

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 24 (2018) 62-67 DOI: 10.24330/ieja.440205

UNITS OF THE GROUP ALGEBRA OF THE GROUP $C_n \times D_6$ OVER ANY FINITE FIELD OF CHARACTERISTIC 3

Joe Gildea and Rhian Taylor

Received: 27 October 2017; Revised: 17 January 2018; Accepted: 23 January 2018 Communicated by Burcu Üngör

Dedicated to the memory of Professor John Clark

ABSTRACT. In this paper, we establish the structure of the unit group of the group algebra $\mathbb{F}_{3^t}(C_n \times D_6)$ for $n \ge 1$.

Mathematics Subject Classification (2010): 20C05, 16S34 Keywords: Group ring, group algebra, unit group, dihedral group, cyclic group

1. Introduction

Let KG denote the group algebra of the group G over the field K. Let $\mathcal{U}(KG)$ be the set of invertible elements of KG. The homomorphism $\varepsilon : KG \longrightarrow K$ given by $\varepsilon \left(\sum_{g \in G} a_g g\right) = \sum_{g \in G} a_g$ is called the augmentation mapping of KG. It is a well known fact that $\mathcal{U}(KG) \cong \mathcal{U}(K) \times V(KG)$ where $V(KG) = \{u \in \mathcal{U}(KG) | \varepsilon(u) = 1\}$.

Let G be a finite p-group and K a field of characteristic p, it is well known that $|V(KG)| = |K|^{|G|-1}$. Sandling in [8], provides a basis for $V(\mathbb{F}_p G)$ where G is an abelian p-group and \mathbb{F}_p is the Galois field of p elements. In [10], it is shown that $Z(V_1)$ and $V_1/Z(V_1)$ are elementary abelian 3-groups where $V_1 = 1 + J(\mathbb{F}_{3^k} D_6)$, $J(\mathbb{F}_{3^k} D_6)$ is the Jacobson radical of $\mathbb{F}_{3^k} D_6$ and $Z(V_1)$ is the center of V_1 . The structure of $\mathcal{U}(\mathbb{F}_{3^k} D_6)$ was determined in terms of split extensions of elementary abelian groups in [4]. The structure of FA_4 and FS_4 were established in [7,9] where F is any finite field, A_4 is the alternating group of degree 4 and S_4 is the symmetric group of degree 4. Additionally, the structure of $\mathcal{U}(\mathbb{F}_{3^k}(C_3 \times D_6))$ and $\mathcal{U}(\mathbb{F}_{3^k} D_{12})$ was established in [5,6] respectively. Consult [1] for an overview of modular group algebras.

The map $*: KG \longrightarrow KG$ defined by $\left(\sum_{g \in G} a_g g\right)^* = \sum_{g \in G} a_g g^{-1}$ is an antiautomorphism of KG of order 2. An element v of V(KG) satisfying $v^{-1} = v^*$ is called unitary. We denote by $V_*(KG)$ the subgroup of V(KG) formed by the unitary elements of KG. In [3] a basis for $V_*(KG)$ is constructed for any field of characteristic p > 2 and any finite abelian p-group. Additionally the order of $V_*(\mathbb{F}_{2^k}G)$ is determined for special cases of G in [2]. Let $\hat{g} = \sum_{h \in \langle g \rangle} h \in RG$. Our main results are:

Theorem 1.1.

$$\mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6)) \cong (C_3^{3nt} \rtimes C_3^{nt}) \rtimes \mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2)).$$

Corollary 1.2.

$$\mathcal{U}(\mathbb{F}_{3^{t}}(C_{n} \times D_{6})) \cong \begin{cases} (C_{3}^{3nt} \rtimes C_{3}^{nt}) \rtimes C_{3^{t-1}}^{2n} & \text{if } n | (3^{t}-1) \\ (C_{3}^{3nt} \rtimes C_{3}^{nt}) \rtimes \left(C_{3}^{2f_{1}(V)} \times C_{3^{2}}^{2f_{2}(V)} \times \dots \times C_{3^{m}}^{2f_{m}(V)} \times C_{3^{m-1}}^{2} \right) & \text{if } n = 3^{m} \\ \text{where } f_{i}(V) = t(|C_{3^{m}}^{3^{i-1}}| - 2|C_{3^{m}}^{3^{i}}| + |C_{3^{m}}^{3^{i+1}}|). \end{cases}$$

2. The structure of $\mathcal{U}(\mathbb{F}_{3^k}(C_n \times D_6))$

Let $G = C_n \times D_6 = \langle x, y, z | x^3 = y^2 = z^n = 1, x^y = x^{-1}, xz = zx, yz = zy \rangle$ where $n \geq 1$. The natural group homomorphism $G \longrightarrow G/\langle x \rangle$ extends linearly to the algebra homomorphism $\theta : \mathbb{F}_{3^t}(C_n \times D_6) \longrightarrow \mathbb{F}_{3^t}(C_n \times C_2)$ where

$$\sum_{i=1}^{3} x^{i-1} (\alpha_i + \alpha_{i+3}z + \dots + \alpha_{i+3n}z^{n-1} + \alpha_{i+3n+3}y + \alpha_{i+3n+6}yz + \dots + \alpha_{i+6n}yz^{n-1}) \mapsto \sum_{i=1}^{3} (\alpha_i + \alpha_{i+3}b + \dots + \alpha_{i+3n}b^{n-1} + \alpha_{i+3n+3}a + \alpha_{i+3n+6}ab + \dots + \alpha_{i+6n}ab^{n-1})$$

and $C_n \times C_2 = \langle a, b | a^2 = b^n = 1, ab = ba \rangle$. If we restrict θ to $\mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6))$, we can construct the group epimorphism $\theta' : \mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6)) \longrightarrow \mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2))$. Consider the group homomorphism $\psi : \mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2)) \longrightarrow \mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6))$ by

$$\gamma_1 + \gamma_2 b + \dots + \gamma_n b^{n-1} + \delta_1 a + \delta_2 a b + \dots + \delta_n a b^{n-1} \mapsto$$

$$\gamma_1 + \gamma_2 z + \dots + \gamma_n z^{n-1} + \delta_1 y + \delta_2 y z + \dots + \delta_n y z^{n-1}$$

where $\gamma_i, \delta_j \in \mathbb{F}_{3^t}$. Clearly $\theta' \circ \psi$ is the identity map of $\mathcal{U}(\mathbb{F}_{3^k}(C_n \times C_2))$. Therefore $\mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6))$ is a split extension of $\mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2))$ by $ker(\theta')$ and $\mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6)) \cong H \rtimes \mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2))$ where $H \cong ker(\theta')$. Now, $\theta : \mathbb{F}_{3^t}(C_n \times D_6) \longrightarrow \mathbb{F}_{3^t}((C_n \times D_6)/\langle x \rangle) \cong \mathbb{F}_{3^t}(C_n \times D_6)/\mathcal{J}(\langle x \rangle)$ where $\mathcal{J}(\langle x \rangle)$ is the ideal of $\mathbb{F}_{3^t}(C_n \times D_6)$ generated by all x - 1 where $x \in \langle x \rangle$. Additionally, $\theta' : \mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6)) \longrightarrow$

 $\mathcal{U}(\mathbb{F}_{3^t}((C_n \times D_6)/\langle x \rangle)) \cong \mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6))/1 + \mathcal{J}(\langle x \rangle).$ As the characteristic of \mathbb{F}_{3^t} is 3 and x is of order 3, $\mathcal{J}(\langle x \rangle)$ is nilpotent of index 3. Therefore H has exponent 3.

Lemma 2.1. $C_H(x) \cong C_3^{3nt}$ where $C_H(x) = \{h \in H \mid xh = hx\}.$

Proof. Let $h = 1 + \sum_{j=1}^{n} \mathfrak{A}_j + \sum_{k=1}^{n} \mathfrak{B}_k y \in H$ where

$$\mathfrak{A}_{j} = \sum_{i=1}^{2} \alpha_{i+2(j-1)} z^{j-1} (x^{i} - 1) \text{ and } \mathfrak{B}_{k} = \sum_{i=1}^{2} \alpha_{i+2(k+n-1)} z^{k-1} (x^{i} - 1)$$

and $\alpha_j \in \mathbb{F}_{3^t}$. Now

$$xh - hx = x \left(1 + \sum_{j=1}^{n} \mathfrak{A}_{j} + \sum_{k=1}^{n} \mathfrak{B}_{k} y \right) - \left(1 + \sum_{j=1}^{n} \mathfrak{A}_{j} + \sum_{k=1}^{n} \mathfrak{B}_{k} y \right) x$$
$$= x \left(\sum_{k=1}^{n} \mathfrak{B}_{k} y \right) - \left(\sum_{k=1}^{n} \mathfrak{B}_{k} y \right) x.$$

Now,

$$\begin{split} x\mathfrak{B}_k y - \mathfrak{B}_k y x &= z^{k-1} [(\alpha_{2k+2n-1}(x^2 - x) + \alpha_{2k+2n}(1 - x)) - (\alpha_{2k+2n-1}(1 - x^2) + \alpha_{2k+2n}(x - x^2))]y \\ &= \hat{x} y z^{k-1} (\alpha_{2k+2n} - \alpha_{2k+2n-1}). \end{split}$$

Therefore, every element of $C_H(x)$ takes the form

$$1 + \sum_{j=1}^{n} \mathfrak{A}_j + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x} y z^{l-1}$$

where $\mathfrak{A}_j = \sum_{i=1}^2 \alpha_{i+2(j-1)} z^{j-1} (x^i - 1)$ and $\alpha_i \in \mathbb{F}_{2^t}$. Clearly $(\hat{x})^2 = 3\hat{x} = 0$ and $\hat{x}\mathfrak{A}_j = \mathfrak{A}_j\hat{x}$. Therefore $C_H(x)$ is an abelian group of order $3^{2nt} \cdot 3^{nt} = 3^{3nt}$. \Box

Next, consider a subset S of H where the elements of S take the form:

$$1 + \sum_{j=1}^{n} \Re_j$$

where
$$\mathfrak{R}_j = \sum_{i=1}^2 i r_j x^i (1+y) z^{j-1}$$
 and $r_i \in \mathbb{F}_{3^t}$.

Lemma 2.2. $S \cong C_3^{nt}$.

Proof. Let
$$s_1 = 1 + \sum_{j=1}^n \mathfrak{R}_j \in S$$
 and $s_2 = 1 + \sum_{j=1}^n \mathfrak{T}_j \in S$ where
 $\mathfrak{R}_j = \sum_{i=1}^2 ir_j x^i (1+y) z^{j-1}, \ \mathfrak{T}_j = \sum_{i=1}^2 it_j x^i (1+y) z^{j-1} \text{ and } r_i, t_j \in \mathbb{F}_{3^t}.$ Now
 $s_1 s_2 = \left(1 + \sum_{j=1}^n \mathfrak{R}_j\right) \left(1 + \sum_{j=1}^n \mathfrak{T}_j\right)$
 $= 1 + \sum_{j=1}^n (\mathfrak{R}_j + \mathfrak{T}_j) + \left(\sum_{j=1}^n \mathfrak{R}_j\right) \left(\sum_{j=1}^n \mathfrak{T}_j\right)$

and

$$\begin{aligned} \mathfrak{R}_{j}\mathfrak{T}_{k} &= \left(\sum_{i=1}^{2} ir_{j}x^{i}(1+y)z^{j-1}\right) \left(\sum_{i=1}^{2} it_{k}x^{i}(1+y)z^{k-1}\right) \\ &= (r_{j}x + r_{j}xy + 2r_{j}x^{2} + 2r_{j}x^{2}y)(t_{k}x + t_{k}xy + 2t_{k}x^{2} + 2t_{k}x^{2}y)z^{j+k-2} \\ &= \sum_{i=1}^{3} (12 - 3i)r_{j}t_{k}x^{i-1}(1+y)z^{j+k-2} \\ &= 0. \end{aligned}$$

Clearly $s_1s_2 \in S$ and S is abelian, therefore $S \cong C_3^{nt}$.

Theorem 2.3.

$$\mathcal{U}(\mathbb{F}_{3^t}(C_n \times D_6)) \cong (C_3^{3nt} \rtimes C_3^{nt}) \rtimes \mathcal{U}(\mathbb{F}_{3^t}(C_n \times C_2)).$$

Proof. Let $c = 1 + \sum_{j=1}^{n} \mathfrak{A}_{j} + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x} y z^{l-1} \in C_{H}(x)$ and $s = 1 + \sum_{j=1}^{n} \mathfrak{R}_{j} \in S$ where $\mathfrak{A}_{j} = \sum_{i=1}^{2} \alpha_{i+2(j-1)} z^{j-1} (x^{i} - 1), \ \mathfrak{R}_{j} = \sum_{i=1}^{2} i r_{j} x^{i} (1 + y) z^{j-1}$ and $\alpha_{i}, r_{j} \in \mathbb{F}_{3^{t}}$. Now

$$\begin{aligned} c^s &= s^2 cs \\ &= \left(1 + \sum_{j=1}^n \mathfrak{R}_j\right)^2 \left(1 + \sum_{j=1}^n \mathfrak{A}_j + \sum_{l=1}^n \alpha_{l+2n} \hat{x} y z^{l-1}\right) \left(1 + \sum_{j=1}^n \mathfrak{R}_j\right) \\ &= \left(1 + 2 \sum_{j=1}^n \mathfrak{R}_j\right) \left(1 + \sum_{j=1}^n \mathfrak{A}_j + \sum_{l=1}^n \alpha_{l+2n} \hat{x} y z^{l-1}\right) \left(1 + \sum_{j=1}^n \mathfrak{R}_j\right). \end{aligned}$$

Now $\mathfrak{R}_i^2 = 0$ and $\hat{x}\mathfrak{R}_i = 3\hat{x}r_i(1+y)z^{j-1} = 0 = \mathfrak{R}_i\hat{x}$, therefore

$$c^{s} = 1 + \sum_{j=1}^{n} \mathfrak{A}_{j} + \sum_{l=1}^{n} \alpha_{l+2n} \hat{x} y z^{l-1} + 2 \left(\sum_{j=1}^{n} \mathfrak{R}_{j} \right) \left(\sum_{j=1}^{n} \mathfrak{A}_{j} \right) + \left(\sum_{j=1}^{n} \mathfrak{A}_{j} \right) \left(\sum_{j=1}^{n} \mathfrak{R}_{j} \right) \\ + 2 \left(\sum_{j=1}^{n} \mathfrak{R}_{j} \right) \left(\sum_{j=1}^{n} \mathfrak{R}_{j} \right) \left(\sum_{j=1}^{n} \mathfrak{R}_{j} \right).$$

Now, $\Re_j \mathfrak{A}_k = r_j (\alpha_{2k} - \alpha_{2k-1}) \hat{x} (1-y) z^{j+k-2}$, $\mathfrak{A}_k \mathfrak{R}_j = r_j (\alpha_{2k} - \alpha_{2k-1}) \hat{x} (1+y) z^{j+k-2}$ and

$$2\mathfrak{R}_{j}\mathfrak{A}_{k} + \mathfrak{A}_{k}\mathfrak{R}_{j} = r_{j}(\alpha_{2k} - \alpha_{2k-1})\hat{x}[2(1-y) + (1+y)]z^{j+k-2}$$
$$= r_{j}(\alpha_{2k-1} - \alpha_{2k})\hat{x}yz^{j+k-2}.$$

Additionally, $\mathfrak{R}_{j}\mathfrak{A}_{k}\mathfrak{R}_{l} = 0$ since $\hat{x}\mathfrak{R}_{j} = 0$. Therefore $c^{s} \in C_{H}(x)$ and consequently $C_{H}(x)$ is a normal subgroup of H. Note that $|H| = 3^{4nt}$ and that $C_{H}(x) \cap S = \{1\}$. By the Second Isomorphism Theorem, $H = C_{H}(x).S$. Thus, $H \cong C_{H}(x) \rtimes S \cong C_{3}^{3nt} \rtimes C_{3}^{nt}$.

Corollary 2.4.

$$\mathcal{U}(\mathbb{F}_{3^{t}}(C_{n} \times D_{6})) \cong \begin{cases} (C_{3}^{3nt} \rtimes C_{3}^{nt}) \rtimes C_{3^{t-1}}^{2n} & \text{if } n | (3^{t} - 1) \\ (C_{3}^{3nt} \rtimes C_{3}^{nt}) \rtimes \left(C_{3}^{2f_{1}(V)} \times C_{3^{2}}^{2f_{2}(V)} \times \dots \times C_{3^{m}}^{2f_{m}(V)} \times C_{3^{m-1}}^{2} \right) & \text{if } n = 3^{m} \end{cases}$$

where $f_{i}(V) = t(|C_{3^{m}}^{3^{i-1}}| - 2|C_{3^{m}}^{3^{i}}| + |C_{3^{m}}^{3^{i+1}}|).$

Proof. It is well known that $\mathbb{F}_{3^t}(C_2 \times C_n) \cong (\mathbb{F}_{3^t}C_2)C_n \cong (\mathbb{F}_{3^t} \oplus \mathbb{F}_{3^t})C_n \cong \mathbb{F}_{3^t}C_n \oplus \mathbb{F}_{3^t}C_n$. It is well known that if $n|(3^t-1)$, then $\mathbb{F}_{3^t}C_n \cong \oplus_{i=1}^n \mathbb{F}_{3^t}$. Therefore $\mathcal{U}(\mathbb{F}_{3^t}(C_2 \times C_n)) \cong C_{3^{t-1}}^{2n}$ when $n|(3^t-1)$. When $n = 3^m$, the number of cyclic groups $f_i(V)$ of order 3^i in the direct product of $V(\mathbb{F}_{3^t}G)$ is $f_i(V) = t(|C_{3^m}^{3^{i-1}}| - 2|C_{3^m}^{3^i}| + |C_{3^m}^{3^{i+1}}|)$ ([8]).

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

- A. Bovdi, The group of units of a group algebra of characteristic p, Publ. Math. Debrecen, 52(1-2) (1998), 193-244.
- [2] V. Bovdi and A. L. Rosa, On the order of the unitary subgroup of a modular group algebra, Comm. Algebra, 28(4) (2000), 1897-1905.
- [3] A. Bovdi and A. Szakács, The unitary subgroup of the multiplicative group of the modular group algebra of a finite abelian p-group, Math. Zametki, 45(6) (1989), 23-29.

- [4] L. Creedon and J. Gildea, The structure of the unit group of the group algebra F_{3^k}D₆, Int. J. Pure Appl. Math., 45(2) (2008), 315-320.
- [5] J. Gildea, The structure of the unit group of the group algebra $\mathbb{F}_{3^{K}}(C_{3} \times D_{6})$, Comm. Algebra, 38(9) (2010), 3311-3317.
- [6] J. Gildea and F. Monaghan, Units of some group algebras of groups of order 12 over any finite field of characteristic 3, Algebra Discrete Math., 11(1) (2011), 46-58.
- [7] M. Khan, R. K. Sharma and J. B. Srivastava, *The unit group of FS*₄, Acta Math. Hungar., 118(1-2) (2008), 105-113.
- [8] R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra, 33(3) (1984), 337-346.
- R. K. Sharma, J. B. Srivastava and M. Khan, *The unit group of FA*₄, Publ. Math. Debrecen, 71(1-2) (2007), 21-26.
- [10] R. K. Sharma, J. B. Srivastava and M. Khan, The unit group of FS₃, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 23(2) (2007), 129-142.

Joe Gildea (Corresponding Author) and Rhian Taylor Department of Mathematics Faculty of Science and Engineering University of Chester England e-mails: j.gildea@chester.ac.uk (J. Gildea) rhian.taylor@chester.ac.uk (R. Taylor)