W. (This means there are no fields common to both

classes.) Then

V ◦W = {A⊕B : A ∈ V, B ∈ W}.

Proof. To see this, we first show that V and W are independent in the sense of

[7]: there is a binary polynomial symbol π(x, y) such that V satisfies the identity

π(x, y) = x andW satisfies π(x, y) = y. Since V andW are generated as varieties by

disjoint finite strongly hereditary sets of finite fields, we can let m be the product of

the characteristics of fields in V and n the corresponding integer forW. Then m and

n are relatively prime, so rm+ sn = 1 for some r, s ∈ Z. Let π(x, y) = snx+ rmy.

If a, b ∈ A ∈ V then π(a, b) = sna = (1− rm)a = a and there is an analogous result

for W. By Theorem 1 of [7],

{A⊕B : A ∈ V, B ∈ W} = V ∨W
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(the join of the two varieties). Also V∨W ⊆ V ◦W as the latter is a variety contain-

ing V and W. But if R ∈ V ◦W then V(R) ∈ T{p:p|m} and R/V(R) ∈ T{p:p|n}. But

m and n are relatively prime, so for additive groups we have Ext((R/V(R))+,V(R)+) =

0 (see, e.g. [3], p.267, (C), (D)), whence

R+ =
⊕
p|m

R+
p ⊕

⊕
p|n

R+
p ,

(where R+
p is the p-component of R+). But the two direct sums on the RHS are

(the additive groups of) ideals of R, so

R = T{p:p|m}(R)⊕ T{p:p|n}(R) = V(R)⊕W(R).

We now have

V ◦W ⊆ {A⊕B : A ∈ V, B ∈ W} = V ∨W ⊆ V ◦W.

�

Note that V◦W is again a SSR-class. Whether there are“non-splitting” examples

of “commuting pairs” of radical classes we do not know.
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