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1. Introduction

Let KG denote the group algebra of the group G over the field K. Let U(KG)

be the set of invertible elements of KG. The homomorphism ε : KG −→ K given

by ε

∑
g∈G

agg

 =
∑
g∈G

ag is called the augmentation mapping of KG. It is a well

known fact that U(KG) ∼= U(K) × V (KG) where V (KG) = {u ∈ U(KG) | ε(u) =

1}.
Let G be a finite p-group and K a field of characteristic p, it is well known that

|V (KG)| = |K||G|−1. Sandling in [8], provides a basis for V (FpG) where G is an

abelian p-group and Fp is the Galois field of p elements. In [10], it is shown that

Z(V1) and V1/Z(V1) are elementary abelian 3-groups where V1 = 1 + J(F3kD6),

J(F3kD6) is the Jacobson radical of F3kD6 and Z(V1) is the center of V1. The

structure of U(F3kD6) was determined in terms of split extensions of elementary

abelian groups in [4]. The structure of FA4 and FS4 were established in [7,9] where

F is any finite field, A4 is the alternating group of degree 4 and S4 is the symmetric

group of degree 4. Additionally, the structure of U(F3k(C3 ×D6)) and U(F3kD12)

was established in [5,6] respectively. Consult [1] for an overview of modular group

algebras.
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The map ∗ : KG −→ KG defined by

∑
g∈G

agg

∗ =
∑
g∈G

agg
−1 is an antiauto-

morphism of KG of order 2. An element v of V (KG) satisfying v−1 = v∗ is called

unitary. We denote by V∗(KG) the subgroup of V (KG) formed by the unitary

elements of KG. In [3] a basis for V∗(KG) is constructed for any field of charac-

teristic p > 2 and any finite abelian p-group. Additionally the order of V∗(F2kG) is

determined for special cases of G in [2]. Let ĝ =
∑

h∈〈g〉 h ∈ RG. Our main results

are:

Theorem 1.1.

U(F3t(Cn ×D6)) ∼= (C3nt
3 o Cnt

3 ) o U(F3t(Cn × C2)).

Corollary 1.2.

U(F3t (Cn×D6)) ∼=

(C3nt
3 o Cnt

3 ) o C2n
3t−1

if n|(3t − 1)

(C3nt
3 o Cnt

3 ) o
(
C

2f1(V )
3 × C2f2(V )

32
× · · · × C2fm(V )

3m × C2
3m−1

)
if n = 3m

where fi(V ) = t(|C3m
3i−1

| − 2|C3m
3i |+ |C3m

3i+1

|).

2. The structure of U(F3k(Cn ×D6))

Let G = Cn × D6 = 〈x, y, z |x3 = y2 = zn = 1, xy = x−1, xz = zx, yz = zy〉
where n ≥ 1. The natural group homomorphism G −→ G/〈x〉 extends linearly to

the algebra homomorphism θ : F3t(Cn ×D6) −→ F3t(Cn × C2) where

3∑
i=1

xi−1(αi + αi+3z + · · ·+ αi+3nz
n−1 + αi+3n+3y + αi+3n+6yz + · · ·+ αi+6nyz

n−1) 7→

3∑
i=1

(αi + αi+3b+ · · ·+ αi+3nb
n−1 + αi+3n+3a+ αi+3n+6ab+ · · ·+ αi+6nab

n−1)

and Cn×C2 = 〈a, b | a2 = bn = 1, ab = ba〉. If we restrict θ to U(F3t(Cn×D6)), we

can construct the group epimorphism θ′ : U(F3t(Cn ×D6)) −→ U(F3t(Cn × C2)).

Consider the group homomorphism ψ : U(F3t(Cn × C2)) −→ U(F3t(Cn ×D6)) by

γ1+γ2b+ · · ·+ γnb
n−1 + δ1a+ δ2ab+ · · ·+ δnab

n−1 7→

γ1 + γ2z + · · ·+ γnz
n−1 + δ1y + δ2yz + · · ·+ δnyz

n−1

where γi, δj ∈ F3t . Clearly θ′ ◦ψ is the identity map of U(F3k(Cn×C2)). Therefore

U(F3t(Cn×D6)) is a split extension of U(F3t(Cn×C2)) by ker(θ′) and U(F3t(Cn×
D6)) ∼= H o U(F3t(Cn × C2)) where H ∼= ker(θ′). Now, θ : F3t(Cn × D6) −→
F3t((Cn×D6)/〈x〉)∼= F3t(Cn×D6)/J (〈x〉) where J (〈x〉) is the ideal of F3t(Cn×D6)

generated by all x − 1 where x ∈ 〈x〉. Additionally, θ′ : U(F3t(Cn × D6)) −→



64 JOE GILDEA AND RHIAN TAYLOR

U(F3t((Cn×D6)/〈x〉)) ∼= U(F3t(Cn×D6))/1 +J (〈x〉). As the characteristic of F3t

is 3 and x is of order 3, J (〈x〉) is nilpotent of index 3. Therefore H has exponent

3.

Lemma 2.1. CH(x) ∼= C3nt
3 where CH(x) = {h ∈ H |xh = hx}.

Proof. Let h = 1 +

n∑
j=1

Aj +

n∑
k=1

Bky ∈ H where

Aj =

2∑
i=1

αi+2(j−1)z
j−1(xi − 1) and Bk =

2∑
i=1

αi+2(k+n−1)z
k−1(xi − 1)

and αj ∈ F3t . Now

xh− hx = x

1 +

n∑
j=1

Aj +

n∑
k=1

Bky

−
1 +

n∑
j=1

Aj +

n∑
k=1

Bky

x

= x

(
n∑

k=1

Bky

)
−

(
n∑

k=1

Bky

)
x.

Now,

xBky −Bkyx = zk−1[(α2k+2n−1(x
2 − x) + α2k+2n(1− x))− (α2k+2n−1(1− x2) + α2k+2n(x− x2))]y

= x̂yzk−1(α2k+2n − α2k+2n−1).

Therefore, every element of CH(x) takes the form

1 +

n∑
j=1

Aj +

n∑
l=1

αl+2nx̂yz
l−1

where Aj =

2∑
i=1

αi+2(j−1)z
j−1(xi − 1) and αi ∈ F2t . Clearly (x̂)2 = 3x̂ = 0 and

x̂Aj = Aj x̂. Therefore CH(x) is an abelian group of order 32nt · 3nt = 33nt. �

Next, consider a subset S of H where the elements of S take the form:

1 +

n∑
j=1

Rj

where Rj =

2∑
i=1

irjx
i(1 + y)zj−1 and ri ∈ F3t .

Lemma 2.2. S ∼= Cnt
3 .
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Proof. Let s1 = 1 +

n∑
j=1

Rj ∈ S and s2 = 1 +

n∑
j=1

Tj ∈ S where

Rj =

2∑
i=1

irjx
i(1 + y)zj−1, Tj =

2∑
i=1

itjx
i(1 + y)zj−1 and ri, tj ∈ F3t . Now

s1s2 =

1 +

n∑
j=1

Rj

1 +

n∑
j=1

Tj


= 1 +

n∑
j=1

(Rj + Tj) +

 n∑
j=1

Rj

 n∑
j=1

Tj


and

RjTk =

(
2∑

i=1

irjx
i(1 + y)zj−1

)(
2∑

i=1

itkx
i(1 + y)zk−1

)
= (rjx+ rjxy + 2rjx

2 + 2rjx
2y)(tkx+ tkxy + 2tkx

2 + 2tkx
2y)zj+k−2

=

3∑
i=1

(12− 3i)rjtkx
i−1(1 + y)zj+k−2

= 0.

Clearly s1s2 ∈ S and S is abelian, therefore S ∼= Cnt
3 . �

Theorem 2.3.

U(F3t(Cn ×D6)) ∼= (C3nt
3 o Cnt

3 ) o U(F3t(Cn × C2)).

Proof. Let c = 1 +

n∑
j=1

Aj +

n∑
l=1

αl+2nx̂yz
l−1 ∈ CH(x) and s = 1 +

n∑
j=1

Rj ∈ S

where Aj =

2∑
i=1

αi+2(j−1)z
j−1(xi − 1), Rj =

2∑
i=1

irjx
i(1 + y)zj−1 and αi, rj ∈ F3t .

Now

cs = s2cs

=

1 +

n∑
j=1

Rj

21 +

n∑
j=1

Aj +

n∑
l=1

αl+2nx̂yz
l−1

1 +

n∑
j=1

Rj


=

1 + 2

n∑
j=1

Rj

1 +

n∑
j=1

Aj +

n∑
l=1

αl+2nx̂yz
l−1

1 +

n∑
j=1

Rj

 .



66 JOE GILDEA AND RHIAN TAYLOR

Now Rj
2 = 0 and x̂Rj = 3x̂rj(1 + y)zj−1 = 0 = Rj x̂, therefore

cs = 1 +

n∑
j=1

Aj +

n∑
l=1

αl+2nx̂yz
l−1 + 2

 n∑
j=1

Rj

 n∑
j=1

Aj

+

 n∑
j=1

Aj

 n∑
j=1

Rj


+ 2

 n∑
j=1

Rj

 n∑
j=1

Aj

 n∑
j=1

Rj

 .

Now, RjAk = rj(α2k−α2k−1)x̂(1−y)zj+k−2, AkRj = rj(α2k−α2k−1)x̂(1+y)zj+k−2

and

2RjAk + AkRj = rj(α2k − α2k−1)x̂[2(1− y) + (1 + y)]zj+k−2

= rj(α2k−1 − α2k)x̂yzj+k−2.

Additionally, RjAkRl = 0 since x̂Rj = 0. Therefore cs ∈ CH(x) and consequently

CH(x) is a normal subgroup of H. Note that |H| = 34nt and that CH(x)∩S = {1}.
By the Second Isomorphism Theorem, H = CH(x).S. Thus, H ∼= CH(x) o S ∼=
C3nt

3 o Cnt
3 . �

Corollary 2.4.

U(F3t (Cn×D6)) ∼=

(C3nt
3 o Cnt

3 ) o C2n
3t−1

if n|(3t − 1)

(C3nt
3 o Cnt

3 ) o
(
C

2f1(V )
3 × C2f2(V )

32
× · · · × C2fm(V )

3m × C2
3m−1

)
if n = 3m

where fi(V ) = t(|C3m
3i−1

| − 2|C3m
3i |+ |C3m

3i+1

|).

Proof. It is well known that F3t(C2×Cn) ∼= (F3tC2)Cn
∼= (F3t⊕F3t)Cn

∼= F3tCn⊕
F3tCn. It is well known that if n|(3t − 1), then F3tCn

∼= ⊕n
i=1F3t . Therefore

U(F3t(C2 × Cn)) ∼= C2n
3t−1 when n|(3t − 1). When n = 3m, the number of cyclic

groups fi(V ) of order 3i in the direct product of V (F3tG) is fi(V ) = t(|C3m
3i−1

| −
2|C3m

3i |+ |C3m
3i+1

|) ([8]). �
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