Stability conditions for non-autonomous linear differential equations in a Hilbert space via commutators

Michael Gil ${ }^{9{ }^{\text {* }}}$
${ }^{\text {a }}$ Department of Mathematics Ben Gurion University of the Negev P.0. Box 653, Beer-Sheva 84105, Israel
*Corresponding author E-mail: gilmi@bezeqint.net

Article Info
Keywords: Hilbert space, Differential equation, Stability, Integro-differential equation, Barbashin type equation
2010 AMS: 34G10, 34H15
Received: 28 March 2018
Accepted: 15 May 2018
Available online: 30 June 2018

Abstract

In a Hilbert space \mathscr{H} we consider the equation $d x(t) / d t=(A+B(t)) x(t)(t \geq 0)$, where A is a constant bounded operator, and $B(t)$ is a piece-wise continuous function defined on $[0, \infty)$ whose values are bounded operators in \mathscr{H}. Conditions for the exponential stability are derived in terms of the commutator $A B(t)-B(t) A$. Applications to integro-differential equations are also discussed. Our results are new even in the finite dimensional case.

1. Introduction

Let \mathscr{H} be a Hilbert space with a scalar product $\langle.,$.$\rangle , the norm \|\|=.\sqrt{\langle., .\rangle}$ and unit operator I. In addition, $\mathscr{B}(\mathscr{H})$ denotes the algebra of bounded linear operators in \mathscr{H}. For an $A \in \mathscr{B}(\mathscr{H}), A^{*}$ is the adjoint operator, $\sigma(A)$ is the spectrum of $A, \mathfrak{R} A:=\left(A+A^{*}\right) / 2$, $\mathfrak{J} A:=\left(A-A^{*}\right) / 2 i,\|A\|$ denotes the operator norm of A.
We consider the equation

$$
\begin{equation*}
\frac{d u(t)}{d t}=(A+B(t)) u(t) \quad(t \geq 0) \tag{1.1}
\end{equation*}
$$

where A is a constant bounded operator and $B(t):[0, \infty) \rightarrow \mathscr{B}(\mathscr{H})$ is a strongly piece-wise continuous function. A solution of (1.1) is a function $u(t)$, defined on $[0, \infty)$ with values in \mathscr{H}, absolutely continuous in t and satisfying the given initial condition and (1.1) almost everywhere on $[0, \infty)$. The existence of solutions follows from the a priory estimates proved below. We will say that equation (1.1) is exponentially stable, if there are positive constants M and ε, such that any solution $u(t)$ of (1.1) satisfies $\|u(t)\| \leq M e^{-\varepsilon t}\|u(0)\|(t \geq 0)$. Equation (1.1) can be considered as the equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=C(t) x(t) \tag{1.2}
\end{equation*}
$$

with a variable linear operator $C(t)$. This identification which is a common device in the theory of concrete differential or integro-differential equations when passing from a given equation to an abstract evolution equation turns out to be useful also here. Observe that $C(t)$ in the considered case has a special form: it is the sum of operators A and $B(t)$. This fact allows us to use the information about the coefficients more completely than the theory of differential equations (1.2) containing an arbitrary operator $C(t)$.
The basic method for the stability analysis of (1.2) is the direct Lyapunov method, cf. [2]. By that method many very strong results are obtained, but finding Lyapunov's functions is often connected with serious mathematical difficulties.
For a selfadjoint operator S put $\Lambda(S)=\sup \sigma(S)$ and $\lambda(S)=\inf \sigma(S)$. So $\Lambda(\Re C(s))=\sup \sigma(\Re C(s))$ and $\lambda(\Re C(s))=\inf \sigma(\Re C(s))$. The important tool of the stability analysis is the Wintner inequalities [7, Theorem III.4.7]:

$$
\begin{equation*}
\exp \left[\int_{s}^{t} \lambda\left(\Re C\left(s_{1}\right)\right) d s_{1}\right] \leq \frac{\|u(t)\|}{\|u(s)\|} \leq \exp \left[\int_{s}^{t} \Lambda\left(\Re C\left(s_{1}\right)\right) d s_{1}\right](t \geq s \geq 0) \tag{1.3}
\end{equation*}
$$

for any solution $x(t)$ of equation (1.2). If $C(t)$ is not dissipative, i.e. if $C(t)+C^{*}(t)$ is not negative definite for sufficiently large t, then the just mentioned inequalities do not give us stability conditions even in the case of a constant operator. In addition, in [14] the stability test
for (1.2) has been derived for equations whose operator coefficients have "small" derivatives. The approach in [14] is the extension of the freezing method for ordinary differential equations. In this paper, we suggest a stability test via the commutator $K(t)=A B(t)-B(t) A$, which in the appropriate situations improves the published results. To the best of our knowledge, our results are new even in finite dimensional case, cf. [20].
As an illustrative example we consider a class of the so called Barbashin integro-differential equations, which play an essential role in numerous applications, in particular, in kinetic theory [5], transport theory [18], continuous mechanics [1], radiation theory [4], the dynamics of populations [21], etc.

2. The main result

Assume that

$$
\begin{equation*}
\alpha(A):=\sup \Re \sigma(A)<0 \tag{2.1}
\end{equation*}
$$

and put

$$
W:=2 \int_{0}^{\infty} e^{A^{*} t} e^{A t} d t, \zeta(A):=2 \int_{0}^{\infty}\left\|e^{A t}\right\| \int_{0}^{t}\left\|e^{A s}\right\|\left\|e^{A(t-s)}\right\| d s d t
$$

and

$$
\psi(W, B(t)):= \begin{cases}\Lambda(\Re B(t))\|W\| & \text { if } \Lambda(\Re B(t))>0 \\ \Lambda(\Re B(t)) \lambda(W) & \text { if } \Lambda(\Re B(t)) \leq 0\end{cases}
$$

Below we suggest estimates for $\|W\|$ and $\lambda(W)$. Furthermore, let $\left[A_{1}, A_{2}\right]=A_{1} A_{2}-A_{2} A_{1}$ (the commutator of $A_{1}, A_{2} \in \mathscr{B}(\mathscr{H})$). So $K(t)=[A, B(t)]$.
Now we are in a position to formulate our main result.
Theorem 2.1. Let the conditions (2.1) and

$$
\begin{equation*}
\sup _{t \geq 0}(\psi(W, B(t))+\|K(t)\| \zeta(A))<1 \tag{2.2}
\end{equation*}
$$

hold. Then equation (1.1) is exponentially stable.
This theorem is proved in the next section. If

$$
\begin{equation*}
\left\|e^{A s}\right\| \leq c e^{-v s}(s \geq 0 ; c, v=\text { const }>0) \tag{2.3}
\end{equation*}
$$

then

$$
\langle W v, v\rangle=2 \int_{0}^{\infty}\left\|e^{A t} v\right\|^{2} d t \leq 2 c^{2} \int_{0}^{\infty} e^{-2 v t} d t\|v\|^{2} \quad(v \in \mathscr{H})
$$

Consequently,

$$
\begin{equation*}
\|W\| \leq \frac{c^{2}}{v} \text { and } \zeta(A) \leq 2 c^{3} \int_{0}^{\infty} e^{-v t} \int_{0}^{t} e^{-v s} e^{-v(t-s)} d s d t=2 c^{3} \int_{0}^{\infty} e^{-2 v t} t d t=\frac{c^{3}}{2 v^{2}} \tag{2.4}
\end{equation*}
$$

Now let us estimate $\lambda(W)$. Due to the Wintner inequalities (1.3),

$$
\left\|e^{A t} v\right\| \geq e^{\lambda(\Re A) t}\|v\| \quad(v \in \mathscr{H})
$$

So in view of (2.1), $\lambda(\Re A)$ is negative. Consequently,

$$
\langle W v, v\rangle=2 \int_{0}^{\infty}\left\|e^{A t} v\right\|^{2} d t \geq 2 \int_{0}^{\infty} e^{2 \lambda(\Re A) t}\|v\|^{2} d t \geq\|v\|^{2} /|\lambda(\Re A)|(v \in \mathscr{H})
$$

Thus

$$
\begin{equation*}
\lambda(W) \geq 1 /|\lambda(\Re A)| \tag{2.5}
\end{equation*}
$$

If A is a normal operator: $A A^{*}=A^{*} A$, then $\left\|e^{A t}\right\|=e^{\alpha(A) t} \quad(t \geq 0)$, and according to (2.4),

$$
\|W\| \leq \frac{1}{|\alpha(A)|}, \zeta(A)=\frac{1}{2|\alpha(A)|^{2}} \text { and, in addition, } \lambda(\Re A)=\beta(A)
$$

where $\beta(A):=\inf \Re \sigma(A)$. Consequently, $\psi(W, B(t))=\psi_{0}(A, B(t))$, where

$$
\psi_{0}(A, B(t))= \begin{cases}\frac{\Lambda(\Re B(t))}{|\alpha(A)|} & \text { if } \Lambda(\Re B(t))>0 \\ \frac{\Lambda(\mathfrak{R} B(t))}{|\beta(A)|} & \text { if } \Lambda(\Re B(t)) \leq 0\end{cases}
$$

So we arrive at
Corollary 2.2. Let A be a normal operator, and the conditions (2.1) and

$$
\begin{equation*}
\sup _{t \geq 0}\left(\psi_{0}(A, B(t))+\frac{\|K(t)\|}{2|\alpha(A)|^{2}}\right)<1 \tag{2.6}
\end{equation*}
$$

hold. Then equation (1.1) is exponentially stable.

Theorem 2.1 is sharp in the following sense: if $B(t)=0$, then $\psi(A, B(t))=\|K(t)\|=0$, and (2.2) obviously holds. But condition (2.1) is necessary in this case.
Traditionally (1.1) is considered as a perturbation of the equation $d u / d t=A u$ with stable A. Besides, it is supposed that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|e^{s A}\right\| d s \sup _{t}\|B(t)\|<1 \tag{2.7}
\end{equation*}
$$

e.g. $[2,14]$ and references therein. We do not assume this condition. For example, if A and $B(t)$ commute, then takes the form

$$
\sup _{t \geq 0} \psi_{0}(A, B(t))<1
$$

which is sharper than (2.7).
Moreover, in the contrary to the Wintner inequalities, we do not require the dissipativity of $A+B(t)$.

3. Proof of theorem 2.1

Lemma 3.1. Let A, B be constant bounded operators and $K=[A, B]$. Then

$$
\begin{equation*}
\left[e^{A t}, B\right]=\int_{0}^{t} e^{A s} K e^{A(t-s)} d s(t \geq 0) \tag{3.1}
\end{equation*}
$$

Proof: For the proof see [15].
Under condition (2.1), the Lyapunov equation

$$
\begin{equation*}
W A+A^{*} W=-2 I \tag{3.2}
\end{equation*}
$$

has a unique solution $W \in \mathscr{B}(\mathscr{H})$ and it can be represented as in Section 2, cf. [7, Theorem I.5.1] (see also equation (4.12) from Chapter I of [7]). For two selfadjoint operators S and S_{1} the inequality $S<S_{1}\left(S \leq S_{1}\right)$ means $(S h, h)<\left(S_{1} h, h\right)\left((S h, h) \leq\left(S_{1} h, h\right)\right)(h \in \mathscr{H})$. In particular, the inequality $S<0(S>0)$ means that S is strongly negative (strongly positive) definite.
Lemma 3.2. If condition (2.1) holds, then

$$
\mathfrak{R}(W B(t))=\frac{1}{2}\left(W B(t)+(W B(t))^{*}\right) \leq(\psi(W, B(t))+\|K(t)\| \zeta(A)) I .
$$

Proof. Making use of (2.1) we can write

$$
\Re(W B(t))=\frac{1}{2}\left(W B(t)+B^{*}(t) W\right)=\int_{0}^{\infty}\left(e^{A^{*} t_{1}} e^{A t_{1}} B(t)+B^{*}(t) e^{A^{*} t_{1}} e^{A t_{1}}\right) d t_{1} .
$$

But

$$
e^{A t_{1}} B(t)=B(t) e^{A t_{1}}+\left[e^{A t_{1}}, B(t)\right], B^{*}(t) e^{A^{*} t_{1}}=e^{A^{*} t_{1}} B^{*}(t)+\left[B^{*}(t), e^{A^{*} t_{1}}\right] .
$$

So $\mathfrak{R}(W B(t))=J_{1}+J_{2}$, where

$$
J_{1}=\int_{0}^{\infty} e^{A^{*} t_{1}}\left(B(t)+B^{*}(t)\right) e^{A t_{1}} d t \text { and } J_{2}=\int_{0}^{\infty}\left(e^{A^{*} t_{1}}\left[e^{A t_{1}}, B(t)\right]+\left(e^{A^{*} t_{1}}\left[e^{A t_{1}}, B(t)\right]\right)^{*}\right) d t_{1}
$$

We have

$$
J_{1} \leq 2 \Lambda(\Re B(t)) \int_{0}^{\infty} e^{A^{*} t_{1}} e^{A t_{1}} d t_{1}=\Lambda(\Re B(t)) W
$$

If $\Lambda(\Re B(t))>0$, then $J_{1} \leq \Lambda(\Re B(t))\|W\| I$. If $\Lambda(\Re B(t))<0$, then $J_{1} \leq \Lambda(\Re B(t)) \lambda(W) I$. So $J_{1} \leq \psi(W, B(t)) I$.
In addition, by Lemma 3.1

$$
\begin{aligned}
\left\|J_{2}\right\| \leq 2 \int_{0}^{\infty}\left\|e^{A t_{1}}\right\|\left\|\left[e^{A t_{1}}, B(t)\right]\right\| d t_{1} & \leq 2 \int_{0}^{\infty}\left\|e^{A t_{1}}\right\|\|K(t)\| \int_{0}^{t_{1}}\left\|e^{A s}\right\|\left\|e^{A\left(t_{1}-s\right)}\right\| d s d t_{1} \\
= & \|K(t)\| \zeta(A)
\end{aligned}
$$

This proves the lemma.
Proof of Theorem 2.1: Due to the Lyapunov equation and Lemma 3.2 we have,

$$
\mathfrak{K} W(A+B(t)) \leq-(1-\psi(W, B(t))-\|K(t)\| \zeta(A)) I .
$$

So (2.2) implies

$$
\begin{equation*}
\Re W(A+B(t))<\sup _{t}(-1+\psi(W, B(t))+\|K(t)\| \zeta(A)) I<0 . \tag{3.3}
\end{equation*}
$$

Applying the right-hand Wintner inequality (1.3) with the scalar product $(., .)_{W}$ defined by $(h, g)_{W}=\langle W h, g\rangle(h, g \in \mathscr{H})$, we can assert that equation (1.1) is exponentially stable, as claimed.

4. Equations with finite dimensional operators

In this section $\mathscr{H}=\mathbb{C}^{n}$-the n-dimension complex Euclidean space, A and $B(t)$ are $n \times n$ matrices. Put

$$
g(A)=\left[N_{2}^{2}(A)-\sum_{k=1}^{n}\left|\lambda_{k}(A)\right|^{2}\right]^{1 / 2}
$$

where $\lambda_{k}(A)(k=1, \ldots, n)$ are the eigenvalues of A, counted with their multiplicities; $N_{2}(A)=\left(\text { trace } A A^{*}\right)^{1 / 2}$ is the Frobenius (HilbertSchmidt) norm of A. The following relations are checked in [12, Section 2.1]: $g^{2}(A) \leq N_{2}^{2}(A)-\mid$ trace $A^{2} \mid$,

$$
g\left(e^{i \tau} A+z I\right)=g(A)(\tau \in \mathbb{R}, z \in \mathbb{C},) \text { and } g^{2}(A) \leq \frac{N_{2}^{2}\left(A-A^{*}\right)}{2}
$$

If A is a normal matrix, then $g(A)=0$.
It is shown in [12, Example 2.7.3], that

$$
\left\|e^{A t}\right\| \leq e^{\alpha(A) t} \sum_{k=0}^{n-1} \frac{t^{k} g^{k}(A)}{(k!)^{3 / 2}} \quad(t \geq 0)
$$

So

$$
\|W\| \leq 2 \int_{0}^{\infty}\left\|e^{A t}\right\|^{2} d t \leq 2 \int_{0}^{\infty} e^{2 \alpha(A) t}\left(\sum_{k=0}^{n-1} \frac{t^{k} g^{k}(A)}{(k!)^{3 / 2}}\right)^{2} d t=\chi_{n}(A)
$$

where

$$
\chi_{n}(A)=\sum_{j, k=0}^{n-1} \frac{g^{j+k}(A)(k+j)!}{2^{j+k}|\alpha(A)|^{j+k+1}(j!k!)^{3 / 2}}
$$

Put

$$
p_{n}(A, t)=\sum_{k=0}^{n-1} \frac{t^{k} g^{k}(A)}{(k!)^{3 / 2}} \quad(t \geq 0)
$$

Then $\left\|e^{A t}\right\| \leq e^{\alpha(A) t} p_{n}(A, t)$ and $\zeta(A) \leq \zeta_{n}(A)$, where

$$
\zeta_{n}(A):=2 \int_{0}^{\infty} e^{2 \alpha(A) t} p_{n}(A, t) \int_{0}^{t} p_{n}(A, t-s) p(A, s) d s d t
$$

Moreover, according to (2.5), $\psi(W, B(t)) \leq \hat{\psi}_{n}(A, B(t))$, where

$$
\hat{\psi}_{n}(A, B(t)):= \begin{cases}\chi_{n}(A) \Lambda(\Re B(t)) & \text { if } \Lambda(\Re B(t))>0, \\ \frac{\Lambda(\Re B(t))}{|\lambda(\Re A)|} & \text { if } \Lambda(\Re B(t)) \leq 0 .\end{cases}
$$

Now Theorem 2.1 and (2.5) imply
Corollary 4.1. Let $\mathscr{H}=\mathbb{C}^{n}$, A be a Hurwitzian matrix (i.e. condition (2.1) holds), and

$$
\sup _{t \geq 0}\left(\hat{\Psi}_{n}(A, B(t))+\|K(t)\| \zeta_{n}(A)\right)<1
$$

Then (1.1) is exponentially stable.

5. Equations with infinite dimensional operators

In this section we consider equation (1.1) in the infinite dimensional space assuming that

$$
\begin{equation*}
\mathfrak{J} A \text { is a Hilbert-Schmidt operator. } \tag{5.1}
\end{equation*}
$$

i.e. $N_{2}(\mathfrak{J} A)=\left(\operatorname{trace}(\mathfrak{I} A)^{2}\right)^{1 / 2}<\infty$. Put

$$
\hat{u}(A)=\left[2 N_{2}^{2}(\Im A)-2 \sum_{k=1}^{\infty}\left|\mathfrak{J} \hat{\lambda}_{k}(A)\right|^{2}\right]^{1 / 2}
$$

where $\hat{\lambda}_{k}(A), k=1,2, \ldots$, are nonreal eigenvalues of A, enumerated with their multiplicities in the decreasing order of the absolute values of their imaginary parts. Recall the classical Weyl inequality

$$
N_{2}^{2}(\mathfrak{I} A) \geq \sum_{k=1}^{\infty}\left|\mathfrak{J} \hat{\lambda}_{k}(A)\right|^{2}
$$

cf. [12, p. 98]. So $\hat{u}(A) \leq \sqrt{2} N_{2}(\mathfrak{I} A)$. If A is a normal operator, then $\hat{u}(A)=0$, cf. [12, Section 7.7]. As is shown in [12, Example 7.10.3],

$$
\left\|e^{A t}\right\| \leq e^{\alpha(A) t} \sum_{k=0}^{\infty} \frac{t^{k} \hat{u}^{k}(A)}{(k!)^{3 / 2}} \quad(t \geq 0)
$$

So

$$
\|W\| \leq 2 \int_{0}^{\infty}\left\|e^{A t}\right\|^{2} d t \leq 2 \int_{0}^{\infty} e^{\alpha(A) t}\left(\sum_{k=0}^{\infty} \frac{t^{k} \hat{u}^{k}(A)}{(k!)^{3 / 2}}\right)^{2} d t=\tilde{\chi}(A)
$$

where

$$
\tilde{\chi}(A)=\sum_{j, k=0}^{\infty} \frac{\hat{u}^{j+k}(A)(k+j)!}{2^{j+k}|\alpha(A)|^{j+k+1}(j!k!)^{3 / 2}} .
$$

Put

$$
\tilde{p}(A, t)=\sum_{k=0}^{\infty} \frac{t^{k} \hat{u}^{k}(A)}{(k!)^{3 / 2}}(t \geq 0) .
$$

Then $\left\|e^{A t}\right\| \leq e^{\alpha(A) t} \hat{p}(A, t)$ and

$$
\zeta(A) \leq \tilde{\zeta}(A):=2 \int_{0}^{\infty} e^{2 \alpha(A) t} \tilde{p}(t, A) \int_{0}^{t} \tilde{p}(t-s, A) \tilde{p}(s, A) d s d t .
$$

Moreover, $\psi(W, B(t)) \leq \tilde{\psi}(A, B(t))$, where

$$
\tilde{\Psi}(A, B(t)):= \begin{cases}\tilde{\chi}(A) \Lambda(\Re B(t)) & \text { if } \Lambda(\Re B(t))>0, \\ \frac{\Lambda \Re B(t))}{|\lambda(\Re A)|} & \text { if } \Lambda(\Re B(t)) \leq 0 .\end{cases}
$$

Now Theorem 2.1 and (2.5) imply
Corollary 5.1. If the conditions (2.1), (5.1) and

$$
\sup _{t \geq 0}(\tilde{\psi}(A, B(t))+\|K(t)\| \tilde{\zeta}(A))<1
$$

hold, then (1.1) is exponentially stable.

6. Example

Put $\Omega=[0,1] \times[0,1]$. In this section $\mathscr{H}=L^{2}(\Omega)$ is the Hilbert spaces of complex square integrable functions defined on Ω with the traditional scalar product and norm.
Consider the equation

$$
\begin{gather*}
\frac{\partial u(t, x, y)}{\partial t}=c(x) u(t, x, y)+\int_{0}^{1} k_{1}(x, s) u(t, s, y) d s+\int_{0}^{1} k_{2}(t, y, s) u(t, x, s) d s \tag{6.1}\\
(0 \leq x, y \leq 1 ; t \geq 0)
\end{gather*}
$$

where $c(\cdot):[0,1] \rightarrow \mathbb{R}$ is piece-wise continuous, $k_{1}(\cdot, \cdot):[0,1]^{2} \rightarrow \mathbb{C}, k_{2}(\cdot, \cdot, \cdot):[0, \infty) \times[0,1]^{2} \rightarrow \mathbb{C}$, are given functions satisfying the conditions pointed below. Equation of the type (6.1) is the Barbashin type integro-differential equation or simply the Barbashin equation, [2]. The stability of (6.1) can also be investigated by perturbations of the simple equation

$$
\frac{\partial u(t, x, y)}{\partial t}=c(x) u(t, x, y)
$$

cf. [2, Section 2.5], but this approach gives rather rough results if the norm of k_{1} and k_{2} are large enough.
Define the operators A and $B(t)$ by

$$
(A w)(x, y)=c(x) w(x, y)+\int_{0}^{1} k_{1}(x, s) w(s, y) d s
$$

and

$$
(B(t) w)(x, y)=\int_{0}^{1} k_{2}(t, x, s) w(x, s) d s\left(x, y \in[0,1] ; w \in L^{2}(\Omega)\right),
$$

respectively. Under consideration we have $[A, B(t)]=0$ for all $t \geq 0$. Moreover, assume that

$$
\left.N_{2}\left(A-A^{*}\right)=\left.\left(\int_{0}^{1} \int_{0}^{1} \mid k_{1}(x, s)-\bar{k}_{1}(s, x)\right)\right|^{2} d s d x\right)^{1 / 2}<\infty
$$

and k_{2} provides the boundedness of $B(t)$. Various estimates for $\alpha(A)$ under considerations can be found in [13]. In particular, if $k_{1}(x, s)=0$ for $x \leq s$, then $\alpha(A)=\sup _{x} c(x)$. Furthermore, it is not hard to check that

$$
\Lambda(\Re B(t))=\frac{1}{2} \sup _{v \in L^{2}(0,1)} \int_{0}^{1} \int_{0}^{1}\left(k_{2}(t, y, s)+\bar{k}_{2}(t, s, y)\right) v(s) \bar{v}(y) d s d y
$$

and

$$
\lambda(\Re A)=\frac{1}{2} \inf _{v \in L^{2}(0,1)} \int_{0}^{1} \int_{0}^{1}\left(k_{1}(x, s)+\bar{k}_{1}(s, x)\right) v(s) \bar{v}(x) d s d x .
$$

Now we can directly apply Corollary 5.1.
Note that the theory of of various classes of integro-differential equations is rather rich, cf. [3, 6], [8]-[11], [16, 17, 19, 22, 23] and references therein, but the stability conditions in terms of the commutators have not been derived.

References

[1] V.M. Aleksandrov, and E.V. Kovalenko, Problems in Continuous Mechanics with Mixed Boundary Conditions, Nauka, Moscow 1986. In Russian.
[2] J. Appel, A. Kalitvin and P. Zabreiko, Partial Integral Operators and Integrodifferential Equations, Marcel Dekker, New York, 2000.
[3] J.A.D. Appleby and D.W. Reynolds, On the non-exponential convergence of asymptotically stable solutions of linear scalar Volterra integro-differential equations, Journal of Integral Equations and Applications, 14, no 2 (2002), 521-543.
[4] K. M. Case, P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading Mass. 1967.
[5] M.C. Cercignani, Mathematical Methods in Kinetic Theory, Macmillian, New York, 1969.
[6] Chuhu Jin and Jiaowan Luo, Stability of an integro-differential equation, Computers and Mathematics with Applications, 57 (2009) $1080-1088$.
[7] Yu L. Daleckii, and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R. I. 1974.
[8] A. Domoshnitsky and Ya. Goltser, An approach to study bifurcations and stability of integro-differential equations. Math. Comput. Modelling, 36 (2002), 663-678.
[9] A.D. Drozdov, Explicit stability conditions for integro-differential equations with periodic coefficients, Math. Methods Appl. Sci. 21 (1998), 565-588
[10] A.D. Drozdov and M. I. Gil', Stability of linear integro-differential equations with periodic coefficients. Quart. Appl. Math. 54 (1996), 609-624.
[11] N.T. Dung, On exponential stability of linear Levin-Nohel integro-differential equations, Journal of Mathematical Physics 56, 022702 (2015); doi: 10.1063/1.4906811
[12] M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.
[13] M.I. Gil', Spectrum and resolvent of a partial integral operator. Applicable Analysis, 87, no. 5, (2008) 555-566.
[14] M.I. Gil', On stability of linear Barbashin type integro-differential equations, Mathematical Problems in Engineering, 2015, Article ID 962565, (2015), 5 pages.
[15] M.I. Gil', A bound for the Hilbert-Schmidt norm of generalized commutators of nonself-adjoint operators, Operators and Matrices, 11, no. 1 (2017), 115-123
[16] Ya. Goltser and A. Domoshnitsky, Bifurcation and stability of integrodifferential equations, Nonlinear Anal. 47 (2001), 953-967
[17] Ya. Coltser and A. Domoshnitsky, About reducing integro-differential equations with infinite limits of integration to systems of ordinary differential equations. Advances in Difference Equations 2013:187, (2013) 17 pages.
[18] H.G. Kaper, C.G. Lekkerkerker, and J. Hejtmanek, Spectral Methods in Linear Transport Theory, Birkhauser, Basel, 1982.
[19] B. G. Pachpatte, On a parabolic integrodifferential equation of Barbashin type, Comment. Math.Univ. Carolin. 52, no. 3 (2011) 391-401
[20] W.J. Rugh, Linear System Theory. Prentice Hall, Upper Saddle River, New Jersey, 1996.
[21] H. R. Thieme, A differential-integral equation modelling the dynamics of populations with a rank structure, Lect. Notes Biomath. 68 (1986), 496-511
[22] J. Vanualailai and S. Nakagiri, Stability of a system of Volterra integro-differential equations J. Math. Anal. Appl. 281 (2003) 602-619
[23] B. Zhang, Construction of Liapunov functionals for linear Volterra integrodifferential equations and stability of delay systems, Electron. J. Qual. Theory Differ. Equ. 30 (2000) 1-17.

