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Abstract

The aim of this paper is to construct the new fundamental theorem of UP-algebras in
the meaning of the congruence determined by a UP-homomorphism. We also give an
application of the theorem to the first, second, and third UP-isomorphism theorems in
UP-algebras.

1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [7], BCI-algebras
[8], BCH-algebras [4], KU-algebras [15], SU-algebras [10], UP-algebras [6] and others. They are strongly connected with logic. For
example, BCI-algebras introduced by Iséki [8] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which
has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced
by Imai and Iséki [7, 8] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a
proper subclass of the class of BCI-algebras.
The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches such as: In 1998,
Jun, Hong, Xin and Roh [9] proved isomorphism theorems by using Chinese Remainder Theorem in BCI-algebras. In 2001, Park, Shim and
Roh [14] proved isomorphism theorems of IS-algebras. In 2004, Hao and Li [3] introduced the concept of ideals of an ideal in a BCI-algebra
and some isomorphism theorems are obtained by using this concept. They obtained several isomorphism theorems of BG-algebras and
related properties. In 2006, Kim [12] introduced the notion of KS-semigroups. He characterized ideals of a KS-semigroup and proved the
first isomorphism theorem for KS-semigroups. In 2007, Dar and Akram [2] introduced the notion of K-homomorphism of K-algebras. In
2008, Kim and Kim [11] introduced the notion of BG-algebras which is a generalization of B-algebras. They obtained several isomorphism
theorems of BG-algebras and related properties. In 2009, Paradero-Vilela and Cawi [13] characterized KS-semigroup homomorphisms and
proved the isomorphism theorems for KS-semigroups. In 2011, Keawrahun and Leerawat [10] introduced the notion of SU-semigroups
and proved the isomorphism theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of KK-algebras and studied
isomorphism theorems of KK-algebras. In 2015, Iampan [5] studied UP-isomorphism theorems of UP-algebras.
In this paper, we construct the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism.
We also give an application of the theorem to the first, second, and third UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1. [6] An algebra A = (A, ·,0) of type (2,0) is called a UP-algebra, where A is a nonempty set, · is a binary operation on A,
and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any x,y,z ∈ A,

(UP-1) (y · z) · ((x · y) · (x · z)) = 0,
(UP-2) 0 · x = x,
(UP-3) x ·0 = 0,
(UP-4) x · y = y · x = 0 implies x = y.
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Example 1.2. [6] Let X be a universal set. Define two binary operations · and ∗ on the power set of X by putting A ·B = B∩A′ and
A∗B = B∪A′ for all A,B ∈P(X). Then (P(X), ·, /0) and (P(X),∗,X) are UP-algebras and we shall call it the power UP-algebra of type
1 and the power UP-algebra of type 2, respectively.

Example 1.3. [6] Let A = {0,a,b,c} be a set with a binary operation · defined by the following Cayley table:

· 0 a b c
0 0 a b c
a 0 0 0 0
b 0 a 0 c
c 0 a b 0

(1.1)

Then (A, ·,0) is a UP-algebra.

In what follows, let A and B denote UP-algebras unless otherwise specified. The following proposition is very important for the study of
UP-algebras.

Proposition 1.4. [6] In a UP-algebra A, the following properties hold: for any x,y,z ∈ A,

(1) x · x = 0,
(2) x · y = 0 and y · z = 0 implies x · z = 0,
(3) x · y = 0 implies (z · x) · (z · y) = 0,
(4) x · y = 0 implies (y · z) · (x · z) = 0,
(5) x · (y · x) = 0,
(6) (y · x) · x = 0 if and only if x = y · x, and
(7) x · (y · y) = 0.

Definition 1.5. [6] Let A be a UP-algebra. A nonempty subset B of A is called a UP-ideal of A if it satisfies the following properties:

(1) the constant 0 of A is in B, and
(2) for any x,y,z ∈ A,x · (y · z) ∈ B and y ∈ B implies x · z ∈ B.

Definition 1.6. [6] Let A = (A, ·,0) be a UP-algebra. A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and
(S, ·,0) itself forms a UP-algebra.

Proposition 1.7. [6] A nonempty subset S of a UP-algebra A = (A, ·,0) is a UP-subalgebra of A if and only if S is closed under the ·
multiplication on A.

Definition 1.8. [6] Let A be a UP-algebra. An equivalence relation ρ on A is called a congruence if for any x,y,z ∈ A,

xρy implies x · zρy · z and z · xρz · y.

Lemma 1.9. [6] An equivalence relation ρ on A is a congruence if and only if for any x,y,u,v ∈ A, xρy and uρv imply x ·uρy · v.

Definition 1.10. [6] Let A be a UP-algebra and B a UP-ideal of A. Define the binary relation ∼B on A as follows: for all x,y ∈ A,

x∼B y if and only if x · y ∈ B and y · x ∈ B. (1.2)

Proposition 1.11. [6] Let A be a UP-algebra and B a UP-ideal of A with a binary relation ∼B defined by (1.2). Then ∼B is a congruence
on A.

Let A be a UP-algebra and ρ a congruence on A. If x ∈ A, then the ρ-class of x is the (x)ρ defined as follows:

(x)ρ = {y ∈ A | yρx}.

Then the set of all ρ-classes is called the quotient set of A by ρ , and is denoted by A/ρ . That is,

A/ρ = {(x)ρ | x ∈ A}.

Theorem 1.12. [6] Let A be a UP-algebra and B a UP-ideal of A. Then (A/ ∼B,∗,(0)∼B) is a UP-algebra under the ∗ multiplication
defined by (x)∼B ∗ (y)∼B = (x · y)∼B for all x,y ∈ A, called the quotient UP-algebra of A induced by the congruence ∼B.

Definition 1.13. [6] Let (A, ·,0) and (A′, ·′,0′) be UP-algebras. A mapping f from A to A′ is called a UP-homomorphism if

f (x · y) = f (x) ·′ f (y) for all x,y ∈ A.

A UP-homomorphism f : A→ A′ is called a

(1) UP-epimorphism if f is surjective,
(2) UP-monomorphism if f is injective,
(3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to A′, symbolically, A∼= A′, if there is a UP-isomorphism from

A to A′.
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Let f be a mapping from A to A′, and let B be a nonempty subset of A, and B′ of A′. The set { f (x) | x ∈ B} is called the image of B under f ,
denoted by f (B). In particular, f (A) is called the image of f , denoted by Im( f ). Dually, the set {x ∈ A | f (x) ∈ B′} is said the inverse image
of B′ under f , symbolically, f−1(B′). Especially, we say f−1({0′}) is the kernel of f , written by Ker( f ). That is,

Im( f ) = { f (x) ∈ A′ | x ∈ A}

and

Ker( f ) = {x ∈ A | f (x) = 0′}.

Theorem 1.14. [6] Let A be a UP-algebra and B a UP-ideal of A. Then the mapping πB : A→ A/ ∼B defined by πB(x) = (x)∼B for all
x ∈ A is a UP-epimorphism, called the natural projection from A to A/∼B.

On a UP-algebra A = (A, ·,0), we define a binary relation ≤ on A as follows: for all x,y ∈ A,

x≤ y if and only if x · y = 0. (1.3)

Proposition 1.15. [6] Let A be a UP-algebra with a binary relation ≤ defined by (1.3). Then (A,≤) is a partially ordered set with 0 as the
greatest element.

We often call the partial ordering ≤ defined by (1.3) the UP-ordering on A. From now on, the symbol ≤ will be used to denote the
UP-ordering, unless specified otherwise.

Theorem 1.16. [6] Let (A, ·,0A) and (B,∗,0B) be UP-algebras and let f : A→ B be a UP-homomorphism. Then the following statements
hold:

(1) f (0A) = 0B,
(2) for any x,y ∈ A, if x≤ y, then f (x)≤ f (y),
(3) if C is a UP-subalgebra of A, then the image f (C) is a UP-subalgebra of B. In particular, Im( f ) is a UP-subalgebra of B,
(4) if D is a UP-subalgebra of B, then the inverse image f−1(D) is a UP-subalgebra of A. In particular, Ker( f ) is a UP-subalgebra of A,
(5) if C is a UP-ideal of A such that Ker( f )⊆C, then the image f (C) is a UP-ideal of f (A),
(6) if D is a UP-ideal of B, then the inverse image f−1(D) is a UP-ideal of A. In particular, Ker( f ) is a UP-ideal of A, and
(7) Ker( f ) = {0A} if and only if f is injective.

2. Main results

In this section, we introduce the congruence determined by a UP-homomorphism and prove the new fundamental theorem of UP-algebras in
the meaning of the congruence determined by a UP-homomorphism. We also prove the first, second, and third UP-isomorphism theorems in
UP-algebras.

Definition 2.1. Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A→ B a UP-homomorphism. Define the binary relation ∼ f on A as
follows: for all x,y ∈ A,

x∼ f y if and only if f (x) = f (y). (2.1)

Theorem 2.2. Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A→ B a UP-homomorphism with a binary relation ∼ f on A defined by
(2.1). Then ∼ f is a congruence on A, called the congruence determined by f .

Proof. Reflexive: For all x ∈ A, we have f (x) = f (x). Thus x∼ f x.
Symmetric: Let x,y ∈ A be such that x∼ f y. Then f (x) = f (y), so f (y) = f (x). Thus y∼ f x.
Transitive: Let x,y,z be such that x∼ f y and y∼ f z. Then f (x) = f (y) and f (y) = f (z), so f (x) = f (z). Thus x∼ f z.
Therefore, ∼ f is an equivalence relation on A. Finally, let x,y,u,v ∈ A be such that x∼ f u and y∼ f v. Then f (x) = f (u) and f (y) = f (v).
Since f is a UP-homomorphism, we get

f (x · y) = f (x)• f (y) = f (u)• f (v) = f (u · v).

Thus x · y∼ f u · v. By Lemma 1.9, we have ∼ f is a congruence on A.

Theorem 2.3. Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A→ B a UP-homomorphism. Then (A/∼ f ,∗,(0A)∼ f ) is a UP-algebra
under the ∗ multiplication defined by (x)∼ f ∗ (y)∼ f = (x ·y)∼ f for all x,y ∈ A, called the quotient UP-algebra of A induced by the congruence
∼ f .

Proof. Let x,y,u,v ∈ A be such that (x)∼ f = (y)∼ f and (u)∼ f = (v)∼ f . Since ∼ f is an equivalence relation on A, we get x∼ f y and u∼ f v.
By Lemma 1.9, we have x ·u∼ f y · v. Hence, (x)∼ f ∗ (u)∼ f = (x ·u)∼ f = (y · v)∼ f = (y)∼ f ∗ (v)∼ f , showing ∗ is well defined.
(UP-1): Let x,y,z ∈ A. By (UP-1), we have ((y)∼ f ∗ (z)∼ f )∗ (((x)∼ f ∗ (y)∼ f )∗ ((x)∼ f ∗ (z)∼ f )) = ((y · z) · ((x · y) · (x · z)))∼ f = (0A)∼ f .
(UP-2): Let x ∈ A. By (UP-2), we have (0A)∼ f ∗ (x)∼ f = (0A · x)∼ f = (x)∼ f .
(UP-3): Let x ∈ A. By (UP-3), we have (x)∼ f ∗ (0A)∼ f = (x ·0A)∼ f = (0A)∼ f .
(UP-4): Let x,y ∈ A be such that (x)∼ f ∗ (y)∼ f = (y)∼ f ∗ (x)∼ f = (0A)∼ f . Then (x · y)∼ f = (y · x)∼ f = (0A)∼ f , it follows that f (x)• f (y) =
f (x · y) = f (0A) = f (y · x) = f (y)• f (x). By Theorem 1.16 (1), we have f (x)• f (y) = f (y)• f (x) = 0B. By (UP-4), we have f (x) = f (y).
Thus x∼ f y, so (x)∼ f = (y)∼ f .
Hence, (A/∼ f ,∗,(0A)∼ f ) is a UP-algebra.

Theorem 2.4. Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A→ B a UP-homomorphism. Then the mapping π f : A→ A/∼ f defined
by π f (x) = (x)∼ f for all x ∈ A is a UP-epimorphism, called the natural projection from A to A/∼ f .
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Proof. Let x,y ∈ A be such that x = y. Then (x)∼ f = (y)∼ f , so π f (x) = π f (y). Thus π f is well defined. Note that by the definition of π f , we
have π f is surjective. Let x,y ∈ A. Then

π f (x · y) = (x · y)∼ f = (x)∼ f ∗ (y)∼ f = π f (x)∗π f (y).

Thus π f is a UP-homomorphism. So we conclude that π f is a UP-epimorphism.

Theorem 2.5. (Fundamental Theorem of UP-homomorphisms) Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A → B a UP-
homomorphism. Then there exists uniquely a UP-homomorphism ϕ from A/∼ f to B such that f = ϕ ◦π f . Moreover,

(1) π f is a UP-epimorphism and ϕ a UP-monomorphism, and
(2) f is a UP-epimorphism if and only if ϕ is a UP-isomorphism.

As f makes the following diagram commute,

A
f //

π f

��

B

A/∼ f

ϕ

==

Proof. By Theorem 2.3, we have (A/∼ f ,∗,(0A)∼ f ) is a UP-algebra. Define a mapping ϕ : A/∼ f→ B by

ϕ((x)∼ f ) = f (x) for all (x)∼ f ∈ A/∼ f . (2.2)

Indeed, let (x)∼ f ,(y)∼ f ∈ A/∼ f be such that (x)∼ f = (y)∼ f . Then x∼ f y, so

ϕ((x)∼ f ) = f (x) = f (y) = ϕ((y)∼ f ).

For any x,y ∈ A, we see that

ϕ((x)∼ f ∗ (y)∼ f ) = ϕ((x · y)∼ f )

= f (x · y)
= f (x)• f (y)

= ϕ((x)∼ f )•ϕ((y)∼ f ).

Thus ϕ is a UP-homomorphism. Also, since

(ϕ ◦π f )(x) = ϕ(π f (x)) = ϕ((x)∼ f ) = f (x) for all x ∈ A,

we obtain f = ϕ ◦π f . We have shown the existence. Let ϕ ′ be a mapping from A/∼ f to B such that f = ϕ ′ ◦π f . Then for any (x)∼ f ∈ A/∼ f ,
we have

ϕ
′((x)∼ f ) = ϕ

′(π f (x))

= (ϕ ′ ◦π f )(x)

= f (x)

= (ϕ ◦π f )(x)

= ϕ(π f (x))

= ϕ((x)∼ f ).

Hence, ϕ = ϕ ′, showing the uniqueness.
(1) By Theorem 2.4, we have π f is a UP-epimorphism. Also, let (x)∼ f ,(y)∼ f ∈ A/∼ f be such that ϕ((x)∼ f ) = ϕ((y)∼ f ). Then f (x) = f (y),
so x∼ f y. Thus (x)∼ f = (y)∼ f . Therefore, ϕ a UP-monomorphism.
(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove ϕ is surjective. Let y ∈ B. Then there exists x ∈ A such that f (x) = y.
Thus y = f (x) = ϕ((x)∼ f ), so ϕ is surjective. Hence, ϕ is a UP-isomorphism.
Conversely, assume that ϕ is a UP-isomorphism. Then ϕ is surjective. Let y ∈ B. Then there exists (x)∼ f ∈ A/∼ f such that ϕ((x)∼ f ) = y.
Thus f (x) = ϕ((x)∼ f ) = y, so f is surjective. Hence, f is a UP-epimorphism.

Theorem 2.6. (First UP-isomorphism Theorem) Let (A, ·,0A) and (B,•,0B) be UP-algebras, and f : A→ B a UP-homomorphism. Then

A/∼ f∼= Im( f ).

Proof. By Theorem 1.16 (3), we have Im( f ) is a UP-subalgebra of B. Thus f : A→ Im( f ) is a UP-epimorphism. Applying Theorem 2.5 (2),
we obtain A/∼ f∼= Im( f ).

Lemma 2.7. Let (A, ·,0A) and (B,•,0B) be UP-algebras, f : A → B a UP-homomorphism, and H a UP-subalgebra of A. Denote
H∼ f =

⋃
h∈H(h)∼ f . Then H∼ f is a UP-subalgebra of A.
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Proof. Clearly, /0 6= H∼ f ⊆ A. Let a,b ∈ H∼ f . Then a ∈ (x)∼ f and b ∈ (y)∼ f for some x,y ∈ H, so (a)∼ f = (x)∼ f and (b)∼ f = (y)∼ f .
Theorem 2.3 gives (A/∼ f ,∗,(0A)∼ f ) is a UP-algebra, so

(a ·b)∼ f = (a)∼ f ∗ (b)∼ f = (x)∼ f ∗ (y)∼ f = (x · y)∼ f .

Thus a ·b∈ (x ·y)∼ f . Since x,y∈H, it follows from Proposition 1.7 that x ·y∈H. Thus a ·b∈ (x ·y)∼ f ⊆H∼ f . Hence, H∼ f is a UP-subalgebra
of A.

Theorem 2.8. (Second UP-isomorphism Theorem) Let (A, ·,0A) and (B,•,0B) be UP-algebras, f : A→ B a UP-homomorphism, and H a
UP-subalgebra of A. Denote H∼ f /∼ f= {(x)∼ f | x ∈ H∼ f }. Then

H/∼π f |H
∼= H∼ f /∼ f .

Proof. By Lemma 2.7, we have H∼ f is a UP-subalgebra of A. Then it is easy to check that H∼ f /∼ f is a UP-subalgebra of A/∼ f , thus
(H∼ f /∼ f ,∗,(0A)∼ f ) itself is a UP-algebra. Also, it is obvious that H ⊆ H∼ f , then

(π f |H =)g : H→ H∼ f /∼ f ,x 7→ (x)∼ f , (2.3)

is a mapping. Indeed, g is the restriction of π f to H. Thus g is a UP-epimorphism. Indeed, H∼ f / ∼ f= H/ ∼ f . Theorem 2.6 gives
H/∼π f |H

∼= H∼ f /∼ f .

Theorem 2.9. Let (A, ·,0A) and (B,•,0B) be UP-algebras, f : A→ B and g : A→ B UP-homomorphisms with ∼ f⊆∼g. Define the binary
relation ∼g /∼ f on A/∼ f as follows: for all x,y ∈ A,

(x)∼ f ∼g /∼ f (y)∼ f if and only if x∼g y. (2.4)

Then ∼g /∼ f is a congruence on A/∼ f .

Proof. By Theorem 2.3, we have (A/∼ f ,∗,(0A)∼ f ) is a UP-algebra.
Reflexive: For all x ∈ A, we have x∼g x. Thus (x)∼ f ∼g /∼ f (x)∼ f .
Symmetric: Let x,y ∈ A be such that (x)∼ f ∼g /∼ f (y)∼ f . Then x∼g y, so y∼g x. Thus (y)∼ f ∼g /∼ f (x)∼ f .
Transitive: Let x,y,z be such that (x)∼ f ∼g /∼ f (y)∼ f and (y)∼ f ∼g /∼ f (z)∼ f . Then x∼g y and y∼g z, so x∼g z. Thus (x)∼ f ∼g /∼ f (z)∼ f .
Therefore, ∼g /∼ f is an equivalence relation on A/∼ f . Finally, let x,y,u,v ∈ A be such that (x)∼ f ∼g /∼ f (u)∼ f and (y)∼ f ∼g /∼ f (v)∼ f .
Then x∼g u and y∼g v. The binary relation ∼g is a congruence on A by Theorem 2.2, that is x · y∼g u · v. Thus (x · y)∼ f ∼g /∼ f (u · v)∼ f ,
so (x)∼ f ∗ (y)∼ f ∼g /∼ f (u)∼ f ∗ (v)∼ f . Hence, ∼g /∼ f is a congruence on A/∼ f .

Theorem 2.10. (Third UP-isomorphism Theorem) Let (A, ·,0A) and (B,•,0B) be UP-algebras, f : A→B and g : A→B UP-homomorphisms
with ∼ f⊆∼g. Then

(A/∼ f )/(∼g /∼ f )∼= A/∼g .

Proof. By Theorem 2.3, we obtain (A/∼ f ,∗,(0A)∼ f ) and (A/∼g,∗′,(0A)∼g) are UP-algebras. By Theorem 2.4, we obtain

π f : A→ A/∼ f ,x 7→ (x)∼ f

and

πg : A→ A/∼g,x 7→ (x)∼g

are UP-epimorphisms. Applying Theorem 2.5 (2), there exists a UP-isomorphism

g/ f : A/∼ f→ A/∼g,(x)∼ f 7→ (x)∼g . (2.5)

Indeed, A/∼ f∼= A/∼g. By Theorem 2.9 and 2.3, we have (A/∼ f )/∼g/ f is a UP-algebra. By Theorem 2.4, we obtain

πg/ f : A/∼ f→ (A/∼ f )/∼g/ f ,(x)∼ f 7→ ((x)∼ f )∼g/ f

is a UP-epimorphism. Applying Theorem 2.5 (2), there exists a UP-isomorphism

ϕ : (A/∼ f )/∼g/ f→ A/∼g,((x)∼ f )∼g/ f 7→ (x)∼g . (2.6)

That is,

(A/∼ f )/∼g/ f
∼= A/∼g .

We shall show that ∼g/ f=∼g /∼ f . For any (x)∼ f ,(y)∼ f ∈ A/∼ f ,

(x)∼ f ∼g/ f (y)∼ f ⇔ (g/ f )((x)∼ f ) = (g/ f )((y)∼ f )

⇔ (x)∼g = (y)∼g

⇔ x∼g y

⇔ (x)∼ f ∼g /∼ f (y)∼ f

by (2.1) and (2.4). Thus ∼g/ f=∼g /∼ f . Hence, (A/∼ f )/(∼g /∼ f )∼= A/∼g .
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Corollary 2.11. Let (A, ·,0A) and (B,•,0B) be UP-algebras, f : A→ B a UP-homomorphism, and C a UP-ideal of A. Then

A/∼C∼= A/∼ f .

As π f makes the following diagram commute,

A
f //

πC

��

π f

$$

B

A/∼C
ϕ
// A/∼ f

Proof. It is straightforward by Theorem 1.12, 1.14, 2.4, and 2.5 (2).
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