DISEASE PHENOTYPES AND CO-MORBIDITIES AMONG DOGS WITH SMALL INTESTINAL BACTERIAL OVERGROWTH

İNCE BAĞIRSAKTA AŞIRI BAKTERİYEL ÇOĞALMASI OLAN KÖPEKLERDE HASTALIK FENOTİPLERİ VE EŞLİK EDEN HASTALIKLAR

İstanbul Rumeli Üniversitesi Sağlık Bilimleri Dergisi (The Journal of Istanbul Rumeli University Health Sciences)

Prof. Dr. Kerem URAL¹

Gönderildiği Tarihi: 21 Ekim 2024

Kabul Tarihi: 12 Aralık 2024

Makale Atıfı

Ural, K. (2025). Disease phenotypes and co-morbidities among dogs with small intestinal bacterial overgrowth. *İstanbul Rumeli Üniversitesi Sağlık Bilimleri Dergisi*, 4(1): 1-11.

Özet

Abstract

There has been growing interest at 'gut-brain-skin axis', which was an hyptohesis several years ago, however a reality now in. In the present study the aim was to unearth the disease phenotypes and related/linked co-morbidities in dogs with small intestinal bacterial overgrowth to those of exhibiting presumed leaky gut and intestinal barrier dysfunction. Out of 267 dogs in totally enrolled, 149 were diagnosed to have small intestinal bacterial overgrowth, in which were then participated/enrolled in two subclassfication were deemed available. In the present study in Group I involved 95 dogs with gastroentero-dermatological diseases, in which disease phenotypes were pyoderma+cutaneous adverse food reactions (n=25), inflammatory bowel disease+atopic dermatitis (n=17), inflammatory bowel disease+cutaneous adverse food reactions (n=13) and large bowel diarrhea+sarcoptic mange (n=11), as the vast majority. Comperatively group II enrolled 54 dogs with gastroenteritis in which inflammatory bowel disease (n=28), infectious diseases (n=16) and poisoning (n=10) were evident. Lactulose breath H₂ test dynamics at intestinal levels indicated that at Group I with gastroentero-dermatological diseases, H₂ baseline values (23.13±3.09 ppm) were statistically significant for inital and tentative diagnosis for small intestinal bacterial overgrowth, which inturn elevated at 90 th minutes values (28.36 \pm 2.13 ppm), possessing an increase. Moreover at group II with solely gastroenterological diseases initial baseline values $(34.25 \pm 5.16 \text{ ppm})$ were diagnostic. At 90^{th} minutes

Birkaç yıl önce bir hipotez olan, ancak artık bir gerçeklik haline gelen 'bağırsak-beyin-deri ekseni'ne olan ilgi giderek artmaktadır. Mevcut çalışmada amaç, ince bağırsakta aşırı bakteriyel çoğalma olan köpeklerde, sızdıran bağırsak ve bağırsak bariyeri disfonksiyonu olduğu varsayılan hastalıklara kıyasla hastalık fenotiplerini ve ilişkili/bağlantılı komorbiditeleri ortaya çıkarmaktı. Toplamda çalısmada irdelenen 267 köpekten 149'unda ince bağırsakta asırı bakteriyel çoğalma tespit edilmiş olup, bu köpekler sonrasında halihazırda 2 grupta dahil edilmiş, değerlendirilmiştir. Mevcut çalışmada Grup gastroentero-dermatolojik hastalıkları olan 95 köpek dahil edilirken, hastalık fenotipleri büyük çoğunlukta olduğu gibi piyoderma + kutanöz advers gıda reaksiyonları (n=25), inflamatuar bağırsak hastalığı + atopik dermatit (n=17), inflamatuar bağırsak hastalığı + kutanöz advers gıda reaksiyonları (n=13) ve kalın ishali+sarkoptik bağırsak uyuz (n=11)Karşılaştırmalı olarak Grup II'de 54 köpekte; inflamatuar bağırsak hastalığı (n=28), bulaşıcı hastalıklar (n=16) ve zehirlenmenin (n=10) belirgin olduğu gastroenteritli köpekler kaydedildi. Bağırsak düzeylerinde laktüloz nefes H2 testi dinamikleri, gastroentero-dermatolojik hastalıkları olan Grup I'de H₂ baslangic değerlerinin (23.13±3.09 ppm) ince bağırsakta aşırı bakteriyel çoğalma için başlangıç ve geçici tanı için istatistiksel olarak anlamlı olduğunu ve bunların 90. dakika değerlerinde (28.36±2.13) artarak yükseldiğini gösterdi. Dahası, sadece gastroenterolojik hastalıkları olan Grup II'de başlangıç

of lactulose breat testing H_2 values (ppm) (28.44 \pm

değerleri (34.25±5.16 ppm) tanısal değere sahipti.

2.42 ppm) were still indicative of SIBO. During lactulose breat testing there were also statistical difference regarding inter- group comparison during timeline; at 0.to 60. minutes (p=0.003, 0.009 and 0.005, respectively). It should not be unwise to draw preliminary conclusion that lactulose breat testing was capable of small intestinal bacterial overgrowth detection, in which disease phenotypes along with comorbidities denominated at this study could have helped change diagnostic and probably treatment protocoles.

Keywords: Comorbidities, disease, dogs, intestinal bacterial overgrowth.

Laktüloz nefes testinin 90. dakikalarında H_2 değerleri (28.44 \pm 2.42 ppm) hala ince bağırsakta aşırı bakteriyel çoğalmayı göstermekteydi. Laktuloz nefes testi esnasında zaman çizelgesi boyunca gruplar arası karşılaştırmaya ilişkin olarak da istatistiksel fark vardı; 0. ila 60. dakikalarda (sırasıyla p=0.003, 0.009 ve 0.005). Bu çalışmada tanımlanan hastalık fenotipleri ve eşlik eden hastalıklar tanı ve muhtemelen tedavi protokollerinin değiştirilmesine yardımcı olmuş olabileceğinden, Laktüloz nefes testinin ince bağırsakta aşırı bakteriyel çoğalma tespitinde başarılı olduğu sonucuna varmak yanlış olmayacaktır.

Anahtar Kelimeler: Bağırsak, aşırı bakteriyel çoğalma, hastalık, komorbidite, köpekler.

¹Aydin Adnan Menderes University, Faculty of Veterinary Medicine, Department of Internal Medicine, Aydın/TÜRKİYE. uralkerem@gmail.com, ORCID: 0000-0003-1867-7143.

Sorumlu yazar: Kerem URAL, uralkerem@gmail.com,

1. INTRODUCTION

It has been denoted that small intestinal bacterial overgrowth (SIBO) is a health treating issue exhibited by the overolad invasion and altered bacterial inhabitants within the small intestine (Sorathia, Chippa & Rivas., 2023). This altered relative abundance for healthy bacteria against pathogenic ones, recognized as dysbiosis, disarray the balance among beneficial/commensal and/or harmful pathogenic bacteria through gut habitat (Sekirov, Russell, Antunes et al., 2009). The latter issue might prone gastrointestinal and systemic diosrders exhibiting (Alemany, Soler-Artigas, Cabana-Domínguez et al., 2023; Staudacher, Mikocka-Walus & Ford, 2021; Zafar, Jimenez & Schneider, 2023). It might also influence gastrointestinal tract diseases and probably change existance of chronic diseases (Sroka, Rydzewska-Rosołowska, Kakareko et al., 2022). It has to be postulated that SIBO has been the subject of previous report among dogs (Rutgers, Batt, Elwood et al., 1995), without sufficient data. The aim of this study was to comprehensively evaluate and report the comorbidities and disease phenotypes in dogs diagnosed with SIBO.

2. MATERIAL AND METHODS

2.1. Universe of dogs and related sampling

Firstly in a total of 267 dogs that referred to Intestinal Permeability Mesaurmenet Center (İPÖM) and its related facilities at the University of Aydin Adnan Menderes, Faculty of Veterinary, Department of Internal Medicine in a certain period was under recorded. Out of 267 dogs, 149 were

diagnosed to have SIBO, in which were then participated/enrolled in two subclassfication were deemed available. Gastroentero-dermatological diseases, namely Group I involved n=95 dogs [at the age of 1.5 to 8 years, of both sexes (37 male, 58 female, 30 crosbred and other relevant 65 dogs from several dog breeds] and Group II other 54 relevant cases were deemed evolved [at the age of 1 to 11 years old of both sexes (30 male, 24 female) from several different dog breeds with solely gastroenteritis (without any dermatological reflection). The criteria involved triage; presentation of dermatological [alopecia, pruritus, hyperpigmentation, erythema, lichenification etc.] and/or gastroenterological signs [diarrhea/constipation, vomitting, abdominal bloat, hemotechezia, melena etc.] allowed the present author for group classification.

2.2. Demographic data set for diseased dogs

In a total of 267 dogs referred to İPÖM and its related facilities at the University of Aydin Adnan Menderes, Faculty of Veterinary, Department of Internal Medicine with special reference seaked for appointment on the authors practice of this manuscript, 95 (35.58%) (Group I) were diagnosed with gastroentero-dermatological diseases (Ural, Erdoğan, Erdoğan et al., 2021a; Ural, Erdoğan, Erdoğan et al., 2023; Ural, 2024; Ural, Erdoğan, Erdoğan et al., 2024), and other relevant 54 (20.22%) cases (Group II) with gastroenteritis. Therefore 149 out of 267 were detected to have SIBO

2.3. Inclusion criteria

The present research were entirely performed at İPÖM and its related facilities at the University of Aydin Adnan Menderes, Faculty of Veterinary, Department of Internal Medicine. Through presence of Sunvou Breath Analyzer, China (Turkish side distributor RDA Group, Istanbul, Turkey), selected researchers of this study were deemed available for detecting SIBO diagnosis. This breath analzyer was purchased by Aydin Adnan Menderes University, Research Funding (Unit ADÜ-BAP) Governed/Regimented Project (number VTF-24006) in which all contributors would like to thank for support. In 149 out of 267 dogs referred to İPÖM with gastroentero-dermatological or solely gastroenterological signs, entire physical examination, ultrasonography (Mindray VETUS 5Exp, China), serum biochemistry (Randox Clinical Chemistry Analyser, Ireland, hematological analytes (Mindray BC6000 Hematology Analyser, China), dermatological interpretation [DermLite DL 4 Dermatoscopy, USA, Callegari Soft Plus Epidermal Corneometric Analysis Device, Italy, Pet Quantum Bioresonance Scanning (China), Polycheck in vitro Allergy

Test (Germany), cytology etc.] and clinical findings were all recorded. As an inclusion criteria prior to breath analyzing by Sunvou Breath Analyzer, all dogs were required to be fed with the lowest carbohydrate food available. Another inclusion criteria was exclusion of any drug usage within the past 90 days. Prior to study, Aydin Adnan Menderes University Local Ethics Committee on Animal Research (ADÜ-HADYEK) approval was deemed available with no: 64583101/2024/90. Moreover written owner consent was available for each dog involved and participated.

2.4. Lactulose breath test (LBT) methodology

Hydrogen breath tests could be performed through usage of several different sugar probes like lactulose (as was preferred at shis study), glucose etc. As a well known matter of fact though quantitative culturing for jejunal aspirate has been suggested as a gold standard for SIBO diagnosis, hydrogen breath tests, in the face of their low sensitivity, frequently been used as a non-invasive technique. In this sense lactulose hydrogen breath test, synonym LBT (as was the used terminology in this study) coulbe used for both SIBO and estimation of oro-cecal transit time (Ghoshal, 2011).

Principals of gas dynamics and hydrogen formation with LBT

Table 1. SIBO diagnosis and H2 detection by use of lactulose breath test. Reference ranges were deemed available within the previous descriptions

within the previous descriptions						
Intestinal	gas	Hydrogen (H ₂₎				
dynamics						

SIBO diagnosis	H ₂ ≥	20	A baseline value without substrate (lactulose) \geq 20 ppm or an elevation \geq	
	ppm		20 ppm from baseline during testing	

SIBO: Small intestinal bacterial overgrowth H₂:hydrogen

Kaynak: Rezaie et al 2017, Gasbarrini et al 2009

Anarobic bacteria, resided within the healthy large bowel and diseased small bowel both exhibit hydrogen, through fermentation of oblivious carbohydrates. Even if few concentrations of hydrogen has been exhibited through selected concentrations of oblivious carbohydrate reaching the colon, greater hydrogen concentrations might be exhibited, whether if there existed carbohydrate malaborption within the small intestine. The latter condition occures even if allowance of larger amount reaching the colon or in case of SIBO. Exhibited hydrogen via the bacteria is preoccupied via small/large intestinal wall. The hydrogen-composed blood drives into the lungs where releases hydrogen and be exhaled in the breath where it might be analyzed (Ghoshal, 2011). At the present study LBT (Figure 1) was deemed positive taking into account the

North American Consensus Guidelines. Moreover table 1 below showed criteria for positive test results.

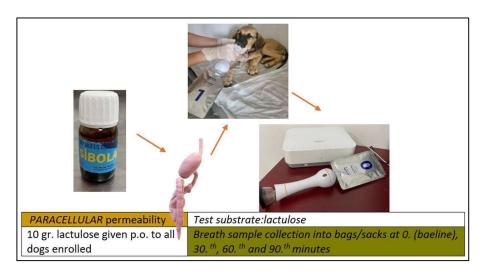


Figure 1. Schematic representation of lactulose breath test (LBT).

2.5. Sunvou Breath Analyzer

All 149 dogs, with presence of gastrointestinal and/or gastroentero-dermatological signs were subjected to lactulose breath test (LBT) (brief methodology shown in figure 1) based on inclusion criteria. Even if any dog was showing evidence of fractional exhaled nitric oxide leves ≥ 10ppb (as detected by Sunvou-CA2122 Analyzer (NOS), with other name Nano Coulomb Breath Analyzer CA2122), China, the dog was presumed to be SIBO positive, in which than was forwarded to LBT. If a dog was a candidate for SIBO LBT, then the owners were adviced to subject their dogs to 12 hours fasting, without any drug usage and at least 24 hours low residual diet. Water was not restricted. All diseased dogs were prescribed with the procedure as was shown in figure 1., i.e. test substrate 10 gr. lactulose (SIBOLAC by RDA Group Istanbul) administration followed by baseline sampling at minute 0, ii) and other relevant breath samples collected to Sunvou Breath Bags for retesting on 30., 60. and 90. th Breath analysis protocole, involved stabilization of normal breathing into one of two close fitting anesthesia face mask with a one way valve through at least 30 cc volume of end expiratory air was collected into Sunvou Breath Bags. Exhaled air withdrawn immediately at available temperature to those of special bags were then analyzed through Sunvou Breath Analyzer catching hydrogen/methane/CO₂/O₂ in air. Data were then immediately transferred into analyzer were then calculated automatically by software at computer connection were analyzed in parts per million. Table 1 below showed test interpretation. The authors would like to thank Aydin Adnan Menderes University Reserach Funding Unit (ADUBAP) for supporting ADUBAP Governed Project no: VTF-24006.

2.6. Serum zonulin detection

Sandwich ELISA (at the facilities of RDA Group Istanbul), similar to previous methodlogy (Alıç Ural, 2022a,b,c; Alıç Ural, 2023; Alıç Ural, Ural, Erdoğan et al., 2021; Alıç Ural, Erdoğan, Erdoğan et al., 2021; Alıç Ural & Ural, 2023) by use of commercially available test kits (My Biosource Canine Zonulin Test Kits purchased by RDA Group, Istanbul) and interpretation reference ranges (Ural, Erdoğan, Balıkçı et al., 2021).

3. RESULTS

Demographic distrubution of disease phenotypes and relevant co-morbitidities in dogs with SIBO as was shown in table 2 below. Out of 95 dogs enrolled at group I, 25 dogs exhibited Pyo+CafR followed by IBD+Ad (n=17) and IBD+CafR (n=13) as top 3 co-morbidities. Group II involved 54 dogs with gastroenteritis subclassified to 3 sharp co-morbidities as IBD (n=28), inf (n=16) and poisoning (n=10). LBT H₂ dynamics were shown below at table 3. In both group I and II, initial LBT H₂ values were significantly different in contrast to 90, minutes test results

Table 2. Demographic distrubution of disease phenotypes and relevant co-morbitidities in dogs with SIBO.

		Disease phenotypes in dogs with SIBO	Serum zonulin concentrations
Group I	Gastroentero-dermatological	IBD+Ad (n=17)	(ng/DL) 10.9->20
Group r	diseases (n=95)	IBD+CafR (n=13)	10.9->20
	,	LBd+Sm (n=11)	
		Pyo+CafR (n=25)	
		inf+CafR (n=9)	
		Liv+ CafR (n=4)	
		Liv+Ad (n=6)	
		Gu+CafR (n=2)	
		IBD+Sm (n=3)	
		IBD+Dm (n=5)	
Group II	Gastroenteritis (n=54)	IBD (n=28)	8.4->20
1	(- /	İnf (n=16)	
		Poisoning (n=10)	

IBD: Inflammatory Bowel Disease, Ad: Atopic dermatitis, CafR: Cutaneous adverse food reaction, LBd: Large bowel diarrhea, Sm:sarcoptic mange, m:demodectic mange, Gu:gastric ulceration, Liv:liver disease, SIBO:small intestinal bacterial overgrowth Pyo:pyoderma

Table 3. LBT and relevant gas dynamics. Samples were collected at baseline (0.min) and thereafter every 30 minutes till 90th minutes. Different letters at the same row, denoted statistical significance

Cwann		LBT H ₂ gas dynamics			
Group		0. min	30. min	60. min	90. min
I-Gastroentero-dermatological (n=95)	diseases	23.13 ± 3.09 ^a	25.72 ± 1.71 ^b	24.40 ± 2.18	28.36 ± 2.13^{b}
II-Gastroenteritis (n=54)		34.25 ± 5.16^{a}	33.65 ± 3.72	30.58 ± 2.48	28.44 ± 2.42^{b}
P value		0.003	0.009	0.005	0.312

LBT: Lactulose breath test

4. DISCUSSION

In the present study as to the present author's knowledge, first time in the veterinary literature disease phenotypes and co-morbidities (associated primary/secondary disease conditions) were reported to those of dogs with SIBO (as detected by LBT and Sunvou Breath Analyzer) and presumed leaky gut [(determined by zonulin levels (zonulin levels \geq ng/mL)] were determined. This should have helped future/close studies directed at 'gut-brain-skin axis' for better assuming and interpretation. Moreover even if a veterinary surgeon has to make interventional approach, this co-morbidty list should have to be taken into consideration.

In the present study regarding disease phenotypes Group I involved dogs with gastrointestinal diseases of several selected conditions. Out of 95 ill dogs, disease phenotypes were Pyo+CafR (n=25), IBD+Ad (n=17), IBD+CafR (n=13) and LBd+Sm (n=11), as the vast majority along with other ones (table 1). On the other hand in comparison group II (n=54) enrolled dogs with gastroenteritis in which IBD (n=28), inf (n=16) and poisoning (n=10) were evident. Regarding Group I with gastroentero-dermatological diseases [this definition has been use previously by (Ural, 2024; Ural, Erdoğan, Adak et al., 2019; Ural, Erdoğan, Erdoğan et al., 2021; Ural, Erdoğan, Balıkçı et al., 2021; Ural, Erdoğan, Erdoğan et al., 2023)] IBD and CafR were evident with the vast majority of population. It should not be unwise to draw a brief explanation from this study might be that gastroentero-dermatological diseases are intertwine. To this context 'gut-brain-skin axis' (Ural, 2024; Ural, Erdoğan, Adak et al., 2019; Ural, Erdoğan, Erdoğan et al., 2021; Ural, Erdoğan, Balıkçı et al., 2021; Ural et al., 2023)] should be taken into consideration for both diagnsosis and treatment applications.

The gut–skin axis, still novel paradigma and underlying probable reason for pathology of several chronic/inflammatoric disorders. The latter axis has been linked to interaction between gastrointestinal health influencing cutaneous homeostasis/allostasis. This interconnection is between metabolic, immune and nervous systems (O'Neill, Monteleone, McLaughlin et al., 2016; Salem, Ramser, Isham et al., 2018). On the other hand gut microbiome has been well recognized as a prime influencer of the gut–skin axis through a collaborative interplay between the gut microbiome and host immüne system (Forbes, Van Domselaar & Bernstein, 2016; O'Neill et al., 2016; Salem et al., 2018). Disturbance of the gut microbiota could perturbate immune respond both at systemic and intestinal mucosal levels. Moreover leaky gut, exhibited through elevated gut permeability, intestinal dysbiosis, and altered immune mucosal defense, has entirely been linked to chronic inflammatory disorders (Forbes et al., 2016). In the present study elevated leaky gut biomarker serum zonulin levels (no healthy control group as deemed available, which was out of the purpose of the study, however previous experience, pHd thesis and unpublished researches with healthy control dogs exhibited very low zonulin levels in contrast) and intestinal gas dynamics (elevated H₂ gas dynamics as detected by LBT in both group of dogs enrolled) all indicated possible low grade systemic

inflammation [(fractional exhaled nitric oxide leves \geq 40 ppb as detected by Nano Coulomb Breath (Sunvou)-Analyzer CA2122, data was not necessary to show)], linked to SIBO. Regarding intestinal gas dynamics, with special reference to H₂, LBT results were deemed available with Sunvou Breath Analyzer, China. At Group I with gastroentero-dermatological diseases, H₂ baseline values (23.13±3.09 ppm) were statistically significant for initial and tentative diagnosis for SIBO, which inturn elevated at 90 th minutes values (28.36 ± 2.13 ppm), possessing an increase. Moreover at group II with solely gastroenterological diseases initial baseline values (34.25 ± 5.16 ppm) were diagnostic (Gasbarrini, Corazza, Gasbarrini et al., 2009; Rezaie, Buresi, Lembo et al., 2017). At 90th minutes of LBT H₂ values (28.44 ± 2.42) were still indicative of SIBO. During LBT there were also statistical difference regarding inter- group comparison during timeline; at 0.to 60. minutes (p=0.003, 0.009 and 0.005, respectively).

Someone might criticise available data herein obtained. Moreover it should be a criticism of solely usage of LBT, instead of bacterial colonization for diagnosis. In a prior study SIBO was detected by quantitative bacterial culturing from duodenum via endoscopy to those 41 out of 80 dogs exhibiting chronic gastrointestinal issues (Rutgers et al., 1995). On the other hand H₂ is the vast majority prevalent gas exhibited via resident bacteria at colon, which has been assembled only by bacterial fermentation of non- digestible substrates located at colon (Naito, Kashiwagi, Takagi et al., 2018). Subsequently breath H₂ analytes are primarily available for determining carbohydrate malabsorption or SIBO. Metabolic process following fermentation via gut microbiota manufacture huge amount of H₂ gas (up to 1L of H₂ might be existing in a day), in which the amount of gas could subsequently iniate clinical signs (Gasbarrini et al., 2009; Strocchi & Levitt, 1992). The vast majority of relatively abundant genus responsible for H₂ manufacturing through the colon are Bacteroides/Ruminococcus and Roseburia (Duncan, Hold, Barcenilla et al., 2002). In the present study LBT was preferred as a diagnostic tool for SIBO. In a fresh meta-analysis reported a sensitivity and specificity of 42.0% and 70.6%, respectively, for LBT (Losurdo, Leandro, Ierardi et al., 2020). In comparison a previous reserach indicated 31% and 86%, sensitivity and specificity for LBT in comparison to traditional culture for jejunal aspirate (bacterial colony count ≥ 10⁵ CFU/mL) recognized as gold standard (Ghoshal, Ghoshal, Das et al., 2006). All aformentioned data belongs to human literature, whereas veterinary literature is lacking.

5. CONCLUSION

In conclusion herein for the first time a large dog population was subjected to LBT was capable of SIBO detection by Sunvou Breath Analyzer. It should also needed to be addressed that other relevant disease phenotypes along with co-morbidities showed at this study indicated probably changing diagnostic and treatment protocoles.

REFERENCES

- Alemany, S., Soler-Artigas, M., Cabana-Domínguez, J., Fakhreddine, D., Llonga, N., Vila-Ribo, L., et al. (2023). Genome-wide multi-trait analysis of irritable bowel syndrome and related mental conditions identifies 38 new independent variants. *Journal of Translational Medicine*, 21, 272. https://doi.org/10.1186/s12967-023-04107-5
- Alıç Ural, D. (2022a). Zonulin as a noninvasive selected biomarker of gut barrier function: Identify and debug calves suffering from diarrhea. *International Journal of Veterinary and Animal Research*, 5(3), 159–161.
- Alıç Ural, D. (2022b). Heat stress and seasonal dissipation of circulating zonulin levels among calves in Aydın region. International *Journal of Veterinary and Animal Research*, 5(2), 47–49.
- Alıç Ural, D. (2022c). Leaky gut and Giardia duodenalis infection-associated serum zonulin levels among calves: Randomized clinical study. *Türkiye Klinikleri Journal of Veterinary Sciences*, 13(2). https://doi.org/10.5336/vetsci.2022-92569
- Alıç Ural, D. (2023). Serum zonulin levels and fecal scoring as a probable early predictor of intestinal inflammation among calves with diarrhea: Cohort study. *Türkiye Klinikleri Journal of Veterinary Sciences*, 14(1), 18–21. https://doi.org/10.5336/vetsci.2023-96104
- Alıç Ural, D., & Ural, K. (2023). Zonulin as a preliminary biomarker of lung permeability among diseased calves: Cohort study. *Egyptian Journal of Veterinary Sciences*, 54(4), 601–607. https://doi.org/10.21608/ejvs.2023.196708.1450
- Alıç Ural, D., Erdoğan, S., Erdoğan, H., & Ural, K. (2021). Heat stress, intestinal barrier disruption, and calves: Multidisciplinary perspective field study. *Journal of Advances in VetBio Science and Techniques*, 6(3), 265–269. https://doi.org/10.31797/vetbio.1004746
- Alıç Ural, D., Ural, K., Erdoğan, H., & Erdoğan, S. (2021). Alterations in gut integrity due to heat stress among dairy cattle of Aydin city: Analytical interpretation of zonulin levels within repetitive measurements. *International Journal of Veterinary and Animal Research*, 4(3), 111–114.
- Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S., & Flint, H. J. (2002). Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. *International Journal of Systematic and Evolutionary Microbiology*, 52(5), 1615-1620. https://doi.org/10.1099/00207713-52-5-1615
- Forbes, J. D., Van Domselaar, G., & Bernstein, C. N. (2016). The gut microbiota in immune-mediated inflammatory diseases. *Frontiers in Microbiology*, 7, 1081. https://doi.org/10.3389/fmicb.2016.01081
- Gasbarrini, A., Corazza, G. R., Gasbarrini, G., Montalto, M., Di Stefano, M et al. (2009). Methodology and indications of H2-breath testing in gastrointestinal diseases: The Rome Consensus Conference.

- Alimentary Pharmacology & Therapeutics, 29(1), 1-49. https://doi.org/10.1111/j.1365-2036.2009.03951.x
- Ghoshal, U. C., Ghoshal, U., Das, K., & Misra, A. (2006). Utility of hydrogen breath tests in diagnosis of small intestinal bacterial overgrowth in malabsorption syndrome, and its relationship with oro-cecal transit time. *Indian Journal of Gastroenterology*, 25(1), 6.
- Ghoshal, U.C. (2011). How to interpret hydrogen breath tests. Journal of Neurogastroenterology and Motility, 17(3):312-7. doi: 10.5056/jnm.2011.17.3.312.
- Losurdo, G., Leandro, G., Ierardi, E., Perri, F., Barone, M., Principi, M., & Di Leo, A. (2020). Breath tests for the non-invasive diagnosis of small intestinal bacterial overgrowth: A systematic review with meta-analysis. *Journal of Neurogastroenterology and Motility*, 26(1), 16. https://doi.org/10.5056/jnm19113
- Naito, Y., Kashiwagi, K., Takagi, T., Andoh, A., & Inoue, R. (2018). Intestinal dysbiosis secondary to proton-pump inhibitor use. *Digestion*, 97(2), 195-204. https://doi.org/10.1159/000481813
- O'Neill, C. A., Monteleone, G., McLaughlin, J. T., & Paus, R. (2016). The gut-skin axis in health and disease:

 A paradigm with therapeutic implications. *BioEssays*, 38, 1167–1176. https://doi.org/10.1002/bies.201600008
- Rezaie, A., Buresi, M., Lembo, A., Lin, H., McCallum, R., Rao, S., et al. (2017). Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American Consensus. *American Journal of Gastroenterology*, 112(5), 775–784. https://doi.org/10.1038/ajg.2017.46
- Rutgers, H. C., Batt, R. M., Elwood, C. M., & Lamport, A. (1995). Small intestinal bacterial overgrowth in dogs with chronic intestinal disease. *Journal of the American Veterinary Medical Association*, 206(2), 187-193. https://doi.org/10.2460/javma.1995.206.02.187
- Salem, I., Ramser, A., Isham, N., & Ghannoum, M. A. (2018). The gut microbiome as a major regulator of the gut-skin axis. *Frontiers in Microbiology*, 9, 1459. https://doi.org/10.3389/fmicb.2018.01459
- Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. *Physiological Reviews*, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009
- Sorathia, S. J., Chippa, V., & Rivas, J. M. (2023). Small intestinal bacterial overgrowth. *StatPearls Publishing*. Sroka, N., Rydzewska-Rosołowska, A., Kakareko, K., Rosołowski, M., Głowińska, I., & Hryszko, T. (2022). Show me what you have inside—the complex interplay between SIBO and multiple medical conditions: A systematic review. *Nutrients*, 15(1), 90. https://doi.org/10.3390/nu15010090
- Staudacher, H. M., Mikocka-Walus, A., & Ford, A. C. (2021). Common mental disorders in irritable bowel syndrome: Pathophysiology, management, and considerations for future randomized controlled trials. *The Lancet Gastroenterology & Hepatology*, 6(5), 401–410. https://doi.org/10.1016/S2468-1253(20)30363-0

- Strocchi, A., & Levitt, M. D. (1992). Factors affecting hydrogen production and consumption by human fecal flora: The critical roles of hydrogen tension and methanogenesis. *The Journal of Clinical Investigation*, 89(4), 1304-1311. https://doi.org/10.1172/JCI115716
- Ural, K. (2024). 'Bağırsak-beyin-deri ekseni': Retrospektif olgu tahlilleri (2009-2024) ve tecrübeleri. Türkiye Sağlık Araştırmaları Dergisi, 5(3), 11-23.
- Ural, K., Erdoğan, H., Adak, H. İ., Ateş, D. S., & Kahraman, D. (2019). Ataksik kedilerde fekal mikrobiyota transplantasyonu. Veterinary Journal of Mehmet Akif Ersoy University, 4(1), 34-36. https://doi.org/10.24880/maeuvfd.460765
- Ural, K., Erdoğan, H., Erdoğan, S., & Camkerten, İ. (2021). Circulating serum zonulin levels before and after probiotic enema treatment in dogs with atopic dermatitis: Randomized clinical study. *Türkiye Klinikleri Journal of Veterinary Sciences*, 12(2). https://doi.org/10.5336/vetsci.2021-85829
- Ural, K., Erdoğan, H., Erdoğan, S., Gökaçay, G., & Balıkçı, C. (2023). Colon wall thickness at the crossroads of gastroentero-dermatology among diseased dogs: Clinical research. *Türkiye Klinikleri Journal of Veterinary Sciences*, 14(2). https://doi.org/10.5336/vetsci.2022-94997
- Ural, K., Erdoğan, H., Erdoğan, S., Paşa, S., Gültekin, M., & Balıkçı, C. (2024). Anti-leaky gut recipe 'Gut- cumin I' could have helped hastening clinical signs and disease remission among dogs with inflammatory bowel disease. *Turkish Journal of Veterinary Internal Medicine*, 3(1), 10–17. https://doi.org/10.5281/zenodo.14538072
- Ural, K., Erdoğan, S., Balıkçı, C., Erdoğan, H., & İçaçan, Ş. G. (2021). İnovatif gastroenterodermatoloji kapsamında muhtelif yöntem geliştirme I: Lactobacillus plantarum ve Lactobacillus paracasei ile probiyotik eneması atopik dermatitli köpeklerde anti-pruritik etkinlik sağlar mı? *Van Veterinary Journal*,
 - 32. https://doi.org/10.36483/vanvetj.941978
- Zafar, H., Jimenez, B., & Schneider, A. (2023). Small intestinal bacterial overgrowth: Current update.

 *Current Opinion** in *Gastroenterology*, 39(6),

 522–528.

https://doi.org/10.1097/MOG.0000000000000971