

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma

The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism

Phakawat Mosrijai^a, Akarachai Satirad^a and Aiyared Iampan^{a*}

^aDepartment of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand ^{*}Corresponding author E-mail: aiyared.ia@up.ac.th

Article Info

Abstract

Keywords:UP-algebra,UP-homomorphism,Fundamentaltheorem,UP-isomorphism theorem.2010 AMS:03G25,06F35Received:16 March 2018Accepted:19 May 2018Available online:30 June 2018

The aim of this paper is to construct the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism. We also give an application of the theorem to the first, second, and third UP-isomorphism theorems in UP-algebras.

1. Introduction and preliminaries

Among many algebraic structures, algebras of logic form important class of algebras. Examples of these are BCK-algebras [7], BCI-algebras [8], BCH-algebras [4], KU-algebras [15], SU-algebras [10], UP-algebras [6] and others. They are strongly connected with logic. For example, BCI-algebras introduced by Iséki [8] in 1966 have connections with BCI-logic being the BCI-system in combinatory logic which has application in the language of functional programming. BCK and BCI-algebras are two classes of logical algebras. They were introduced by Imai and Iséki [7, 8] in 1966 and have been extensively investigated by many researchers. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras.

The isomorphism theorems play an important role in a general logical algebra, which were studied by several researches such as: In 1998, Jun, Hong, Xin and Roh [9] proved isomorphism theorems by using Chinese Remainder Theorem in BCI-algebras. In 2001, Park, Shim and Roh [14] proved isomorphism theorems of IS-algebras. In 2004, Hao and Li [3] introduced the concept of ideals of an ideal in a BCI-algebra and some isomorphism theorems are obtained by using this concept. They obtained several isomorphism theorems of BG-algebras and related properties. In 2006, Kim [12] introduced the notion of KS-semigroups. He characterized ideals of a KS-semigroup and proved the first isomorphism theorem for KS-semigroups. In 2007, Dar and Akram [2] introduced the notion of K-algebras. In 2008, Kim and Kim [11] introduced the notion of BG-algebras which is a generalization of B-algebras. They obtained several isomorphism theorems of BG-algebras and proved the isomorphism theorems for KS-semigroups. In 2009, Paradero-Vilela and Cawi [13] characterized KS-semigroup homomorphisms and proved the isomorphism theorems for SU-semigroups. In 2011, Keawrahun and Leerawat [10] introduced the notion of SU-semigroups and proved the isomorphism theorems for SU-semigroups. In 2012, Asawasamrit [1] introduced the notion of KK-algebras and studied isomorphism theorems of KK-algebras. In 2015, Iampan [5] studied UP-isomorphism theorems of UP-algebras.

In this paper, we construct the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism. We also give an application of the theorem to the first, second, and third UP-isomorphism theorems in UP-algebras.

Before we begin our study, we will introduce to the definition of a UP-algebra.

Definition 1.1. [6] An algebra $A = (A, \cdot, 0)$ of type (2, 0) is called a UP-algebra, where A is a nonempty set, \cdot is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation) if it satisfies the following axioms: for any $x, y, z \in A$,

(UP-1) $(y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0$, (UP-2) $0 \cdot x = x$, (UP-3) $x \cdot 0 = 0$, (UP-4) $x \cdot y = y \cdot x = 0$ implies x = y.

Email addresses: phakawat.mo@gmail.com (P. Mosrijai), akarachai.sa@gmail.com (A. Satirad), aiyared.ia@up.ac.th (A. Iampan)

Example 1.2. [6] Let X be a universal set. Define two binary operations \cdot and * on the power set of X by putting $A \cdot B = B \cap A'$ and $A * B = B \cup A'$ for all $A, B \in \mathscr{P}(X)$. Then $(\mathscr{P}(X), \cdot, \emptyset)$ and $(\mathscr{P}(X), *, X)$ are UP-algebras and we shall call it the power UP-algebra of type 1 and the power UP-algebra of type 2, respectively.

Example 1.3. [6] Let $A = \{0, a, b, c\}$ be a set with a binary operation \cdot defined by the following Cayley table:

Then $(A, \cdot, 0)$ is a UP-algebra.

In what follows, let *A* and *B* denote UP-algebras unless otherwise specified. The following proposition is very important for the study of UP-algebras.

Proposition 1.4. [6] In a UP-algebra A, the following properties hold: for any $x, y, z \in A$,

(1) $x \cdot x = 0$, (2) $x \cdot y = 0$ and $y \cdot z = 0$ implies $x \cdot z = 0$, (3) $x \cdot y = 0$ implies $(z \cdot x) \cdot (z \cdot y) = 0$, (4) $x \cdot y = 0$ implies $(y \cdot z) \cdot (x \cdot z) = 0$, (5) $x \cdot (y \cdot x) = 0$, (6) $(y \cdot x) \cdot x = 0$ if and only if $x = y \cdot x$, and (7) $x \cdot (y \cdot y) = 0$.

Definition 1.5. [6] Let A be a UP-algebra. A nonempty subset B of A is called a UP-ideal of A if it satisfies the following properties:

- (1) the constant 0 of A is in B, and
- (2) for any $x, y, z \in A, x \cdot (y \cdot z) \in B$ and $y \in B$ implies $x \cdot z \in B$.

Definition 1.6. [6] Let $A = (A, \cdot, 0)$ be a UP-algebra. A subset S of A is called a UP-subalgebra of A if the constant 0 of A is in S, and $(S, \cdot, 0)$ itself forms a UP-algebra.

Proposition 1.7. [6] A nonempty subset S of a UP-algebra $A = (A, \cdot, 0)$ is a UP-subalgebra of A if and only if S is closed under the \cdot multiplication on A.

Definition 1.8. [6] Let A be a UP-algebra. An equivalence relation ρ on A is called a congruence if for any $x, y, z \in A$,

$$x \rho y$$
 implies $x \cdot z \rho y \cdot z$ and $z \cdot x \rho z \cdot y$.

Lemma 1.9. [6] An equivalence relation ρ on A is a congruence if and only if for any $x, y, u, v \in A$, $x\rho y$ and $u\rho v$ imply $x \cdot u\rho y \cdot v$.

Definition 1.10. [6] Let A be a UP-algebra and B a UP-ideal of A. Define the binary relation \sim_B on A as follows: for all $x, y \in A$,

$$x \sim_B y$$
 if and only if $x \cdot y \in B$ and $y \cdot x \in B$. (1.2)

Proposition 1.11. [6] Let A be a UP-algebra and B a UP-ideal of A with a binary relation \sim_B defined by (1.2). Then \sim_B is a congruence on A.

Let *A* be a UP-algebra and ρ a congruence on *A*. If $x \in A$, then the ρ -class of *x* is the $(x)_{\rho}$ defined as follows:

$$(x)_{\rho} = \{ y \in A \mid y \rho x \}.$$

Then the set of all ρ -classes is called the *quotient set of A by* ρ , and is denoted by A/ρ . That is,

$$A/\rho = \{(x)_{\rho} \mid x \in A\}.$$

Theorem 1.12. [6] Let A be a UP-algebra and B a UP-ideal of A. Then $(A / \sim_B, *, (0)_{\sim_B})$ is a UP-algebra under the * multiplication defined by $(x)_{\sim_B} * (y)_{\sim_B} = (x \cdot y)_{\sim_B}$ for all $x, y \in A$, called the quotient UP-algebra of A induced by the congruence \sim_B .

Definition 1.13. [6] Let $(A, \cdot, 0)$ and $(A', \cdot', 0')$ be UP-algebras. A mapping f from A to A' is called a UP-homomorphism if

$$f(x \cdot y) = f(x) \cdot f(y)$$
 for all $x, y \in A$.

A UP-homomorphism $f: A \to A'$ is called a

- (1) UP-epimorphism if f is surjective,
- (2) UP-monomorphism if f is injective,
- (3) UP-isomorphism if f is bijective. Moreover, we say A is UP-isomorphic to A', symbolically, $A \cong A'$, if there is a UP-isomorphism from A to A'.

Let f be a mapping from A to A', and let B be a nonempty subset of A, and B' of A'. The set $\{f(x) \mid x \in B\}$ is called the image of B under f, denoted by f(B). In particular, f(A) is called the image of f, denoted by Im(f). Dually, the set $\{x \in A \mid f(x) \in B'\}$ is said the inverse image of B' under f, symbolically, $f^{-1}(B')$. Especially, we say $f^{-1}(\{0'\})$ is the kernel of f, written by Ker(f). That is,

$$\operatorname{Im}(f) = \{ f(x) \in A' \mid x \in A \}$$

and

$$Ker(f) = \{ x \in A \mid f(x) = 0' \}.$$

Theorem 1.14. [6] Let A be a UP-algebra and B a UP-ideal of A. Then the mapping $\pi_B: A \to A/\sim_B defined by \pi_B(x) = (x)_{\sim_B}$ for all $x \in A$ is a UP-epimorphism, called the natural projection from A to A / \sim_B .

On a UP-algebra $A = (A, \cdot, 0)$, we define a binary relation \leq on A as follows: for all $x, y \in A$,

$$x \le y$$
 if and only if $x \cdot y = 0$. (1.3)

Proposition 1.15. [6] Let A be a UP-algebra with a binary relation \leq defined by (1.3). Then (A, \leq) is a partially ordered set with 0 as the greatest element.

We often call the partial ordering \leq defined by (1.3) the *UP-ordering* on A. From now on, the symbol \leq will be used to denote the UP-ordering, unless specified otherwise.

Theorem 1.16. [6] Let $(A, \cdot, 0_A)$ and $(B, *, 0_B)$ be UP-algebras and let $f: A \to B$ be a UP-homomorphism. Then the following statements hold:

(1) $f(0_A) = 0_B$,

(2) for any $x, y \in A$, if $x \leq y$, then $f(x) \leq f(y)$,

(3) if C is a UP-subalgebra of A, then the image f(C) is a UP-subalgebra of B. In particular, Im(f) is a UP-subalgebra of B,

(4) if D is a UP-subalgebra of B, then the inverse image $f^{-1}(D)$ is a UP-subalgebra of A. In particular, Ker(f) is a UP-subalgebra of A, (5) if C is a UP-ideal of A such that $\text{Ker}(f) \subseteq C$, then the image f(C) is a UP-ideal of f(A),

(6) if D is a UP-ideal of B, then the inverse image $f^{-1}(D)$ is a UP-ideal of A. In particular, Ker(f) is a UP-ideal of A, and

(7) $\text{Ker}(f) = \{0_A\}$ if and only if f is injective.

2. Main results

In this section, we introduce the congruence determined by a UP-homomorphism and prove the new fundamental theorem of UP-algebras in the meaning of the congruence determined by a UP-homomorphism. We also prove the first, second, and third UP-isomorphism theorems in UP-algebras.

Definition 2.1. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Define the binary relation \sim_f on A as *follows: for all* $x, y \in A$ *,*

$$x \sim_f y$$
 if and only if $f(x) = f(y)$. (2.1)

Theorem 2.2. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism with a binary relation \sim_f on A defined by (2.1). Then \sim_f is a congruence on A, called the congruence determined by f.

Proof. Reflexive: For all $x \in A$, we have f(x) = f(x). Thus $x \sim_f x$. Symmetric: Let $x, y \in A$ be such that $x \sim_f y$. Then f(x) = f(y), so f(y) = f(x). Thus $y \sim_f x$. *Transitive:* Let x, y, z be such that $x \sim_f y$ and $y \sim_f z$. Then f(x) = f(y) and f(y) = f(z), so f(x) = f(z). Thus $x \sim_f z$. Therefore, \sim_f is an equivalence relation on A. Finally, let $x, y, u, v \in A$ be such that $x \sim_f u$ and $y \sim_f v$. Then f(x) = f(u) and f(y) = f(v). Since f is a UP-homomorphism, we get

$$f(x \cdot y) = f(x) \bullet f(y) = f(u) \bullet f(v) = f(u \cdot v).$$

Thus $x \cdot y \sim_f u \cdot v$. By Lemma 1.9, we have \sim_f is a congruence on A.

Theorem 2.3. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then $(A/\sim_f, *, (0_A)_{\sim_f})$ is a UP-algebra under the * multiplication defined by $(x)_{\sim f} * (y)_{\sim f} = (x \cdot y)_{\sim f}$ for all $x, y \in A$, called the quotient UP-algebra of A induced by the congruence \sim_f .

Proof. Let $x, y, u, v \in A$ be such that $(x)_{\sim_f} = (y)_{\sim_f}$ and $(u)_{\sim_f} = (v)_{\sim_f}$. Since \sim_f is an equivalence relation on A, we get $x \sim_f y$ and $u \sim_f v$. By Lemma 1.9, we have $x \cdot u \sim_f y \cdot v$. Hence, $(x)_{\sim_f} * (u)_{\sim_f} = (x \cdot u)_{\sim_f} = (y \cdot v)_{\sim_f} = (y)_{\sim_f} * (v)_{\sim_f}$, showing * is well defined. $(UP-1): \text{Let } x, y, z \in A. \text{ By (UP-1), we have } ((y)_{\sim_f} * (z)_{\sim_f}) * (((x)_{\sim_f} * (y)_{\sim_f}) * ((x)_{\sim_f} * (z)_{\sim_f})) = ((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)))_{\sim_f} = (0_A)_{\sim_f}.$ (*UP-2*): Let $x \in A$. By (UP-2), we have $(0_A)_{\sim_f} * (x)_{\sim_f} = (0_A \cdot x)_{\sim_f} = (x)_{\sim_f}$.

 $(UP-3): \text{Let } x \in A. \text{ By (UP-3), we have } (x)_{\sim_f} * (0_A)_{\sim_f} = (x \cdot 0_A)_{\sim_f} = (0_A)_{\sim_f}.$ $(UP-4): \text{Let } x, y \in A \text{ be such that } (x)_{\sim_f} * (y)_{\sim_f} = (y)_{\sim_f} * (x)_{\sim_f} = (0_A)_{\sim_f}. \text{ Then } (x \cdot y)_{\sim_f} = (y \cdot x)_{\sim_f} = (0_A)_{\sim_f}, \text{ it follows that } f(x) \bullet f(y) = f(x \cdot y) = f(0_A) = f(y \cdot x) = f(y) \bullet f(x). \text{ By Theorem 1.16 (1), we have } f(x) \bullet f(y) = f(y) \bullet f(x) = 0_B. \text{ By (UP-4), we have } f(x) = f(y).$ Thus $x \sim_f y$, so $(x)_{\sim_f} = (y)_{\sim_f}$. Hence, $(A/\sim_f, *, (0_A)_{\sim_f})$ is a UP-algebra.

Theorem 2.4. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then the mapping $\pi_f: A \to A / \sim_f defined$ by $\pi_f(x) = (x)_{\sim f}$ for all $x \in A$ is a UP-epimorphism, called the natural projection from A to A/\sim_f .

Proof. Let $x, y \in A$ be such that x = y. Then $(x)_{\sim f} = (y)_{\sim f}$, so $\pi_f(x) = \pi_f(y)$. Thus π_f is well defined. Note that by the definition of π_f , we have π_f is surjective. Let $x, y \in A$. Then

$$\pi_f(x \cdot y) = (x \cdot y)_{\sim_f} = (x)_{\sim_f} * (y)_{\sim_f} = \pi_f(x) * \pi_f(y).$$

Thus π_f is a UP-homomorphism. So we conclude that π_f is a UP-epimorphism.

Theorem 2.5. (Fundamental Theorem of UP-homomorphisms) Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then there exists uniquely a UP-homomorphism φ from A/\sim_f to B such that $f = \varphi \circ \pi_f$. Moreover,

(1) π_f is a UP-epimorphism and φ a UP-monomorphism, and

(2) f is a UP-epimorphism if and only if φ is a UP-isomorphism.

As f makes the following diagram commute,

Proof. By Theorem 2.3, we have $(A/\sim_f, *, (0_A)_{\sim_f})$ is a UP-algebra. Define a mapping $\varphi: A/\sim_f \to B$ by

$$\varphi((x)_{\sim_f}) = f(x) \text{ for all } (x)_{\sim_f} \in A/\sim_f.$$
(2.2)

Indeed, let $(x)_{\sim_f}, (y)_{\sim_f} \in A/\sim_f$ be such that $(x)_{\sim_f} = (y)_{\sim_f}$. Then $x \sim_f y$, so

$$\boldsymbol{\varphi}((x)_{\sim_f}) = f(x) = f(y) = \boldsymbol{\varphi}((y)_{\sim_f}).$$

For any $x, y \in A$, we see that

$$\begin{aligned} \varphi((x)_{\sim_f} * (y)_{\sim_f}) &= & \varphi((x \cdot y)_{\sim_f}) \\ &= & f(x \cdot y) \\ &= & f(x) \bullet f(y) \\ &= & \varphi((x)_{\sim_f}) \bullet \varphi((y)_{\sim_f}). \end{aligned}$$

Thus φ is a UP-homomorphism. Also, since

$$(\boldsymbol{\varphi} \circ \boldsymbol{\pi}_f)(x) = \boldsymbol{\varphi}(\boldsymbol{\pi}_f(x)) = \boldsymbol{\varphi}((x)_{\sim f}) = f(x)$$
 for all $x \in A$

we obtain $f = \varphi \circ \pi_f$. We have shown the existence. Let φ' be a mapping from A / \sim_f to B such that $f = \varphi' \circ \pi_f$. Then for any $(x)_{\sim_f} \in A / \sim_f$, we have

$$\begin{aligned} \varphi'((x)_{\sim_f}) &= \varphi'(\pi_f(x)) \\ &= (\varphi' \circ \pi_f)(x) \\ &= f(x) \\ &= (\varphi \circ \pi_f)(x) \\ &= \varphi(\pi_f(x)) \\ &= \varphi((x)_{\sim_f}). \end{aligned}$$

Hence, $\varphi = \varphi'$, showing the uniqueness.

(1) By Theorem 2.4, we have π_f is a UP-epimorphism. Also, let $(x)_{\sim_f}, (y)_{\sim_f} \in A/\sim_f$ be such that $\varphi((x)_{\sim_f}) = \varphi((y)_{\sim_f})$. Then f(x) = f(y), so $x \sim_f y$. Thus $(x)_{\sim_f} = (y)_{\sim_f}$. Therefore, φ a UP-monomorphism.

(2) Assume that f is a UP-epimorphism. By (1), it suffices to prove φ is surjective. Let $y \in B$. Then there exists $x \in A$ such that f(x) = y. Thus $y = f(x) = \varphi((x)_{\sim_f})$, so φ is surjective. Hence, φ is a UP-isomorphism.

Conversely, assume that φ is a UP-isomorphism. Then φ is surjective. Let $y \in B$. Then there exists $(x)_{\sim_f} \in A/\sim_f$ such that $\varphi((x)_{\sim_f}) = y$. Thus $f(x) = \varphi((x)_{\sim_f}) = y$, so f is surjective. Hence, f is a UP-epimorphism.

Theorem 2.6. (*First UP-isomorphism Theorem*) Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, and $f: A \to B$ a UP-homomorphism. Then

$$A/\sim_f \cong \operatorname{Im}(f).$$

Proof. By Theorem 1.16 (3), we have Im(f) is a UP-subalgebra of *B*. Thus $f: A \to \text{Im}(f)$ is a UP-epimorphism. Applying Theorem 2.5 (2), we obtain $A/\sim_f \cong \text{Im}(f)$.

Lemma 2.7. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, $f: A \to B$ a UP-homomorphism, and H a UP-subalgebra of A. Denote $H_{\sim_f} = \bigcup_{h \in H} (h)_{\sim_f}$. Then H_{\sim_f} is a UP-subalgebra of A.

Proof. Clearly, $\emptyset \neq H_{\sim f} \subseteq A$. Let $a, b \in H_{\sim f}$. Then $a \in (x)_{\sim f}$ and $b \in (y)_{\sim f}$ for some $x, y \in H$, so $(a)_{\sim f} = (x)_{\sim f}$ and $(b)_{\sim f} = (y)_{\sim f}$. Theorem 2.3 gives $(A / \sim_f, *, (0_A)_{\sim f})$ is a UP-algebra, so

$$(a \cdot b)_{\sim f} = (a)_{\sim f} * (b)_{\sim f} = (x)_{\sim f} * (y)_{\sim f} = (x \cdot y)_{\sim f}.$$

Thus $a \cdot b \in (x \cdot y)_{\sim_f}$. Since $x, y \in H$, it follows from Proposition 1.7 that $x \cdot y \in H$. Thus $a \cdot b \in (x \cdot y)_{\sim_f} \subseteq H_{\sim_f}$. Hence, H_{\sim_f} is a UP-subalgebra of *A*.

Theorem 2.8. (Second UP-isomorphism Theorem) Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, $f: A \to B$ a UP-homomorphism, and H a UP-subalgebra of A. Denote $H_{\sim_f}/\sim_f = \{(x)_{\sim_f} \mid x \in H_{\sim_f}\}$. Then

$$H/\sim_{\pi_f|_H}\cong H_{\sim_f}/\sim_f$$
.

Proof. By Lemma 2.7, we have H_{\sim_f} is a UP-subalgebra of A. Then it is easy to check that H_{\sim_f}/\sim_f is a UP-subalgebra of A/\sim_f , thus $(H_{\sim_f}/\sim_f, *, (0_A)_{\sim_f})$ itself is a UP-algebra. Also, it is obvious that $H \subseteq H_{\sim_f}$, then

$$(\pi_f|_H =)g \colon H \to H_{\sim_f} / \sim_f, x \mapsto (x)_{\sim_f}, \tag{2.3}$$

is a mapping. Indeed, g is the restriction of π_f to H. Thus g is a UP-epimorphism. Indeed, $H_{\sim_f}/\sim_f = H/\sim_f$. Theorem 2.6 gives $H/\sim_{\pi_f|_H} \cong H_{\sim_f}/\sim_f$.

Theorem 2.9. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, $f : A \to B$ and $g : A \to B$ UP-homomorphisms with $\sim_f \subseteq \sim_g$. Define the binary relation \sim_g / \sim_f on A / \sim_f as follows: for all $x, y \in A$,

$$(x)_{\sim_f} \sim_g / \sim_f (y)_{\sim_f} \text{ if and only if } x \sim_g y.$$

$$(2.4)$$

Then \sim_g / \sim_f is a congruence on A / \sim_f .

Proof. By Theorem 2.3, we have $(A/\sim_f, *, (0_A)_{\sim_f})$ is a UP-algebra.

Reflexive: For all $x \in A$, we have $x \sim_g x$. Thus $(x)_{\sim_f} \sim_g / \sim_f (x)_{\sim_f}$.

Symmetric: Let $x, y \in A$ be such that $(x)_{\sim_f} \sim_g / \sim_f (y)_{\sim_f}$. Then $x \sim_g y$, so $y \sim_g x$. Thus $(y)_{\sim_f} \sim_g / \sim_f (x)_{\sim_f}$.

Transitive: Let x, y, z be such that $(x)_{\sim_f} \sim_g / \sim_f (y)_{\sim_f}$ and $(y)_{\sim_f} \sim_g / \sim_f (z)_{\sim_f}$. Then $x \sim_g y$ and $y \sim_g z$, so $x \sim_g z$. Thus $(x)_{\sim_f} \sim_g / \sim_f (z)_{\sim_f}$. Therefore, \sim_g / \sim_f is an equivalence relation on A / \sim_f . Finally, let $x, y, u, v \in A$ be such that $(x)_{\sim_f} \sim_g / \sim_f (u)_{\sim_f}$ and $(y)_{\sim_f} \sim_g / \sim_f (v)_{\sim_f}$. Then $x \sim_g u$ and $y \sim_g v$. The binary relation \sim_g is a congruence on A by Theorem 2.2, that is $x \cdot y \sim_g u \cdot v$. Thus $(x \cdot y)_{\sim_f} \sim_g / \sim_f (u \cdot v)_{\sim_f}$, so $(x)_{\sim_f} * (y)_{\sim_f} \sim_g / \sim_f (u)_{\sim_f} * (v)_{\sim_f}$. Hence, \sim_g / \sim_f is a congruence on A / \sim_f .

Theorem 2.10. (*Third UP-isomorphism Theorem*) Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, $f : A \to B$ and $g : A \to B$ UP-homomorphisms with $\sim_f \subseteq \sim_g$. Then

$$(A/\sim_f)/(\sim_g/\sim_f)\cong A/\sim_g.$$

Proof. By Theorem 2.3, we obtain $(A/\sim_f, *, (0_A)_{\sim_f})$ and $(A/\sim_g, *', (0_A)_{\sim_g})$ are UP-algebras. By Theorem 2.4, we obtain

$$\pi_f: A \to A/\sim_f, x \mapsto (x)_{\sim}$$

and

$$\pi_g: A \to A / \sim_g, x \mapsto (x)_{\sim_g}$$

are UP-epimorphisms. Applying Theorem 2.5 (2), there exists a UP-isomorphism

$$g/f: A/\sim_f \to A/\sim_g, (x)_{\sim_f} \mapsto (x)_{\sim_g}.$$
(2.5)

Indeed, $A/\sim_f \cong A/\sim_g$. By Theorem 2.9 and 2.3, we have $(A/\sim_f)/\sim_{g/f}$ is a UP-algebra. By Theorem 2.4, we obtain

$$\pi_{g/f}: A/\sim_f \to (A/\sim_f)/\sim_{g/f}, (x)_{\sim_f} \mapsto ((x)_{\sim_f})_{\sim_{g/f}}$$

is a UP-epimorphism. Applying Theorem 2.5 (2), there exists a UP-isomorphism

$$\varphi\colon (A/\sim_f)/\sim_{g/f} \to A/\sim_g, ((x)_{\sim_f})_{\sim_{g/f}} \mapsto (x)_{\sim_g}.$$

$$(2.6)$$

That is,

$$(A/\sim_f)/\sim_{g/f}\cong A/\sim_g A$$

We shall show that $\sim_{g/f} = \sim_g / \sim_f$. For any $(x)_{\sim_f}, (y)_{\sim_f} \in A / \sim_f$,

$$\begin{split} (x)_{\sim_f} \sim_{g/f} (y)_{\sim_f} & \Leftrightarrow \quad (g/f)((x)_{\sim_f}) = (g/f)((y)_{\sim_f}) \\ & \Leftrightarrow \quad (x)_{\sim_g} = (y)_{\sim_g} \\ & \Leftrightarrow \quad x \sim_g y \\ & \Leftrightarrow \quad (x)_{\sim_f} \sim_g / \sim_f (y)_{\sim_f} \end{split}$$

by (2.1) and (2.4). Thus $\sim_{g/f} = \sim_g / \sim_f$. Hence, $(A/\sim_f)/(\sim_g / \sim_f) \cong A/\sim_g$.

Corollary 2.11. Let $(A, \cdot, 0_A)$ and $(B, \bullet, 0_B)$ be UP-algebras, $f: A \to B$ a UP-homomorphism, and C a UP-ideal of A. Then

$$A/\sim_C \cong A/\sim_f .$$

As π_f makes the following diagram commute,

Proof. It is straightforward by Theorem 1.12, 1.14, 2.4, and 2.5 (2).

Acknowledgment

The authors wish to express their sincere thanks to the referees for the valuable suggestions which lead to an improvement of this paper.

References

- [1] S. Asawasamrit, KK-isomorphism and its properties, Int. J. Pure Appl. Math. 78 (2012), no. 1, 65-73.
- [2] K. H. Dar and M. Akram, On K-homomorphisms of K-algebras, Int. Math. Forum 2 (2007), no. 46, 2283–2293.
- [3] J. Hao and C. X. Li, On ideals of an ideal in a BCI-algebra, Sci. Math. Jpn. (in Editione Electronica) 10 (2004), no. 16, 493–500.

- [3] J. Hao and C. X. Li, On ideals of an ideal in a BCI-algebra, Sci. Math. Jpn. (in Editione Electronica) 10 (2004), no. 16, 493–500.
 [4] Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, Kobe Univ. 11 (1983), 313–320.
 [5] A. Iampan, The UP-isomorphism theorems for UP-algebras, Manuscript submitted for publication, April 2015.
 [6] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top. 5 (2017), no. 1, 35–54.
 [7] Y. Imai and K. Iséki, On axiom system of propositional calculi, XIV, Proc. Japan Acad. 42 (1966), no. 1, 19–22.
 [8] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), no. 1, 26–29.
 [9] Y. B. Jun, S. M. Hong, X. L. Xin, and E. H. Roh, Chinese remainder theorems in BCI-algebras, Soochow J. Math. 24 (1998), no. 3, 219–230.
 [10] S. Keawrahun and U. Leerawat, On isomorphisms of SU-algebras, Sci. Magna 7 (2011), no. 2, 39–44.
 [11] C. B. Kim and H. S. Kim, On BG-algebras, Demonstr. Math. 41 (2008), no. 3, 497–505.
 [12] K. H. Kim, On structure of KS-semigroup, Int. Math. Forum 1 (2006), no. 2, 67–76.
 [13] J. S. Paradero-Vilela and M. Cawi, On KS-semigroup homomorphism, Int. Math. Forum 4 (2009), no. 23, 1129–1138.

- [13] J. S. Paradero-Vilela and M. Cawi, On KS-semigroup homomorphism, Int. Math. Forum 4 (2009), no. 23, 1129–1138.
- [14] J. K. Park, W. H. Shim, and E. H. Roh, On isomorphism theorems in IS-algebras, Soochow J. Math. 27 (2001), no. 2, 153-160.
- [15] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna 5 (2009), no. 1, 54-57.