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Hypergroups and their pullback and pushout
structures
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Abstract

Hypergroups in the sense of Marty are very important and a rather
di�cult subject to be understood since they do not generally have any
identity or inverse element. Crossed modules are one of the most im-
portant tools to be applied on groups. In this study, we combine hy-
pergroups and crossed modules to obtain the crossed modules of the
hypergroups. We shortly present hypergroups with their properties and
examples. In addition two important applications of crossed modules
are given. These applications are about pullback and pushout crossed
module of hypergroups and their properties. The de�nition of hyper-
groups generated by sets plays vital roles throughout the paper.
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1. Introduction

Crossed module is very fruitfull subject in the mathematical theories such as group
theory and algebra theory. Crossed module �rst de�ned by Whitehead [28] and then
many applicable examples were given by di�erent authors such as actor [25], induced
[9], pullback [8], pushout [20], polygroup [15] and hypergroups [5] crossed module. The
other applications of crossed module were given by the authors as pullback and pushout
crossed polymodule in [6] and algebroids in [3, 4]. Many good examples and properties of
pullback and pushout crossed polymodule were given in [6]. In this paper, using the light
of Brown and Higgins [8] and Korkes and Porter's ways [20], we present the pullback
and pushout structures of crossed module of hypergroups. Let X = (C,H, ∂, α) be a
crossed module of hypergroup and ι : Q → H be a morphism of hypergroups. Then
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ι•X = (ι•C,Q, ∂•, α•) is the pullback of X by ι. The hypergroups action of Q on ι•C is
given by

q(q1, c) = {(x, y) | β∗H(x) = β∗H(q)� β∗H(q1)� β∗H(q)−1, y ∈ ι(q)c}.

To constitute pushout crossed module of hypergroups, we de�ne hypergroups gener-
ated by sets which are the important part of this study. Indeed, some new examples
of pullback crossed module of hypergroups are presented and pushout construction has
been made very smoothly in this paper.

Let (H, ◦), (C, ?) and (B, ·) be hypergroups. Let ∂ : C → H and δ : K → H be two
crossed modules of hypergroups and let (φ, Id) : (∂ : C → H) → (δ : K → H) be a
morphism of crossed modules of hypergroups. Then, de�ning a continuous K- action on
C by kc = δ(k)c we have φ : C → K is a pushout crossed module of hypergroups.

Pullback and pushout applications of hypergroups are di�erent than polygroups ap-
plications, because of their de�nition actions on hypergroups are more di�erent than the
de�nition of the polygroup actions. These applications can allow us to obtain very di�er-
ent properties and examples from the polygroup applications [15]. Pullback and pushout
applications are simple examples for crossed square according to [18]. After giving a brief
introduction, Section 2 includes a brief presentations about hypergroups and fundamen-
tal relations. Section 3 describes crossed modules of hypergroups and their properties.
Hypergroups and their pullback and pushouts properties are presented in Sections 4 and
5, respectively.

2. Hypergroups and fundamental relations

Hypergroup theory was born in 1934, after Marty [24] gave the de�nition of hy-
pergroup, illustrated some applications and showed its utility in the study of groups,
algebraic functions and relational fractions. Nowadays the hypergroups are theoretically
studied for their applications on di�erent subjects of pure and applied mathematics, such
as geometry, topology, cryptography and coding theory, graphs and hypergraphs, proba-
bility theory, binary relations, theory of fuzzy and rough sets, automata theory, economy,
ethnology, etc. (see [1, 2, 11, 13, 17]).

Let H be a non-empty set and ◦ : H ×H → P∗(H) be a hyperoperation. The couple
(H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and
x ∈ H, we de�ne

A ◦B =
⋃

a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H we have (a◦b)◦c =
a ◦ (b ◦ c), which means that ⋃

u∈a◦b
u ◦ c =

⋃
v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a of H we have a ◦ H =
H ◦ a = H. This condition is also called the reproduction axiom.

2.1. De�nition. A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi-
hypergroup is called a hypergroup.

2.2. De�nition. Let (C, ?) and (H, ◦) be two hypergroups. Let ∂ be a map from C into
H. Then, ∂ is called

(1) an inclusion homomorphism if

∂(x ? y) ⊆ ∂(x) ◦ ∂(y), for all x, y ∈ C;
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(2) a strong homomorphism or a good homomorphism if

∂(x ? y) = ∂(x) ◦ ∂(y), for all x, y ∈ C.

2.3. Remark. Every group is a hypergroup.

In a hypergroup (H, ◦), an element e ∈ H is called a scalar identity element if e ◦ x =
x ◦ e = {x} := x, for all x ∈ H.

Here, we present two examples of hypergroups.

2.4. Example. Suppose that G = {1, −1, i, −i, j, −j, k, −k} the quaternion group
of order 8. We de�ne the following hyperoperation on G,

x ◦ y = {xy, xiy}
for all x, y ∈ G. This hyperoperation is a P -hyperoperation with P = {1, i}. Then, (G, ◦)
is a hypergroup. Indeed, for all x, y, z ∈ G we have

(x ◦ y) ◦ z = {xy, xiy} ◦ z
= xy ◦ z ∪ xiy ◦ z
= {xyz, xyiz} ∪ {xiyz, xiyiz}
= {xyz, xyiz, xiyz, xiyiz},

x ◦ (y ◦ z) = x ◦ {yz, yiz}
= x ◦ yz ∪ x ◦ yiz
= {xyz, xiyz} ∪ {xyiz, xiyiz}
= {xyz, xiyz, xyiz, xiyiz}.

Thus, (x ◦ y) ◦ z = x ◦ (y ◦ z). Moreover, we have

x ◦G =
⋃
g∈G

x ◦ g =
⋃
g∈G

{xg, xig} = G =
⋃
g∈G

{gx, gix} = G ◦ x.

2.5. Example. If (G,+) is an abelian group and ρ is an equivalence relation in G which
has classes x = {x, −x}, then for all x, y ∈ G/ρ, we de�ne x ◦ y = {x+ y, x− y}. Then
(G/ρ, ◦) is a hypergroup [13, 14]. As an illustration of the above example, suppose that
G = Z12, the abelian group modulo 12. Hence the equivalence classes are

0 = {0}
1 = {1,−1} = {1, 11} = 11

2 = {2,−2} = {2, 10} = 10

3 = {3,−3} = {3, 9} = 9

4 = {4,−4} = {4, 8} = 8

5 = {5,−5} = {5, 7} = 7

6 = {6,−6} = {6}
Then, we obtain the following hyperoperation on H.

◦ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2, 0 3, 1 4, 2 5, 3 6, 4 5

2 2 3, 1 4, 0 5, 1 6, 2 5, 3 4

3 3 4, 2 5, 1 6, 0 5, 1 4, 2 3

4 4 5, 3 6, 2 5, 1 4, 0 3, 1 2

5 5 6, 4 5, 3 4, 2 3, 1 2, 0 1

6 6 5 4 3 2 1 0
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Therefore, (Z12/ρ, ◦) is a hypergroup.

Let (H, ◦) be a hypergroup and n > 1 be an integer. We say that

xβny if there exists a1, . . . , an in H, such that {x, y} ⊆
n∏
i=1

ai.

Let βH =
⋃
n≥1

βn, where β1 = {(x, x) | x ∈ H}. Clearly, the relation βH is re�exive and

symmetric. Denote by β∗H the transitive closure of βH . The relation β∗H is the smallest
strongly regular relation on H, i.e.,

(1) β∗H is a strongly regular relation on H;
(2) If R is a strongly regular relation on H, then β∗H ⊆ R.

Thus, the relation β∗H is the smallest equivalence relation on H such that the quotient
H/β∗H is a group. The relation β∗H is called the fundamental relation on H and H/β∗H is
called the fundamental group. The product � in H/β∗H is de�ned as follows:

β∗H(x)� β∗H(y) = β∗H(z), for all z ∈ β∗H(x) ◦ β∗H(y).

This relation is introduced by Koskas [21] and studied mainly by Corsini [10], Leoreanu-
Fotea [22] and Freni [17] concerning hypergroups, Vougiouklis [27] concerning Hv-groups,
Davvaz concerning polygroups [13], and many others. Freni proved that for hypergroups
β = β∗ in [17]. The kernel of the canonical map ϕH : H −→ H/β∗H is called the core of
H and is denoted by ωH . Here we also denote by ωH the unit of H/β∗H . The heart of a
hypergroup H is the intersection of all subhypergroups of H, which are complete parts.

We have seen so far two di�erent ways to de�ne cyclic hypergroups:

(1) (Vougiouklis, [26]) For every integer n > 0 and for every x ∈ H, we get the
powers of x as follows:

x′ = {x}, xn+1 = xn ◦ x ⊆ H.

A hypergroup (H, ◦) is called cyclic if H = x′ ∪ x2 ∪ · · · ∪ xn ∪ · · · , for some
x ∈ H. If there exists an integer n > 0, the minimum one has the following
property

H = x′ ∪ x2 ∪ · · · ∪ xn,

then we call H cyclic hypergroup with �nite period and we call x generator of
H with period n. If there exists an integer n > 0, the minimum one with the
following property

H = xn,

then we call H single-power cyclic hypergroup and x generator of H with period
n.

(2) (Karimian and Davvaz, [19]) Let (H, ◦) be a hypergroup and φ : H → H/β∗H be
the canonical projection. A hypergroup (H, ◦) is called cyclic hypergroup with
generator x if φ(H) is a cyclic group generated by φ(x). Suppose that (H, ◦)
is a hypergroup and K is a subhypergroup of H. We say that K is a cyclic
subhypergroup of H with generator x if φ(K) is a subgroup of H/β∗H .

In the following we use a way similar to the second view to de�ne a hypergroup generated
by a set.

2.6. De�nition. Let H be a hypergroup and K be a subhypergroup of H. We say that
K is generated by a non-empty subset X of H if φ(K) is a subgroup of H/β∗H generated
by φ(X).
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3. Crossed module of hypergroups

Some authors [12, 23, 29] considered the actions of algebraic hyperstructures. In [23],
Madanshekaf and Ashra� considered a generalized action of a hypergroup H on a non-
empty set X and obtained some results in this respect. For the de�nition of crossed
modules of hypergroups, we need the notion of hypergroup action. So, we recall the
following de�nition from [23].

3.1. De�nition. Let (H, ◦) be a hypergroup and X be a non-empty set. A map α :
H ×X → P∗(X) is called a generalized action of H on X, if the following axiom hold:

(1) α(g ? h, x) ⊆ α(g, α(h, x)), for all g, h ∈ H and x ∈ X, where

α(g ? h, x) =
⋃

k∈g?h
α(k, x).

(2) For all h ∈ H, α(h,X) = X, where

α(h,X) =
⋃
x∈X

α(h, x).

If the equality holds in the axiom (1) of De�nition 3.1, the action is called strong

generalized action. Moreover, if H has the scalar identity element e, then the following
condition must be satis�ed too,

(3) α(e, x) = {x} := x, for all x ∈ X.

3.2. Example. [23]

(1) For any hypergroup (H, ?) and any non-empty set X, the map α : H × X →
P∗(X), given by α(h, x) = X is a strong generalized action of H on X. If we
de�ne α(h, x) = {x}, then this map is also a strong generalized action of H on
X.

(2) Let (H, ?) be a hypergroup. Then, the map α : H × H → P∗(H), given by
α(h, x) = h ? x is a strong generalized action of H on H.

3.3. Example. [23] Let X be a non-empty set, f ∈ Mθ and H = Mf . Then, the map
α : H ×X → P∗(X), de�ned by α(h, x) = h(x) is a strong generalized action of H on X.

For x ∈ X, we put hx := α(h, x). Then, for a strong generalized action, we have

(1) g( hx) =g?h x, for all g, h ∈ H and x ∈ X.
(2)

⋃
x∈X

hx = X, for all h ∈ H.

3.4. De�nition. [5] A crossed module of hypergroups X = (C,H, ∂, α) consists of hyper-
groups (C, ?) and (H, ◦) together with a strong homomorphism ∂ : C → H and a strong
generalized action α : H × C → P∗(C) on C, satisfying the conditions:

(1) h ◦ ∂(c) ⊆ ∂( hc) ◦ h, for all c ∈ C and h ∈ H.

(2) c ? c′ ⊆ ∂(c)c′ ? c, for all c, c′ ∈ C.

3.5. Example. Suppose that H is a non-empty set. We de�ne the hyperoperation ◦ on
H by

h1 ◦ h2 = {h1, h2}, for all h1, h2 ∈ H.
Then, (H, ◦) is a hypergroup. Suppose that C is a subhypergroup of H and ∂ : C → H
is the identity map. The map α : H × C → P∗(C) is de�ned by hc := C is a strong
generalized action. Moreover,

(1) For all c ∈ C and h ∈ H, we have

h ◦ ∂(c) = h ◦ c = {h, c} ⊆ C ∪ {h} = C ◦ h = ∂(C) ◦ h = ∂( hc) ◦ h.
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(2) For all c, c′ ∈ C, we have

c ◦ c′ = {c, c′} ⊆ C = C ◦ c = cc′ ◦ c = ∂(c)c′ ◦ c.

Therefore, X = (C,H, ∂, α) is a crossed module of hypergroups.

3.6. Example. Suppose that G is an abelian group and P a non-empty subset of G.
We consider the P -hyperoperation ?P on G as follows:

x ?P y = xyP, for all x, y ∈ G.

Then, (G, ?P ) is a hypergroup. Suppose that ∂ : G → G is the identity map. The map
α : G×G→ P∗(G) is de�ned by gx := {x} is a strong generalized action. Moreover,

(1) For all x, y ∈ G, we have

g ?P ∂(x) = g ?P x = gxP = xgP = x ?P g = ∂(x) ?P g = ∂( gx) ?P g

(2) For all x, y ∈ G, we have

x ?P y = xyP = yxP = y ?P x = xy ?P x = ∂(x)y ?P x.

Therefore, X = ((G, ?P ), (G, ?P ), ∂, α) is a crossed module of hypergroups.

3.7. Example. The direct product of X1 × X2 of two crossed modules of hypergroups
has source C1 ×C2, range H1 ×H2 and boundary homomorphism ∂1 × ∂2 with H1 ×H2

acting trivially on C1 × C2.

3.8. De�nition. Let X = (C,P, ∂, α) and X′ = (C′, P ′, ∂′, α′) be two crossed modules
of hypergroups. A crossed module of hypergroups morphism

< θ, φ >: (C,H, ∂, α)→ (C′, H ′, ∂′, α′)

is a commutative diagram of strong homomorphisms of hypergroups

C
θ //

∂

��

C′

∂′

��
H

φ
// H ′

such that for all h ∈ H and c ∈ C, we have

θ( hc) = φ(h)θ(c).

We say that < θ, φ > is an isomorphism if θ and φ are both isomorphisms. Similarly,
we can de�ne monomorphism, epimorphism and automorphism of crossed modules of
hypergroups.

The following example give us another crossed module structure on the fundamental
groups.

3.9. Example. Suppose that (H, ◦) is a hypergroup. Then, H/β∗H is a group. Suppose
that Aut (H/β∗H) its group of automorphisms. There is a trivial action α of Aut (H/β∗H)
on H/β∗H , and a group homomorphism ∂ : H/β∗H → Aut (H/β∗H) sending each β∗H(h) ∈
P/β∗P to the inner automorphism of conjugation by β∗P (p). These together form a crossed
module (H/β∗H , Aut (H/β∗H) , ∂, α).
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4. Pullback crossed module of hypergroups

In this section we de�ne pullback crossed module of hypergroups.

4.1. Lemma. Let (H, ◦) be a hypergroup and β∗H be its fundamental relation. For every

q, q′ ∈ H, we have

{x | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1} ◦ q′ ⊇ q′ ◦ q.

Proof. Suppose that y ∈ q′ ◦ q is arbitrary. Then

β∗H(y) = β∗H(q′)� β∗H(q)(4.1)

On the other hand, since y ∈ H ◦q′, it follows that there exists z ∈ H such that y ∈ z ◦q′.
So,

β∗H(y) = β∗H(z)� β∗H(q′)(4.2)

By Equations (4.1) and (4.2) we obtain

β∗H(z)� β∗H(q′) = β∗H(q′)� β∗H(q)

or

β∗H(z) = β∗H(q′)� β∗H(q)� β∗H(q′)−1

Thus y ∈ {x | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1} ◦ q′. �

4.2. De�nition. Let X = (C,H, ∂, α) be a crossed module of hypergroups and ι : Q→ H
be a strong homomorphism of hypergroups. Then, ι•X = (ι•C,Q, ∂•, α•) is the pullback
of X by ι, where ι•C = {(q, c) ∈ Q× C | ι(q) = ∂(c)} and ∂•(q, c) = q. The hypergroup
action of Q on ι•C is given by

q(q1, c) = {(x, y) | β∗H(x) = β∗H(q)� β∗H(q1)� β∗H(q)−1, y ∈ ι(q)c}.

4.3. Lemma. The following diagram is commutative, i.e., ∂λ = ι∂•.

ι•C

∂•

��

λ // C

∂

��
Q

ι
// H

Proof. It is clear. �

Note that the above de�nition is a generalization of pullbacks of crossed modules [7].

4.4. Theorem. Every pullback crossed module is a pullback crossed module of hyper-

group.

Proof. It is straightforward. �

4.5. Theorem. ι•X = (ι•C,Q, ∂•, α•) is a crossed module of hypergroups.

Proof. We denote the hyperoperation on ι•C by �. We investigate the condition of
De�nition 3.4. For the �rst condition, we have
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(1)

∂•(q
′
(q, c)) ◦ q′

= ∂•({(x, y) | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1, y ∈ ι(q′)c}) ◦ q′

= {x | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1} ◦ q′

⊇ q′ ◦ q (by Lemma 4.1).

The veri�cation of the second condition of De�nition 3.4 is given as follows:

∂•(q′,c′)(q, c) � (q′, c′)

= {(x, y) | (x, y) ∈ ∂•(q′,c′)(q, c)} � (q′, c′)

= {(x, y) | (x, y) ∈ q′(q, c)} � (q′, c′), by definition of ∂•

= {(x, y) | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1, y ∈ ιq′c)} � (q′, c′)

= {(x, y) | β∗H(x) = β∗H(q′)� β∗H(q)� β∗H(q′)−1, y ∈ ∂c′c} � (q′, c′)

=
⋃

β∗
H

(x)=β∗
H

(q′)�β∗
H

(q)�β∗
H

(q′)−1

x ◦ q′ × (∂c
′
c ∗ c′)

⊇ (q′ ◦ q)× (c′ ∗ c)
= {(x, y) | x ∈ q′ ◦ q, y ∈ c′ ∗ c
= (q′, c′) � (q, c)

where (q, c), (q′, c′) ∈ ι∗C. �

The universal property of induced crossed module of hypergroups is similar to the
universal property of induced crossed module [9] as well as induced crossed polymodule
[6]. Let X = (µ : M → Q) be a crossed module of hypergroup and let ι••X = (δ : ι••M →
H) be induced by the strong homomorphism ι : Q→ H. In the diagram

M

f

��

ι

��

µ // Q

ι

��
ι••M

δ //

g

||

H

G

γ

66

the pair (ι, ι) is a morphism of crossed module of hypergroups such that for any crossed
module of hypergroups Y = (γ : G → H) and any morphism of crossed modules of
hypergroups (f, ι) : X → Y there is a unique morphism (g, 1) : ι••X → Y of crossed
modules of hypergroups such that gι = f.

4.6. Proposition. [5] Let (C, ?) and (H, ◦) be two hypergroups and let ∂ : C → H be a

strong homomorphism. Then, ∂ induces a group homomorphism D : C/β∗C → H/β∗H by

setting

D(β∗C(c)) = β∗H(∂(c)), forall c ∈ C.

We say the action of H on C is productive, if for all c ∈ C and h ∈ H there exist
c1, . . . , cn in C such that hc = c1 ? . . . ? cn.
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Let (C, ?) and (H, ◦) be two hypergroups and let α : H×C → H∗(C) be a productive
action on C. We de�ne the map ψ : H/β∗H ×H/β∗C → H∗(H/β∗C) as usual manner:

ψ(β∗H(h), β∗C(c)) = {β∗C(x) | x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy}.

By de�nition of β∗C , since the action ofH on C is productive, we conclude that ψ(β∗H(h), β∗C(c)
is singleton, i.e., we have

ψ : H/β∗H ×H/β∗C → H/β∗C ,

ψ(β∗H(h), β∗C(c)) = β∗C(x), for all x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy.

We denote ψ(β∗H(h), β∗C(c)) = [β∗H (h)] [β∗C(c)].

4.7. Proposition. [5] Let (C, ?) and (P, ◦) be two hypergroups and let α : H × C →
H∗(C) be a productive action on C. Then, ψ is an action of the group H/β∗H on the

group H/β∗C .

4.8. Theorem. [5] Let X = (C,H, ∂, α) be a crossed hypergroup such that the action of

H on C is productive. Then, Xβ∗ = (C/β∗C , H/β
∗
H ,D, ψ) is a crossed module.

4.9. Corollary. Let X = (C,H, ∂, α) be a crossed module of hypergroups such that

the action of H on C is productive and ι : Q → H be a strong homomorphism of

hypergroups. Then, (ι∗)• =
(
(ι∗)•(C/β∗C), Q/β∗Q,D

•, ψ∗
)
is the pullback of Xβ∗ =

(C/β∗C , H/β
∗
H ,D, ψ) by ι∗, where

ι∗ : Q/β∗Q → H/β∗H , ι∗Q(β∗(q)) = β∗P (ι(q)),

(ι∗)•(C/β∗C) = {(β∗Q(q), β∗C(c)) | ι∗(β∗(q)) = D(β∗C(c))},

D•(β∗Q(q), β∗C(c)) = β∗Q(q).

Now, we conclude the following theorem.

4.10. Theorem. (ι∗)• =
(
(ι∗)•(C/β∗C), Q/β∗Q,D

•, ψ∗
)
is a crossed module.

Proof. For the �rst axiom of crossed module, we have

D•
(

[β∗Q(q)][(β∗Q(q), β∗C(c))]
)

= D•
(
β∗Q(q′)� β∗Q(q)� β∗Q(q′)−1, [ι∗(β∗Q(q))][β∗C(c)]

)
= β∗Q(q′)� β∗Q(q)� β∗Q(q′)−1

= β∗Q(q′)�D•
(
β∗Q(q), β∗C(c)

)
� β∗Q(q′)−1.
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For the second axiom of crossed module, we have(
β∗Q(q′), β∗C(c′)

)−1

~
(
β∗Q(q), β∗C(c)

)
~
(
β∗Q(q′), β∗C(c′)

)
=
(
β∗Q(q′)−1, β∗C(c′)−1

)
~
(
β∗Q(q), β∗C(c)

)
~
(
β∗Q(q′), β∗C(c′)

)
=
(
β∗Q(q′)−1 � β∗Q(q)� β∗Q(q′), β∗C(c′)−1 ⊗ β∗C(c)⊗ β∗C(c′)

)
=
(

[β∗Q(q′)][β∗Q(q)], [Dβ∗C(c′)][β∗C(c)]
)

= [β∗Q(q′)][β∗Q(q), β∗C(c)]

=

[
D•
(
β∗Q(q),β∗C(c)

)] [(
β∗Q(q), β∗C(c)

)]
�

5. Pushouts of crossed module of hypergroups

Let X = (C,H, ∂, α) be a crossed module of hypergroups and let (K, ·) be a hyper-
group. Note that K/β∗K is a group, and so we can consider it as a hypergroup too. We
denote the multiplication in K/β∗K by �.

5.1. De�nition. Let γ : H → K be a strong homomorphism of hypergroups. Consider
the hypergroup ι•(C) generated by C ×K with relations

(1) (c1, k) ∗ (c2, k) = {(c, k) | β∗C(c) = β∗C(c1)⊗ β∗C(c2)},
(2) ( hc, k) = (c, k · γ(h)), that is,

{(c′, k) | c′ ∈ hc} = {(c, k′) | k′ ∈ k · γ(h)},

(3) (c1, k1) ∗ (c2, k2) ⊆ {(c2, k′) | β∗K(k′) = β∗K(k1) � β∗K(γ∂(c1)) � β∗K(k1))−1 �
β∗K(k2))} ∗ (c1, k1),

for all k, k1, k2 ∈ K, c, c1, c2 ∈ C and h ∈ H.
De�ne a homomorphism ∂• : ι•(C)→ K/β∗K by extending

∂•(c, k) = β∗K(k)� β∗K(γ∂(c))� β∗K(k)−1

to the whole of ι•(C) and de�ne a K/β∗K-hypergroup action on the left of ι•(C) by
β∗K(k)(c, k1) = {(c, k′) | β∗K(k′) = β∗K(k) � β∗K(k1)}, for k, k1 ∈ K, c ∈ C and a strong
homomorphism ψ : C → ι•(C) by ψ(c) = (c, e0), where e0 is a �x element of ωK .

5.2. Lemma. The following diagram is commutative, i.e., ∂•ψ = φKγ∂.

C

∂

��

ψ // ι•(C)

∂•

��
H

φKγ
// K/β∗K

where φK : K → K/β∗K is the canonical projection.



247

Proof. We have

∂•ψ(c) = ∂•(c, e0)
= β∗K(e0)� β∗K(γ∂(c))� β∗K(e0)−1

= ωK � β∗K(γ∂(c))� ωK
= β∗K(γ∂(c))
= φK(γ∂(c))
= φKγ∂(c).

This completes the proof. �

5.3. Proposition. With the notation above ∂• : ι•(C) → K/β∗K is a crossed module of

hypergroups

Proof. We check the axioms of crossed module of hypergroups as follows.
(1) We have

∂•
(
β∗K(k)(c, k1)

)
� β∗K(k)

= ∂•({(c, k′) | β∗K(k′) = β∗K(k)� β∗K(k1)})� β∗K(k)
= {∂•(c, k′) | β∗K(k′) = β∗K(k)� β∗K(k1)})� β∗K(k)

= {β∗K(k′)� β∗K((γ∂(c)))� β∗K(k′)−1 | β∗K(k′) = β∗K(k)� β∗K(k1)})� β∗K(k)

= β∗K(k)� β∗K(k1)� β∗K((γ∂(c)))� (β∗K(k)� β∗K(k1))−1 � β∗K(k)

= β∗K(k)� β∗K(k1)� β∗K((γ∂(c)))� (β∗K(k1)−1 � β∗K(k)−1 � β∗K(k)

= β∗K(k)� β∗K(k1)� β∗K((γ∂(c)))� (β∗K(k1)−1 � ωK

= β∗K(k)� β∗K(k1)� β∗K((γ∂(c)))� (β∗K(k1)−1

= β∗K(k)� ∂• ((c, k1)) .

(2) We have

∂•(c,k)(c1, k1) ∗ (c, k)

= β∗K(k)�(γ∂(c))�β∗K(k)−1

(c1, k1) ∗ (c, k)
= {(c1, k′) | β∗K(k′) = β∗K(k)� β∗K(γ∂(c))� β∗K(k)−1 � β∗K(k1)} ∗ (c, k)

⊇ (c, k) ∗ (c1, k1).

This completes the proof. �

5.4. Proposition. Let (H, ◦), (C, ?) and (K, ·) be hypergroups. Let ∂ : C → H and

δ : K → H be two crossed modules of hypergroups and let (φ, Id) : (∂ : C → H) → (δ :
K → H) be a morphism of crossed modules of hypergroups. Then, the de�ning a K-

action on C by kc = δ(k)c we have φ : C → K is a crossed module of hypergroups.
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Proof. We can show two crossed modules of hypergroups as follows:

C
φ //

∂

��

K

δ

��
H

Id
// H

where ∂ = δφ and φ(hc) = hφ(c). We can verify the axioms of crossed module of hyper-
groups as follows:

(1) φ(kc) · k = φ(δ(k)c) · k = δ(k)(φ(c)) · k ⊇= k · φ(c).

(2) φ(c2)c1 ? c2 = δ(φ(c2))c1 ? c2 = δφ(c2)(c1) ? c2 = ∂(c2)c1 ? c2 ⊇ c2 ? c1.
�

5.5. Corollary. If we consider the pullback and pushout diagrams together, we get the

following commutative diagram.

ι•C

∂•

��

λ // C

∂

��

ψ // ι•C

∂•

��
Q

ι
// H

φKγ
// K/β∗K

5.6. Corollary. We have the following commutative diagram.

ι•C

∂•

��

ψλ // ι•C

∂•

��
Q

φKγι
// K/β∗K

Proof. We have

φKγι∂
•(q, c) = φKγι(q)

= φKγ∂(c) (since ι(q) = ∂(c))
= ∂•(h(q, c), e0)
= β∗K(γ∂(c)).

On the other hand, we have

∂•ψλ(q, c) = ∂•ψ(c)
= ∂•(c, e0) (where e0 ∈ ωK)
= β∗H(e0)� β∗H(γ∂(c))� β∗H(e0)−1

= ωK � β∗H(γ∂(c))� ωK
= β∗K(γ∂(c)).

Therefore, we obtain φKγι∂
• = ∂•ψλ. This completes the proof. �
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