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Modelling the impact of climatic variables on
malaria transmission
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Abstract

Malaria is one of the most severe disease in the world. The projected
climate change will probably alter the region and transmission poten-
tial of malaria in Africa. In this study, a climate-based mathematical
model to investigate the impact of temperature and rainfall on malaria
transmission is developed and analysed. The basic reproduction num-
ber (R0) is derived along with stability analysis. The effect of the larval
death rate on the reproduction number is also investigated. The model
is validated on observed malaria transmission in Limpopo Province,
South Africa, giving a reasonable fit and in particular, detecting ac-
curately all the spikes in malaria prevalence. The model provides a
numerical basis for further refinement towards prediction of the impact
of climate variability on malaria transmission.
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1. Introduction
Malaria remains one of the largest killer diseases in Africa, and most of its victims

are women and children [56]. Sub-Saharan Africa continues to carry an extremely high
portion of the global malaria burden [57]. In South Africa, over 10% of the population
are living in malaria-epidemic provinces and are posed to the danger of contacting the
disease [36]. Malaria is caused by a protozoan from the genus Plasmodium, and it is
spread through mosquitoes. A single bite by a malaria-carrying mosquito can lead to
extreme sickness or death. Malaria starts with an extreme cold, followed by high fever and
severe sweating. These can be accompanied by joint pain, abdominal pain, headaches,
vomiting, and extreme fatigue.

Malaria is very sensitive to climatic conditions, which explains why it is most prevalent
in tropical climates, where there is sufficient breeding sites and conducive temperatures
for mosquitoes. The high sensitivity of malaria to climate cannot be over-emphasized. For
instance, a slight change in temperature can drastically affect the lifespan and patterns
of mosquitoes because they are cold-blooded, and moreover, the protozoan itself can
only survive in certain temperatures. With higher temperatures, the mosquitoes can
mature faster, and thus have more time to spread the disease. The malaria parasite also
matures more quickly at warmer temperatures. However, if temperatures become too
high, neither mosquitoes nor the malaria parasite can survive. In addition, water is also
a major contributor to the spread of malaria, since the vector mosquitoes breed in small
pools of water. More rainfall increases the possible breading grounds for mosquito larvae,
which eventually results in more vectors to spread the disease. With little rainfall, there
are few places for the mosquitoes to breed.

When attempting to control the mosquito population, it is important to examine the
weather parameters such as temperature and rainfall which are imperative in determining
the disease epidemics. Having accurate seasonal climate forecasts of these parameters, it
is possible to utilize malaria models that account for early warning systems in endemic
regions [52]. These models can also be used to evaluate the possible changes in malaria
prevalence regions under climate change scenarios [27]. Malaria transmission models
play a significant role in understanding the dynamics of the disease [34] and have long
been applied to assess the possible means of intervention [26, 31]. The dynamics have
been investigated through deterministic models in many studies [9, 49] and some through
stochastic models [37, 51]. Some of these studies either neglect the impact of climate or
incorporate it through the force-of-infection. For instance, Okosun and Makinde [39]
derived and analyzed a model for the transmission of malaria disease that includes the
class of individuals with drug resistance and treatment measures. These parameters
were used to formulate optimal strategies for disease control in the population. The local
stability of the disease free equilibrium and the existence of an endemic equilibrium were
also established in the study.

Many studies have considered climate as a major factor of the disease epidemic. Craig
et al. [10], for instance examined both seasonal case totals and seasonal changes in
cases aligned with a series of climatic indicators obtained from three weather stations in
KwaZulu-Natal, South Africa. In the study, linear regression analysis with several cli-
mate variables is used to verify that seasonal changes are important. Eckhoff et al. [14]
also offered a new model for mosquito population dynamics with the effect of weather and
impacts of multiple concurrent interventions. The model is set in large-scale individual-
based simulation and results for local elimination of malaria are discussed. More dynamic
models for vector life-cycle has been set up and designed to run on a local scale with
treatment of water bodies. The Liverpool Malaria Model (LMM) has also been useful
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in forecasting and climate projection analysis [24, 25]. It includes the effect of temper-
ature on the sporogonic and gonotrophic cycles, and clearly explains the parasite and
egg growth stages with consideration of temperature impact on vector death rates [19].
Although the model was made to run over a regional scale, it did not embrace a clear
representation of the surface hydrology, and egg laying rates were proportional to the
10-day rain rate. The updated version of LMM (that is LMM2010) which works on daily
mean temperature and rainfall was later introduced to fill the lapses above, [15, 16].
In the previous study of Okosun and Makinde [39], the impact of climate on malaria
transmission is not put into consideration. Hence this study aims to extend the work
of Makinde and Okosun [39] by examining the impact of climate variability on malaria
epidemics over Limpopo province, South Africa.

We begin by developing the SEIR malaria model with recovery class. We incorporate
climate variables (rainfall and temperature) into the model and illustrate some of its basic
properties in Section 2. The equilibrium points are determined in Section 3. Estimation
of both climate-dependent and climate-independent parameters follows in Section 4. We
validate our model against malaria transmission in Limpopo Province, South Africa in
Section 5. Finally, concluding remarks appear in Section 6.

2. Methodology
2.1. Model formulation. Our model sub-divides the total human population, denoted
by Nh into sub-populations of susceptible individuals (Sh), those exposed to malaria
parasite (Eh), individuals with malaria symptoms (Ih) and recovered humans (Rh) as
illustrated in Fig. 1, such that Nh = Sh + Eh + Ih +Rh.
The total vector (mosquito) population is denoted by Nv and is sud-divided into sus-
ceptible mosquitoes (Sv), mosquitoes exposed to malaria parasite (Ev) and infectious
mosquitoes (Iv). Hence, Nv = Sv + Ev + Iv.
Susceptible individuals are recruited (by birth or immigration) into the community at a
rate Φh and acquire malaria through contact with infectious mosquitoes at a rate βh. Ex-
posed individuals move to infectious class at a rate ηh while infected individuals recover
spontaneously at a rate α to join the immune class as some recovered due to treatment
at a rate ς. Recovered individuals lose their immunity and return to susceptible class at
a rate q while the natural death and disease-induced death rate are denoted by µh and
γ respectively.
Susceptible mosquitoes (Sv) are recruited at the rate ϑv(T,R)Nv(1− Nv

P
)(1− δv), where

P is the larval carrying capacity and δv represent the proportion of larvae that died in
the process of becoming adult mosquito. We assume that larvae become adult at the
rate ϑv(T,R) which is dependent on temperature (T ) and rainfall (R). Mosquitoes are
assumed to suffer death due to natural causes at a rate µv(T ) and their numbers are
further reduced due to the use of insecticide spray at a rate %.
The susceptible mosquitoes acquire malaria through contact with infected humans at a
rate ξv and move to the exposed class (Ev), later to progress towards the infected class
(Iv) at a rate ηv(T ). It is noted that βh = υεκIv

Nh
and ξv(T ) = ξε(T )κIh

Nh
, where υ and ξ

represent the transmission probability of human and mosquito respectively, with contact
rate κ of mosquito per human per unit time. We also assume that mosquito biting rate
ε(T ) and mortality rate µv(T ) are temperature dependent [4, 38, 53].
The dynamics of the disease are described by the following system of differential equa-
tions:
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Figure 1. Flow diagram for malaria transmission model

(2.1)

dSh
dt

= Φh + qRh − βhSh − µhSh

dEh
dt

= βhSh − (ηh + µh)Eh

dIh
dt

= ηhEh − (α+ γ + ς + µh)Ih

dRh
dt

= (α+ ς)Ih − (q + µh)Rh

dSv
dt

= ϑv(T,R)Nv(1− Nv
P

)(1− δv)− (ξv + %+ µv(T ))Sv

dEv
dt

= ξvSv − (ηv(T ) + %+ µv(T ))Ev

dIv
dt

= ηv(T )Ev − (%+ µv(T ))Iv

Hence,

(2.2)

dNh
dt

= Φh − γIh − µhNh

dNv
dt

= ϑv(T,R)Nv(1− Nv
P

)(1− δv)− (%+ µv(T ))Nv .

2.2. Model analysis without climate parameters. In this section, we begin our
mathematical analysis without climate-dependent parameters. We assume all parameters
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are constant. The SEIR malaria model (2.1) will be analyzed in a biologically feasible
region as follows. This region should be feasible for both human and vector populations.
More precisely, we have

2.1. Theorem. If Sh(0), Eh(0), Ih(0), Rh(0), Sv(0), Ev(0) and Iv(0) are non-negative,
then so are Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t) and Iv(t) for all t > 0. Moreover
lim sup
t→∞ Nh(t) ≤ Φh

µh
and lim sup

t→∞ Nv(t) ≤ P (1 + (%+µv)
ϑv(1−δv)

).

In addition, if Nh(0) ≤ Φh
µh

and Nv(0) ≤ P (1 + (%+µv)
ϑv(1−δv)

) respectively, then Nh(t) ≤ Φh
µh

and Nv(t) ≤ P (1 + (%+µv)
ϑv(1−δv)

) respectively. In particular, the region D = Dh ×Dv with,

Dh =

{
(Sh, Eh, Ih, Rh) ∈ R4

+ : Sh + Eh + Ih +Rh ≤
Φh
µh

}
and

Dv =

{
(Sv, Ev, Iv) ∈ R3

+ : Sv + Ev + Iv ≤ P (1 +
(%+ µv)

ϑv(1− δv)
)

}
is positively invariant.

From this theorem we conclude that it is sufficient to consider the dynamics of the model
in [35] on D. In this region, the model can be considered as being epidemiologically
meaningful and mathematically well-posed [1, 18].

2.2.1. Existence and stability of equilibria.

Disease-free equilibrium (DFE). The basic model (2.1) has a DFE given by,

(2.3) E0 = (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
v , E

∗
v , I
∗
v ) =

(
Φh
µh

, 0, 0, 0, P (1 +
(%+ µv)

ϑv(1− δv)
), 0, 0

)
At this point we find it convenient to introduce the symbol µ̄, µ̄ = α + γ + ς + µh, in
order to simplify a number of expressions. The linear stability of E0 is ascertained as in
[54]. Using the next generation operator method on model (2.1) the basic reproduction
number, denoted by R0, is found to be given by

(2.4) R0 = r(FV −1) =
√

R0h × R0v

where r is the spectra radius (dominant eigenvalue in magnitude) of the next generation
matrix FV −1. The term R0h represents the number of humans that one mosquito infects
through its infectious lifetime and it is defined as

(2.5) R0h =

√
υεκηhµh

Φhµ̄(ηh + µh)

and R0v is the the number of mosquitoes that one human infects through the duration
of the infectious period, which is also defined as

(2.6) R0v =

√
Pξεκηv (ϑv (1− δv)− (%+ µv))

ϑv(1− δv)(%+ µv) (ηv + %+ µv)
.

Furthermore, using Theorem 2 of [54], the following result is established.

2.2. Theorem. The disease free equilibrium, E0, of the model (2.1), is locally asymptot-
ically stable (LAS) if R0 < 1 and unstable otherwise.
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The basic reproduction number R0 measures the average number of new infections gen-
erated by a single infected individual in a completely susceptible population [5, 13, 54].
Thus, Theorem 2.2 implies that malaria can be eliminated from human population (when
R0 < 1) if the initial sizes of the sub-populations are in the basin of attraction of the
DFE.

2.2.2. Existence of endemic equilibria. In search of an endemic equilibrium point of
model (2.1) (that is, equilibria where at least one of the infected components in model
(2.1) is non-zero), we take the following steps.
Let E1 = (S∗∗h , E

∗∗
h , I

∗∗
h , R∗∗h , S

∗∗
v , E

∗∗
v , I

∗∗
v ) represent any arbitrary endemic equilibrium

of model (2.1). Also let

(2.7) β∗∗h =
υεκI∗∗v
N∗∗h

, and ξ∗∗v =
ξεκI∗∗h
N∗∗h

be the forces of infection of human and vectors at steady state, respectively. Setting the
right hand side of equation (2.1) to zero gives the following expressions.

(2.8)

S∗∗h =
Φh+qR∗∗h
β∗∗
h

+µh
,

E∗∗h =
β∗∗h S∗∗h
ηh+µh

,

I∗∗h =
ηhE

∗∗
h

µ̄
,

R∗∗h =
(α+ς)I∗∗h
q+µh

,

S∗∗v = P µv (ϑv (1−δv)+(%+µv))
ϑv (1−δv) ((%+µv)+ξ∗∗) ,

E∗∗v =
ξ∗∗v S∗∗v
ηv+%+µv

,

I∗∗v =
ηvE

∗∗
v

%+µv
.


Substituting (2.8) in (2.7), and we have,

(2.9)

ξ∗∗v =
ε κ ξ β∗∗h ηh µh (q+µh) Φh

((µ̄)µh (q+µh) (ηh+µh)+β∗∗
h

((µ̄)µh (q+µh)+ηh (q (γ+µ)+(µ̄)µh)))−(γ β∗∗h ηh (q+µh) Φh) Φh

It can be shown that the non-zero equilibria of the model satisfy the following polynomial
(in terms of β∗∗h )

P (β∗∗h ) = A(β∗∗h )3 +B(β∗∗h )2 + C(β∗∗h ))

(2.10) A(β∗∗h )2 +B(β∗∗h ) + C = 0,
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where,

(2.11)

A = ϑv(1− δv) [(µ̄)µh(q + µh) + ηh(qµh + (α+ µh)µh)] (ηv + µv)
[(µ̄)µh(q + µh)µv + ηh(εκξµh(q + µh) + (qµh + (α+ µh)µh)(%+ µv))] Φh

B = µh(q + µh)ϑv(1− δv)(µ̄)(ηh + µh)(ηv + %+ µv)Φh
[
Rk − R2

0

]
G1

C = (µ̄)2µ2
h(q + µh)2(ηh + µh)2ϑv(1− δv)(ηv + %+ µv)Φh

[
1− R2

0

]
,

where,

(2.12) Rk =
εκξηhµh(q + µh) + 2 [(µ̄)µh(q + µh) + ηh(qµh + (µ̄)] (%+ µv)

(%+ µv) [(µ̄)µh(q + µh)ηh(q(γ + µh) + (µ̄)µh)]

and
G1 = (µ̄)µh(q + µh)ηh(q(γ + µh) + (µ̄)µh).

Note that the coefficient A is always positive and C (resp. B) is positive if R0 is less
than 1 (resp

√
Rk) respectively.

We have the following results:

2.3. Corollary.
(1) If Rk ≥ 1 then system (2.1) exhibits a forward bifurcation.
(2) If Rk < 1 then system (2.1) exhibits a backward bifurcation.

Proof.
(1) For Rk ≥ 1 we obtain when R0 > 1 that C < 0. This implies that system (2.1)

has a unique endemic steady state. If R0 ≤ 1, then C ≥ 0 and B ≥ 0. In this
case system (2.1) has no endemic steady states.

(2) For Rk < 1 we discuss the following cases:
i. R0 > 1, in this case C < 0 and system (2.1) has a unique endemic steady

state.
ii. R0 ≤

√
Rk, in this case both B and C are positive implying that system

(2.1) has no endemic steady states.
iii.
√
Rk < R0 < 1, here C > 0 and B < 0 while the discriminant of

(2.10), ∆(R0) := B2− 4AC, can be either positive or negative. We have ∆(1) =

B2 > 0 and ∆(
√
Rk) = −4AC < 0, then there exists R0c such that ∆(R0c) = 0,

∆(R0) < 0 for
√
Rk < R0 < R0c and ∆(R0) > 0 for R0c < R0. This together

with the signs of B and C imply that system (2.1) has no endemic steady states
when

√
Rk < R0 < R0c, one endemic steady state when R0 = R0c and two

endemic steady states when R0c < R0 < 1.
�

2.3. Model analysis with climate-dependent parameters.

2.3.1. Study case and data. Over the years, Plasmodium falciparum has been identified
as the main causes of malaria in three northeastern provinces of South Africa namely;
Mpumalanga, KwaZulu-Natal and Limpopo [10, 59]. In this study, we validate our model
against the malaria transmission case in Limpopo Province. The province is situated in
the northernmost corner of South Africa (as in Fig. 2). It experiences long sunny days
and dry weather on most days with high rainfall between October - March every year [28]
as shown in Fig. 3. In Fig. 3a, four peaks with three nadirs are observed for temperature
between January 2002 - December 2004. The peaks occur between December-February
while the nadirs falls within June - August each year. Similar patterns are observed
for rainfall in Fig. 3b. This implies that the province simultaneously experiences high
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Figure 2. Map of South Africa showing Limpopo province (in red).
Source: http://en.wikip-edia.org/wiki/Limpopo

temperature and rainfall between December - February with low temperature and rainfall
between June-August every year. Also, malaria transmission in this province is seasonal
with climatic conditions affecting the development of mosquitoes and malaria parasites
[6, 47]. Hence, we limit our study on the effects of temperature and rainfall on the
transmission of malaria in Limpopo province. The input climate data used for this
study is obtained from the South African Weather Service (SAWS). The data consists
of daily rainfall, minimum and maximum temperature that spans the period of 2002 to
2004, while the monthly malaria cases for the same period were obtained from the South
African Department of Health.

2.3.2. Parameter estimates. Some of the parameters relevant to our study has also fea-
tured in previous studies of malaria transmission modeling such as in [8, 32, 39, 59]. In
these papers the authors have obtained fairly good numerical values for these parameters
and we reference such parameter values in Table 1. Following the approach of [59], we
estimate below the death and birth rate of humans in Limpopo Province.

Human death rate µh. According to the World Health Organization (WHO) report, the
life expectancy for South Africa in 2002 was 49.1 years. Hence, the human death rate is
calculated as

µh =
1

49.1× 365
= 0.000056 Day−1

Human birth rate Φh. The South Africa Census for 2001 stated that the total human
population for Limpopo province was 5,273,642 [46]. Therefore, the human birth rate for
Limpopo province is estimated as

Φh = µh × 5, 273, 642 = 295 human/day

The climate-dependent parameters affect the processes occurring during either the larva
or adult stage. For instance, adequate rainfall is essential for survival of eggs, larva and
pupae survival, while temperature is influential in the gonotropic cycle, a period between
blood meal and oviposition [4].
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Figure 3. (a) Daily mean temperature and (b) rainfall of Limpopo
province between January 2002 - December 2004.

Mosquito birth rate. Aside climatic factors, several studies (e.g. [2, 45, 53]) have explained
that the availability and conditions of mosquito breeding sites (such as puddles, ponds,
containers) play a crucial role in determining the oviposition rate. For instance, it has
been established that some mosquitoes will not lay egg if there is no available breeding site
[29, 50]. It is also possible for female mosquitoes to distribute their eggs among suitable
and unoccupied container [55]. Based on these facts, we adopt adopt the mosquito birth
rate of [43], as

ϑv(T,R) =
nepe(R)pl(R, T )pp(R)

te + tl(T ) + tp
where ne is the number of eggs laid per adult mosquito per oviposition, pe(R),
pl(R, T ) and pp(R) are the survival probabilities of eggs, larvae and pupae respectively.
The duration of each development stage is given as te, tl(T ) and tp and the average larval
duration tl(T ) = 1/(0.0554T − 0.06737). We assume that temperature and rainfall act
independently on the survival probability pl of larvae (cf. [43]) such that pl(R, T ) =
π1(T )π2(R). In this product the first factor is taken as

π1(T ) = e−(0.0554T−0.06737).

Rainfall has been shown to positively correlate with malaria incidence [42], although
excessive rainfall may flush out larvae and breeding sites [12, 53]. Hence we assume a
quadratic relationship between the survival probabilities of eggs, larvae and pupae and
rainfall. For larvae, we assume

π2(R) =

[
4p∗l
R2
l

]
R(Rl −R),

where Rl is the rainfall limit beyond which breeding site get flushed out and no immature
stages survive [43]. The constant p∗l is the maximum survival probability.
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Mosquito mortality rate. To estimate the temperature-dependent mortality rate of adult
mosquito, we adopt the expression of [4, 33, 38] that;

µv(T ) =
1

(−4.4 + 1.31T − 0.03T 2)
Day−1

Larval carrying capacity. We assume that rainfall generates available water for larval
development, and that the carrying capacity P evolves according to a dynamical equation
that takes into account habitable per unit area and unit time [4]. It is measured in terms
of an effective maximum number of larvae available in a given region and we say

P =
PA
PE

R ,

where PE = 10−3 < PE < 100 is the carrying capacity decaying rate, and the conver-
sion factor PA varies between 0 and 104. Other parameters are shown in Table 1 with
references.

3. Results and discussion
3.1. Effects of temperature-dependent parameters. In this section, we illustrate
the relationship between temperature and mosquito death rate, biting rate, progression
rate and reproduction number in Fig. 4. The U-curve in Fig. 4a explains in line with
[17, 38, 44], that the mosquito death rate is high at low temperature (below 18oC), low
between 18−25oC and increases at temperature beyond 25oC. Fig. 4b and Fig. 4d show
unimodal curves (as also appeared in [36, 38]) which are thermally constrained at both low
and high temperature. Fig. 4b demonstrates low mosquito biting rate at temperatures
below 12oC, gradually increasing with a slight declination at upper thermal limit of 35oC.
Although the limit is considerably different from that obtained in the study [7] which
is 30oC, it matches the findings of [36, 38] which is 35oC. However, the reproduction
number R0 in Fig. 4d indicates that the optimal temperature for malaria transmission is
30oC with transmission occurring between 13oC−40oC, and with threshold where R0 > 1
between 18oC−38oC. The transmission range is closer to the new estimate of [36] which
is 15oC−35oC, while the optimal temperature and the threshold is similar to the findings
of [38] which are 31.5oC and 22.34oC − 38.6oC respectively. Over a certain temperature
interval, the parasite development rate in Fig. 4c increases with temperature.
In Fig. 5, the incidence cases of malaria infection is simulated by our model and com-
pared with malaria monthly cases for Limpopo province as reported by South African
Department of Health. The figure shows a good fit between the observed and predicted
incidence over wide range of time. It can be seen in both results that malaria is climate-
driven with epidemic peaks between December-February when temperature and rainfall
is high in the province (as shown in Fig. 3). The results indicate a seasonal pattern as
both curves decrease progressively from February through August and then gradually
increase from September through January. However, we observe high temperature and
rainfall in December 2002 resulting in an epidemic peak (in Fig. 5) in January 2003.
With ideal temperature (28oC) and conditions, the development of Anopheles from juve-
nile to adult stage takes about 14 days [12, 21, 53], while symptoms of falciparum malaria
arise between 7-15 days depending on immunity of the host [15].

3.2. Spatial distribution of malaria reproduction number over Limpopo. In
rainy summer, we assume several water pools serving as mosquito breeding sites are
generated by rainwater. This allows mosquitoes to lay their eggs, which later develop to
adult mosquitoes if the pools are sustained for at least 14 days. We also assumed that
additional pools are intentionally created for the purpose of cattle watering, irrigation
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Figure 4. Simulation of (a) mosquito death rate, (b) mosquito biting
rate, (c) progression rate of mosquitoes, and (d) R0 versus temperature.

and so on [58]. Using our model with Observational−Reanalysis hybrid datasets for
daily temperature, we numerically calculate a time-varying approximation to the basic
reproduction number (R̂0) over Limpopo between December 2002 and December 2003
with the assumption that R0 varies with time. To achieve this, we incorporate the
climate-dependent parameters to expression (2.4). The 1.0−degree spatial resolution
and Global Meteorological Forcing Dataset for land surface modelling, are produced by
the Terrestrial Hydrology Research Group at Princeton University (hereafter, [48]). The
results in Fig. 6 and Fig. 7 show that malaria transmission in South Africa is distinctly
seasonal, with transmission limited to the warm and rainy summer months (September
to May) with very low cases in June, July and August [6]. We further investigate the
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Figure 5. The reported cases and modeled cases for Limpopo
province, South Africa 2002 - 2004.

Figure 6. Simulation of basic reproduction number when δv is low
(δv = 0.2).

impact of larval population abundance on reproduction number by considering a low and
high proportion of larva that died in the process of becoming adult. It is observed in Fig.
6 that when the proportion δv = 0.2, the maximum value of R̂0 over Limpopo, which is
found in summer is 0.84. The value reduces to 0.48 when δv = 0.9. This implies that
when δv is low, it increases the proportion of larvae (1 − δv) that made it to the adult
stage, thus increases the number of mosquitoes available for transmission. On the other
hand, high δv reduces the proportion of adult mosquitoes available for transmission, thus
reduces the reproduction number.
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Figure 7. Simulation of basic reproduction number when δv is high
(δv = 0.9).

4. Conclusion
In this study, a deterministic malaria model to explore the impact of temperature and

rainfall on malaria transmission is presented and analysed. We derived the basic repro-
duction number and examined the model for the existence of disease-free and endemic
equilibrium points. The system has an equilibrium point in which the disease persist in
the population.

In Section 4, we examined the effect of temperature on mosquito death, biting rate,
parasite development rate and reproduction number. It is verified that parasite develop-
ment rate increases along with temperature, while mosquito biting rate and reproduction
number are thermally constrained at both low and high temperature.

The model is validated against malaria transmission in Limpopo Province, South
Africa for 2002 - 2004 in Section 5. The results indicate that malaria transmission in the
province is seasonal with epidemic peak between December-February when temperature
and rainfall are relatively high. We further investigate the effect of larva death rate on
the reproduction number over entire South Africa for 2003. Our findings show that a
high rate of larva mortality reduces the reproduction number, and increases it when low.
This suggests that destruction of mosquitoes breeding sites and regular use of larvicides
have high potential to reduce malaria transmission. Further activities like spraying, use
of treated bed nets that contribute to mosquitoes death should be encouraged mostly
between September and May when the climatic conditions are favourable for mosquitoes’
development in South Africa.

However, there are other factors aside climatic reasons which need to be considered
in studying malaria transmission. Some of these factors include; migration of infected
human, economic development and so on. We leave these aspects for future studies.
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Table 1. Parameters of the malaria model 2.1

Description Symbol Value Ref

Mosquito biting rate ε(T ) 0.000203D1D2 [38, 41]
D1 = T 2 − 11.7T

D2 =
√

42.3− T

Adult mosquito death rate µv(T ) 1
(−4.4+1.31T−0.03T2)

[4, 38, 33]

Progression rate of mosquitoes ηv(T ) (T−Tmin)
111

[30, 38, 43]

Duration of egg development te 1 (days) [43]
Duration of pupa development tp 1 (days) [43]
Max. survival probability of egg p∗e 0.9 [43]
Max. survival probability of pupa p∗p 0.25 [43]
Max. survival probability of larva p∗l 0.75 [43]
Rainfall limit to flushing Rl 50 (mm) [43]
Num. of eggs laid per adult per ovip. ne 200 [38, 43]
Min. temperature for P. falciparum
survival Tmin 16 (oC) [43]
Carrying capacity of larva P 1000000 Est.
Induced death rate γ 0.0004 [9, 38]
Loss of immunity α 0.00014 [38]
Recovery rate of humans q 0.005 [9, 38]
Progression rate of humans from the
exposed class to infectious class ηh 1/14 [9, 38]
Natural death rate of humans µh 0.000056 Est.
Rate of treatment % 0.01-0.7 Est.
Probability of transmission of
infection from an infectious human
to a susceptible mosquito υ 0.09 [38, 43]
Probability of transmission of infection
from an infectious mosquito to a
susceptible human ξ 0.04 [38, 43]
Birth rate of humans Φh 295 human/day Est.
Contact rate κ 0.6 [32]
Carying capacity decaying rate PE 0.01 [43]
Conversion factor PA 1000 [43]

Acknowledgements. This research was carried out for the iDEWS (infectious Diseases
Early-Warning System) project supported by SATREPS (Science and Technology Re-
search Partnership for Sustainable Development) Program of JICA (JAPAN International
Cooperation Agency)/AMED (Japan Agency for Medical Research and Development)
in Japan and the ACCESS (Applied Centre for Climate and Earth Systems Science)
program of NRF (National Research Foundation) and DST(Department of Science and
Technology in South Africa).



233

The author (OKO) acknowledges, with thanks, the financial support of NRF, South
Africa through research grant: 74816.

References
[1] Abiodun, G.J., Marcus, N., Okosun, K.O. and Witbooi, P.J. A model for control of

HIV/AIDS with parental care, International Journal of Biomathematics 6 (02), 1350006,
2013.

[2] Abiodun, G.J., Maharaj, R., Witbooi, P. and Okosun, K.O. Modelling the influence of tem-
perature and rainfall on the population dynamics of Anopheles arabiensis, Malaria Journal
15 (1), 364, 2016.

[3] Abiodun, G.J., Witbooi, P. and Okosun, K.O. Modeling and analyzing the im-
pact of temperature and rainfall on mosquito population dynamics over Kwazulu-
Natal province, South Africa, International Journal of Biomathematics 2016. DOI:
http://dx.doi.org/10.1142/S1793524517500553.

[4] Alonso, D., Bouma, M.J. and Pascual, M. Epidemic malaria and warmer temperatures in
recent decades in an East African highland, Proceedings of the Royal Society of London B:
Biological Sciences 278 (1712), 1661-1669, 2011.

[5] Anderson, R.M., May, R.M. and Anderson, B. Infectious diseases of humans: dynamics and
control (Vol. 28). Oxford: Oxford university press, 1992.

[6] Gerritsen, A.A., Kruger, P., van der Loeff, M.F.S. and Grobusch, M.P. Malaria incidence
in Limpopo Province, South Africa, 1998–2007, Malaria journal 7 (1), 162, 2008.

[7] Briere, J.F., Pracros, P., Le Roux, A.Y. and Pierre, J.S. A novel rate model of temperature-
dependent development for arthropods, Environmental Entomology 28 (1), 22-29, 1999.

[8] Chitnis, N., Hyman, J.M. and Cushing, J.M. Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of
mathematical biology 70 (5), 1272, 2008.

[9] Chiyaka, C., Tchuenche, J.M., Garira, W. and Dube, S. A mathematical analysis of the
effects of control strategies on the transmission dynamics of malaria, Applied Mathematics
and Computation 195 (2), 641-662, 2008.

[10] Craig, M.H., Kleinschmidt, I., Nawn, J.B., Le Sueur, D. and Sharp, B.L. Exploring 30
years of malaria case data in KwaZulu-Natal, South Africa: part I. The impact of climatic
factors, Tropical Medicine & International Health 9 (12), 1247-1257, 2004.

[11] Craig, M.H., Snow, R.W. and Le Sueur, D. A climate-based distribution model of malaria
transmission in sub-Saharan Africa, Parasitology today 15 (3), 105-111, 1999.

[12] Depinay, J.M.O., Mbogo, C.M., Killeen, G., Knols, B., Beier, J., Carlson, J., Dushoff,
J., Billingsley, P., Mwambi, H., Githure, J. and Toure, A.M. A simulation model of
African Anopheles ecology and population dynamics for the analysis of malaria transmis-
sion, Malaria journal 3 (1), 29, 2004.

[13] Diekmann, O., Heesterbeek, J.A.P. and Roberts, M.G. The construction of next-generation
matrices for compartmental epidemic models, Journal of the Royal Society Interface,
p.rsif20090386, 2009.

[14] Eckhoff, P.A. A malaria transmission-directed model of mosquito life cycle and ecology,
Malaria journal, 10 (1), 303, 2011.

[15] Ermert, V., Fink, A.H., Jones, A.E. and Morse, A.P. Development of a new version of the
Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation
of basic processes based on a literature review, Malaria journal 10 (1), 35, 2011.

[16] Ermert, V., Fink, A.H., Jones, A.E. and Morse, A.P. Development of a new version of the
Liverpool Malaria Model. II. Calibration and validation for West Africa, Malaria journal
10 (1), 62, 2011.

[17] Rubel, F. and Brugger, K. Dynamics of infectious diseases according to climate change: the
Usutu virus epidemics in Vienna, In Game meat hygiene in focus 173-198, 2011.

[18] Hethcote, H.W. The mathematics of infectious diseases, SIAM review 42 (4), 599-653, 2000.
[19] Hoshen, M.B. and Morse, A.P. A weather-driven model of malaria transmission, Malaria

Journal 3 (1), 32, 2004.



234

[20] Yang, H.M. Malaria transmission model for different levels of acquired immunity and
temperature-dependent parameters (vector), Revista de saude publica 34 (3), 223-231, 2000.

[21] Jepson, W.F., Moutia, A. and Courtois, C. The malaria problem in Mauritius: the bio-
nomics of Mauritian anophelines, Bulletin of entomological research 38 (01), 177-208, 1947.

[22] Li, J., A malaria model with partial immunity in humans, Mathematical biosciences and
engineering 5 (4), 789-801, 2008.

[23] Joshi, H.R. Optimal control of an HIV immunology model, Optimal control applications
and methods 23 (4), 199-213, 2002.

[24] Jones, A.E. and Morse, A.P. Application and validation of a seasonal ensemble prediction
system using a dynamic malaria model, Journal of Climate 23 (15), 4202-4215, 2010.

[25] Jones, A.E. and Morse, A.P. Skill of ENSEMBLES seasonal re-forecasts for malaria pre-
diction in West Africa, Geophysical Research Letters 39 (23), 2012.

[26] Koella, J.C. On the use of mathematical models of malaria transmission, Acta tropica 49
(1), 1-25, 1991.

[27] Lafferty, K.D. The ecology of climate change and infectious diseases, Ecology 90 (4), 888-
900, 2009.

[28] Limpopo Province, South Africa. SouthAfrica.info. http://www.southafrica.info/ab-
out/geography/limpopo.htm.UxHXN85j-18 (Feb 2014).

[29] Maharaj, R. Life table characteristics of Anopheles arabiensis (Diptera: Culicidae) under
simulated seasonal conditions, Journal of medical entomology 40 (6), 737-742, 2003.

[30] Macdonald, G. The epidemiology and control of malaria, 1957, London, New York, and
Toronto: Oxford University Press Google Scholar.

[31] MacDonald, G., Cuellar, C.B. and Foll, C.V. The dynamics of malaria, Bulletin of the
World Health Organization 38 (5), 743, 1968.

[32] Makinde, O.D. and Okosun, K.O. Impact of chemo-therapy on optimal control of malaria
disease with infected immigrants, BioSystems 104 (1), 32-41, 2011.

[33] Martens, W.J., Niessen, L.W., Rotmans, J., Jetten, T.H. and McMichael, A.J. Potential
impact of global climate change on malaria risk Environmental health perspectives 103 (5),
458, 1995.

[34] McKenzie, F.E. Why model malaria?, Parasitology Today 16 (12), 511-516, 2000.
[35] Moghadas, S.M. and Gumel, A.B. Global stability of a two-stage epidemic model with gen-

eralized non-linear incidence, Mathematics and computers in simulation 60 (1), 107-118,
2002.

[36] Mordecai, E.A., Paaijmans, K.P., Johnson, L.R., Balzer, C., Ben-Horin, T., Moor, E.,
McNally, A., Pawar, S., Ryan, S.J., Smith, T.C. and Lafferty, K.D. Optimal temperature
for malaria transmission is dramatically lower than previously predicted, Ecology letters 16
(1), 22-30, 2013.

[37] Nakazawa, M., Ohmae, H., Ishii, A. and Leafasia, J.Malaria infection and human behavioral
factors: A stochastic model analysis for direct observation data in the Solomon Islands,
American journal of human biology, 10 (6), 781-789, 1998.

[38] Ngarakana-Gwasira, E.T., Bhunu, C.P. and Mashonjowa, E. Assessing the impact of tem-
perature on malaria transmission dynamics, Afrika Matematika 25 (4), 1095-1112, 2014.

[39] Okosun, K.O. and Makinde, O.D. Modelling the impact of drug resistance in malaria trans-
mission and its optimal control analysis, International Journal of Physical Sciences 6 (28),
6479-6487, 2011.

[40] Ozair, M., Lashari, A.A., Jung, I.H. and Okosun, K.O. Stability analysis and optimal control
of a vector-borne disease with nonlinear incidence, Discrete Dynamics in Nature and Society,
2012.

[41] Paaijmans, K.P., Cator, L.J. and Thomas, M.B. Temperature-dependent pre-bloodmeal pe-
riod and temperature-driven asynchrony between parasite development and mosquito biting
rate reduce malaria transmission intensity PLOS one 8 (1), e55777, 2013.

[42] Paaijmans, K.P., Wandago, M.O., Githeko, A.K. and Takken, W. Unexpected high losses of
Anopheles gambiae larvae due to rainfall, PLoS One 2 (11), e1146, 2007.

[43] Parham, P.E. and Michael, E. Modelling climate change and malaria transmission, Mod-
elling Parasite Transmission and Control 184-199, 2010.



235

[44] Reisen, W.K. Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the
Coachella and San Joaquin valleys of California, Journal of medical entomology 32 (5),
636-645, 1995.

[45] Rausher, M.D. Larval habitat suitability and oviposition preference in three related butter-
flies, Ecology 60 (3), 503-511, 1979.

[46] South African National Census of 2001. http://www.statssa.gov.za/census01/html/.
[47] Silal, S.P., Barnes, K.I., Kok, G., Mabuza, A. and Little, F. Exploring the seasonality of

reported treated malaria cases in Mpumalanga, South Africa, PloS one 8 (10), e76640, 2013.
[48] Sheffield, J., Goteti, G. and Wood, E.F. Development of a 50-year high-resolution global

dataset of meteorological forcings for land surface modeling, Journal of Climate 19 (13),
3088-3111, 2006.

[49] Ruan, S., Xiao, D. and Beier, J.C. On the delayed Ross-Macdonald model for malaria
transmission, Bulletin of mathematical biology 70 (4), 1098-1114, 2008.

[50] le Sueur, D. and Sharp, B.L. The breeding requirements of three members of the Anopheles
gambiae Giles complex (Diptera: Culicidae) in the endemic malaria area of Natal, South
Africa, Bulletin of entomological research 78 (04), 549-560, 1988.

[51] Smith, T.A. Estimation of heterogeneity in malaria transmission by stochastic modelling of
apparent deviations from mass action kinetics, Malaria journal 7 (1), 12, 2008.

[52] Thomson, M.C., Doblas-Reyes, F.J., Mason, S.J., Hagedorn, R., Connor, S.J., Phindela, T.,
Morse, A.P. and Palmer, T.N. Malaria early warnings based on seasonal climate forecasts
from multi-model ensembles, Nature 439 (7076), 576-579, 2006.

[53] Tompkins, A.M. and Ermert, V. A regional-scale, high resolution dynamical malaria model
that accounts for population density, climate and surface hydrology, Malaria journal 12 (1),
65, 2013.

[54] Van den Driessche, P. and Watmough, J. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Mathematical biosciences 180
(1), 29-48, 2002.

[55] Wang, Y., Gilbreath III, T.M., Kukutla, P., Yan, G. and Xu, J. Dynamic gut microbiome
across life history of the malaria mosquito Anopheles gambiae in Kenya, PloS one 6 (9),
e24767, 2011.

[56] World Health Organization. World Malaria Report 2008.
http://www.who.int/malaria/publications/world-malaria-report-2008/report/en/

[57] World Health Organization. World Malaria Report 2015.
http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/

[58] Yazoume, Y., Hoshen, M., Kyobutungi, C., Louis, V.R. and Sauerborn, R. Local scale pre-
diction of Plasmodium falciparum malaria transmission in an endemic region using tem-
perature and rainfall, Global Health Action 2, 2009.

[59] Lou, Y. and Zhao, X.Q. A climate-based malaria transmission model with structured vector
population, SIAM Journal on Applied Mathematics 70 (6), 2023-2044, 2010.




