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Abstract

In a Hilbert space H we consider the equation dx(t)/dt = (A+B(t))x(t) (t ≥ 0), where
A is a constant bounded operator, and B(t) is a piece-wise continuous function defined on
[0,∞) whose values are bounded operators in H . Conditions for the exponential stability
are derived in terms of the commutator AB(t)−B(t)A. Applications to integro-differential
equations are also discussed. Our results are new even in the finite dimensional case.

1. Introduction

Let H be a Hilbert space with a scalar product 〈., .〉, the norm ‖.‖ =
√
〈., .〉 and unit operator I. In addition, B(H ) denotes the

algebra of bounded linear operators in H . For an A ∈B(H ), A∗ is the adjoint operator, σ(A) is the spectrum of A, ℜA := (A+A∗)/2,
ℑA := (A−A∗)/2i, ‖A‖ denotes the operator norm of A.
We consider the equation

du(t)
dt

= (A+B(t))u(t) (t ≥ 0), (1.1)

where A is a constant bounded operator and B(t) : [0,∞)→B(H ) is a strongly piece-wise continuous function. A solution of (1.1) is a
function u(t), defined on [0,∞) with values in H , absolutely continuous in t and satisfying the given initial condition and (1.1) almost
everywhere on [0,∞). The existence of solutions follows from the a priory estimates proved below. We will say that equation (1.1) is
exponentially stable, if there are positive constants M and ε , such that any solution u(t) of (1.1) satisfies ‖u(t)‖ ≤Me−εt‖u(0)‖ (t ≥ 0).
Equation (1.1) can be considered as the equation

dx(t)
dt

=C(t)x(t), (1.2)

with a variable linear operator C(t). This identification which is a common device in the theory of concrete differential or integro-differential
equations when passing from a given equation to an abstract evolution equation turns out to be useful also here. Observe that C(t) in the
considered case has a special form: it is the sum of operators A and B(t). This fact allows us to use the information about the coefficients
more completely than the theory of differential equations (1.2) containing an arbitrary operator C(t).
The basic method for the stability analysis of (1.2) is the direct Lyapunov method, cf. [2]. By that method many very strong results are
obtained, but finding Lyapunov’s functions is often connected with serious mathematical difficulties.
For a selfadjoint operator S put Λ(S) = sup σ(S) and λ (S) = inf σ(S). So Λ(ℜC(s)) = sup σ(ℜC(s)) and λ (ℜC(s)) = inf σ(ℜC(s)). The
important tool of the stability analysis is the Wintner inequalities [7, Theorem III.4.7]:

exp[
∫ t

s
λ (ℜC(s1))ds1]≤

‖u(t)‖
‖u(s)‖

≤ exp[
∫ t

s
Λ(ℜC(s1))ds1] (t ≥ s≥ 0), (1.3)

for any solution x(t) of equation (1.2). If C(t) is not dissipative, i.e. if C(t)+C∗(t) is not negative definite for sufficiently large t, then the
just mentioned inequalities do not give us stability conditions even in the case of a constant operator. In addition, in [14] the stability test

Email addresses: gilmi@bezeqint.net (M. Gil’)



Fundamental Journal of Mathematics and Applications 7

for (1.2) has been derived for equations whose operator coefficients have ”small” derivatives. The approach in [14] is the extension of the
freezing method for ordinary differential equations. In this paper, we suggest a stability test via the commutator K(t) = AB(t)−B(t)A, which
in the appropriate situations improves the published results. To the best of our knowledge, our results are new even in finite dimensional case,
cf. [20].
As an illustrative example we consider a class of the so called Barbashin integro-differential equations, which play an essential role in
numerous applications, in particular, in kinetic theory [5], transport theory [18], continuous mechanics [1], radiation theory [4], the dynamics
of populations [21], etc.

2. The main result

Assume that

α(A) := supℜσ(A)< 0 (2.1)

and put

W := 2
∫

∞

0
eA∗teAtdt, ζ (A) := 2

∫
∞

0
‖eAt‖

∫ t

0
‖eAs‖‖eA(t−s)‖ds dt

and

ψ(W,B(t)) :=
{

Λ(ℜB(t))‖W‖ if Λ(ℜB(t))> 0,
Λ(ℜB(t))λ (W ) if Λ(ℜB(t))≤ 0.

Below we suggest estimates for ‖W‖ and λ (W ). Furthermore, let [A1,A2] = A1A2−A2A1 (the commutator of A1,A2 ∈ B(H )). So
K(t) = [A,B(t)].
Now we are in a position to formulate our main result.

Theorem 2.1. Let the conditions (2.1) and

sup
t≥0

(ψ(W,B(t))+‖K(t)‖ζ (A))< 1 (2.2)

hold. Then equation (1.1) is exponentially stable.

This theorem is proved in the next section. If

‖eAs‖ ≤ ce−νs (s≥ 0;c,ν = const > 0), (2.3)

then
〈Wv,v〉= 2

∫
∞

0
‖eAtv‖2dt ≤ 2c2

∫
∞

0
e−2νtdt‖v‖2 (v ∈H ).

Consequently,

‖W‖ ≤ c2

ν
and ζ (A)≤ 2c3

∫
∞

0
e−νt

∫ t

0
e−νse−ν(t−s)ds dt = 2c3

∫
∞

0
e−2νt tdt =

c3

2ν2 . (2.4)

Now let us estimate λ (W ). Due to the Wintner inequalities (1.3),

‖eAtv‖ ≥ eλ (ℜA)t‖v‖ (v ∈H ).

So in view of (2.1), λ (ℜA) is negative. Consequently,

〈Wv,v〉= 2
∫

∞

0
‖eAtv‖2dt ≥ 2

∫
∞

0
e2λ (ℜA)t‖v‖2dt ≥ ‖v‖2/|λ (ℜA)| (v ∈H ).

Thus

λ (W )≥ 1/|λ (ℜA)|. (2.5)

If A is a normal operator: AA∗ = A∗A, then ‖eAt‖= eα(A)t (t ≥ 0), and according to (2.4),

‖W‖ ≤ 1
|α(A)|

,ζ (A) =
1

2|α(A)|2
and, in addition, λ (ℜA) = β (A),

where β (A) := inf ℜσ(A). Consequently, ψ(W,B(t)) = ψ0(A,B(t)), where

ψ0(A,B(t)) =


Λ(ℜB(t))
|α(A)| if Λ(ℜB(t))> 0,

Λ(ℜB(t))
|β (A)| if Λ(ℜB(t))≤ 0.

So we arrive at

Corollary 2.2. Let A be a normal operator, and the conditions (2.1) and

sup
t≥0

(
ψ0(A,B(t))+

‖K(t)‖
2|α(A)|2

)
< 1 (2.6)

hold. Then equation (1.1) is exponentially stable.
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Theorem 2.1 is sharp in the following sense: if B(t) = 0, then ψ(A,B(t)) = ‖K(t)‖= 0, and (2.2) obviously holds. But condition (2.1) is
necessary in this case.
Traditionally (1.1) is considered as a perturbation of the equation du/dt = Au with stable A. Besides, it is supposed that∫

∞

0
‖esA‖ds sup

t
‖B(t)‖< 1, (2.7)

e.g. [2, 14] and references therein. We do not assume this condition. For example, if A and B(t) commute, then takes the form

sup
t≥0

ψ0(A,B(t))< 1

which is sharper than (2.7).
Moreover, in the contrary to the Wintner inequalities, we do not require the dissipativity of A+B(t).

3. Proof of theorem 2.1

Lemma 3.1. Let A,B be constant bounded operators and K = [A,B]. Then

[eAt ,B] =
∫ t

0
eAsKeA(t−s)ds (t ≥ 0). (3.1)

Proof: For the proof see [15].
Under condition (2.1), the Lyapunov equation

WA+A∗W =−2I (3.2)

has a unique solution W ∈B(H ) and it can be represented as in Section 2, cf. [7, Theorem I.5.1] (see also equation (4.12) from Chapter
I of [7]). For two selfadjoint operators S and S1 the inequality S < S1 (S ≤ S1) means (Sh,h)< (S1h,h) ((Sh,h)≤ (S1h,h)) (h ∈H ). In
particular, the inequality S < 0 (S > 0) means that S is strongly negative (strongly positive) definite.

Lemma 3.2. If condition (2.1) holds, then

ℜ(WB(t)) =
1
2
(WB(t)+(WB(t))∗)≤ (ψ(W,B(t))+‖K(t)‖ζ (A))I.

Proof. Making use of (2.1) we can write

ℜ(WB(t)) =
1
2
(WB(t)+B∗(t)W ) =

∫
∞

0
(eA∗t1 eAt1 B(t)+B∗(t)eA∗t1 eAt1)dt1.

But
eAt1 B(t) = B(t)eAt1 +[eAt1 ,B(t)],B∗(t)eA∗t1 = eA∗t1 B∗(t)+ [B∗(t),eA∗t1 ].

So ℜ(WB(t)) = J1 + J2, where

J1 =
∫

∞

0
eA∗t1(B(t)+B∗(t))eAt1 dt and J2 =

∫
∞

0
(eA∗t1 [eAt1 ,B(t)]+(eA∗t1 [eAt1 ,B(t)])∗)dt1.

We have
J1 ≤ 2Λ(ℜB(t))

∫
∞

0
eA∗t1 eAt1 dt1 = Λ(ℜB(t))W.

If Λ(ℜB(t))> 0, then J1 ≤ Λ(ℜB(t))‖W‖I. If Λ(ℜB(t))< 0, then J1 ≤ Λ(ℜB(t))λ (W )I. So J1 ≤ ψ(W,B(t))I.
In addition, by Lemma 3.1

‖J2‖ ≤ 2
∫

∞

0
‖eAt1‖‖[eAt1 ,B(t)]‖dt1 ≤ 2

∫
∞

0
‖eAt1‖‖K(t)‖

∫ t1

0
‖eAs‖‖eA(t1−s)‖ds dt1

= ‖K(t)‖ζ (A).

This proves the lemma. �

Proof of Theorem 2.1: Due to the Lyapunov equation and Lemma 3.2 we have,

ℜW (A+B(t))≤−(1−ψ(W,B(t))−‖K(t)‖ζ (A))I.

So (2.2) implies

ℜW (A+B(t))< sup
t
(−1+ψ(W,B(t))+‖K(t)‖ζ (A))I < 0. (3.3)

Applying the right-hand Wintner inequality (1.3) with the scalar product (., .)W defined by (h,g)W = 〈Wh,g〉 (h,g ∈H ), we can assert that
equation (1.1) is exponentially stable, as claimed. �
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4. Equations with finite dimensional operators

In this section H = Cn-the n-dimension complex Euclidean space, A and B(t) are n×n matrices. Put

g(A) = [N2
2 (A)−

n

∑
k=1
|λk(A)|2 ]1/2,

where λk(A) (k = 1, ...,n) are the eigenvalues of A, counted with their multiplicities; N2(A) = (trace AA∗)1/2 is the Frobenius (Hilbert-
Schmidt) norm of A. The following relations are checked in [12, Section 2.1]: g2(A)≤ N2

2 (A)−|trace A2|,

g(eiτ A+ zI) = g(A) (τ ∈ R,z ∈ C,) and g2(A)≤
N2

2 (A−A∗)
2

.

If A is a normal matrix, then g(A) = 0.
It is shown in [12, Example 2.7.3], that

‖eAt‖ ≤ eα(A)t
n−1

∑
k=0

tkgk(A)
(k!)3/2

(t ≥ 0).

So

‖W‖ ≤ 2
∫

∞

0
‖eAt‖2dt ≤ 2

∫
∞

0
e2α(A)t

(
n−1

∑
k=0

tkgk(A)
(k!)3/2

)2

dt = χn(A),

where

χn(A) =
n−1

∑
j,k=0

g j+k(A)(k+ j)!
2 j+k|α(A)| j+k+1( j! k!)3/2

.

Put

pn(A, t) =
n−1

∑
k=0

tkgk(A)
(k!)3/2

(t ≥ 0).

Then ‖eAt‖ ≤ eα(A)t pn(A, t) and ζ (A)≤ ζn(A), where

ζn(A) := 2
∫

∞

0
e2α(A)t pn(A, t)

∫ t

0
pn(A, t− s)p(A,s)ds dt.

Moreover, according to (2.5), ψ(W,B(t))≤ ψ̂n(A,B(t)), where

ψ̂n(A,B(t)) :=

{
χn(A)Λ(ℜB(t)) if Λ(ℜB(t))> 0,
Λ(ℜB(t))
|λ (ℜA)| if Λ(ℜB(t))≤ 0.

Now Theorem 2.1 and (2.5) imply

Corollary 4.1. Let H = Cn, A be a Hurwitzian matrix (i.e. condition (2.1) holds), and

sup
t≥0

(ψ̂n(A,B(t))+‖K(t)‖ζn(A))< 1.

Then (1.1) is exponentially stable.

5. Equations with infinite dimensional operators

In this section we consider equation (1.1) in the infinite dimensional space assuming that

ℑA is a Hilbert-Schmidt operator. (5.1)

i.e. N2(ℑA) = (trace (ℑA)2)1/2 < ∞. Put

û(A) = [2N2
2 (ℑA)−2

∞

∑
k=1
|ℑλ̂k(A)|2 ]1/2,

where λ̂k(A),k = 1,2, ..., are nonreal eigenvalues of A, enumerated with their multiplicities in the decreasing order of the absolute values of
their imaginary parts. Recall the classical Weyl inequality

N2
2 (ℑA)≥

∞

∑
k=1
|ℑλ̂k(A)|2,

cf. [12, p. 98]. So û(A)≤
√

2N2(ℑA). If A is a normal operator, then û(A) = 0, cf. [12, Section 7.7]. As is shown in [12, Example 7.10.3],

‖eAt‖ ≤ eα(A)t
∞

∑
k=0

tkûk(A)
(k!)3/2

(t ≥ 0),

So

‖W‖ ≤ 2
∫

∞

0
‖eAt‖2dt ≤ 2

∫
∞

0
eα(A)t

(
∞

∑
k=0

tkûk(A)
(k!)3/2

)2

dt = χ̃(A),
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where

χ̃(A) =
∞

∑
j,k=0

û j+k(A)(k+ j)!
2 j+k|α(A)| j+k+1( j! k!)3/2

.

Put

p̃(A, t) =
∞

∑
k=0

tkûk(A)
(k!)3/2

(t ≥ 0).

Then ‖eAt‖ ≤ eα(A)t p̂(A, t) and

ζ (A)≤ ζ̃ (A) := 2
∫

∞

0
e2α(A)t p̃(t,A)

∫ t

0
p̃(t− s,A)p̃(s,A)ds dt.

Moreover, ψ(W,B(t))≤ ψ̃(A,B(t)), where

ψ̃(A,B(t)) :=

{
χ̃(A)Λ(ℜB(t)) if Λ(ℜB(t))> 0,
Λ(ℜB(t))
|λ (ℜA)| if Λ(ℜB(t))≤ 0.

Now Theorem 2.1 and (2.5) imply

Corollary 5.1. If the conditions (2.1), (5.1) and

sup
t≥0

(
ψ̃(A,B(t))+‖K(t)‖ζ̃ (A)

)
< 1,

hold, then (1.1) is exponentially stable.

6. Example

Put Ω = [0,1]× [0,1]. In this section H = L2(Ω) is the Hilbert spaces of complex square integrable functions defined on Ω with the
traditional scalar product and norm.
Consider the equation

∂u(t,x,y)
∂ t

= c(x)u(t,x,y)+
∫ 1

0
k1(x,s)u(t,s,y)ds+

∫ 1

0
k2(t,y,s)u(t,x,s)ds (6.1)

(0≤ x,y≤ 1; t ≥ 0),

where c(·) : [0,1]→ R is piece-wise continuous, k1(·, ·) : [0,1]2 → C, k2(·, ·, ·) : [0,∞)× [0,1]2 → C, are given functions satisfying the
conditions pointed below. Equation of the type (6.1) is the Barbashin type integro-differential equation or simply the Barbashin equation, [2].
The stability of (6.1) can also be investigated by perturbations of the simple equation

∂u(t,x,y)
∂ t

= c(x)u(t,x,y),

cf. [2, Section 2.5], but this approach gives rather rough results if the norm of k1 and k2 are large enough.
Define the operators A and B(t) by

(Aw)(x,y) = c(x)w(x,y)+
∫ 1

0
k1(x,s)w(s,y)ds

and

(B(t)w)(x,y) =
∫ 1

0
k2(t,x,s)w(x,s)ds (x,y ∈ [0,1]; w ∈ L2(Ω)),

respectively. Under consideration we have [A,B(t)] = 0 for all t ≥ 0. Moreover, assume that

N2(A−A∗) =
(∫ 1

0

∫ 1

0
|k1(x,s)− k1(s,x))|2 ds dx

)1/2
< ∞

and k2 provides the boundedness of B(t). Various estimates for α(A) under considerations can be found in [13]. In particular, if k1(x,s) = 0
for x≤ s, then α(A) = supx c(x). Furthermore, it is not hard to check that

Λ(ℜB(t)) =
1
2

sup
v∈L2(0,1)

∫ 1

0

∫ 1

0
(k2(t,y,s)+ k2(t,s,y))v(s) v(y) ds dy

and

λ (ℜA) =
1
2

inf
v∈L2(0,1)

∫ 1

0

∫ 1

0
(k1(x,s)+ k1(s,x))v(s) v(x) ds dx.

Now we can directly apply Corollary 5.1.
Note that the theory of of various classes of integro-differential equations is rather rich, cf. [3, 6], [8]-[11], [16, 17, 19, 22, 23] and references
therein, but the stability conditions in terms of the commutators have not been derived.
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