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Abstract— Efficient scheduling and link adaptation 

mechanisms are essential for ensuring reliable and high-

throughput communication in mobile wireless networks, 
particularly in the context of future 6G systems. This study 

investigates the performance of three prominent scheduling 

algorithms—Round Robin (RR), Best Channel Quality Indicator 

(Best-CQI), and Proportional Fair (PF)—in a realistic ray-traced 

wireless environment under user mobility. A time-evolving 

scenario is designed where mobile users follow predefined 

trajectories, and the downlink transmission is evaluated in terms 

of effective Signal-to-Interference-plus-Noise Ratio (SINR), 

spectral efficiency, and achieved Transport Block Error Rate 

(TBLER). Link adaptation is implemented via an Outer Loop 

Link Adaptation (OLLA) mechanism that dynamically adjusts the 

modulation and coding scheme based on feedback. The results 

show that PF scheduling achieves a balanced trade-off between 

throughput and fairness, maintaining spectral efficiency close to 

the Shannon capacity while satisfying the target BLER for all 

users. In contrast, Best-CQI provides high spectral efficiency for 

strong users but degrades the performance of users with weaker 

channel conditions. RR ensures fairness but suffers from 

throughput inefficiencies under dynamic SINR variations. The 

study highlights the importance of scheduler selection in mobility-

aware systems and demonstrates how OLLA-driven adaptation 

improves robustness in realistic, time-varying channels. 

 
Index Terms— 6G, Link Adaptation, Ray Tracing Simulation, 
Scheduling, User Mobility. 

I. INTRODUCTION 

uture wireless communication systems, especially in 

architectures moving towards 6G, aim to simultaneously 

optimize performance metrics such as link reliability and 

spectral efficiency. To achieve this goal, many technical 

components such as channel-aware resource allocation, link 

adaptation, and flexible scheduling strategies for mobile users 

need to be considered together [1, 2]. In this context, the time-

variation of channel conditions experienced by mobile users in 

multiple access environments directly affects both the link 

quality and the efficient utilization of system resources. 

Therefore, scheduling of users in a channel quality sensitive 

manner should be considered together with link adaptation 

techniques. 

Link adaptation is a Layer-2 mechanism that maximizes data 

rate while keeping the error rate low by dynamically adjusting 
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transmission parameters according to channel conditions. Outer 

Loop Link Adaptation (OLLA) [3], a prominent link adaptation 

technique, tries to compensate for non-idealities in channel 

estimates by dynamically correcting the Modulation and 

Coding Scheme (MCS) selection based on the targeted block 

error rate (BLER) [4]. However, the performance of OLLA 

directly depends on how the scheduling algorithm allocates 

users based on channel quality. There are significant differences 

between schedulers such as Round Robin (RR), Proportional 

Fair (PF) and Channel Quality Indicator (CQI)-aware 

scheduling in terms of resource allocation fairness, spectral 

efficiency and error rates [5, 6]. 

Recent comparative studies have begun to address these 

mobility-related trade-offs more explicitly. Fan et al. propose a 

mobility-aware joint user-scheduling and resource-allocation 

scheme that minimizes end-to-end latency in federated-learning 

networks spanning multiple base stations, underlining how 

scheduler choice can dominate QoS when users move rapidly 

between cells [7]. Deng and Blough extend this idea to 

mmWave WLANs, showing that proactive, mobility-predicted 

schedulers can outperform conventional reactive policies in 

both capacity and fairness when channel conditions evolve on 

the order of seconds [8]. 

In order to develop systems that can adapt to variable 

environmental conditions in the real world [9, 10], it is of great 

importance to realistically model scenarios in simulation 

environments. For this purpose, the simulation frameworks 

used to evaluate such mechanisms at the system level are also 

important. Sionna, NVIDIA’s open-source physical layer 

simulation library, enables realistic link adaptation tests with 

both detailed channel modeling and PHY abstraction 

mechanisms [11]. This platform enables the generation of 

coverage maps at the physical layer [12], the simulation of 

channel performance based on the time-varying location of 

users, and the measurement of spectral efficiency based on 

performance key metrics such as path gain, Received Signal 

Strength (RSS) and Signal-to-Interference-plus-Noise Ratio 

(SINR). Furthermore, the effect of link adaptation on the system 

can be compared with the Shannon capacity to analyze how 

close the system is to the theoretical limits [13]. 

In contrast to many existing studies which focus on static 

users or consider the scheduling and link adaptation 
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mechanisms in isolation [14-17], in this work, the impact of link 

adaptation on scheduling algorithms using ray tracing 

simulations is systematically studied in terms of effective 

SINR, spectral efficiency and TBLER performance metrics in 

a dynamic network characterized by user mobility. The 

performance of OLLA when used with different scheduling 

algorithms is shown in comparison with the theoretical 

Shannon capacity. This demonstrates in detail how the impact 

of scheduling strategies affects not only the resource allocation 

efficiency but also the behavior of link adaptation in a dynamic 

wireless network. 

In the remainder of the study, section 2 presents the system 

model and simulation infrastructure, section 3 presents the 

simulation results and discussion, section 4 presents 

conclusions. 

II. SYSTEM MODEL AND METHODOLOGY 

This work meticulously examines the efficacy of schedulers 

responsible for link adaptation and resource allocation within 

the time-frequency domain in a multi-user cellular 

communication context.  The system is constructed utilizing the 

physical layer simulation architecture of the Sionna library and 

channel modeling supported by ray tracing [18]. The 

subsequent sections present the system components, physical 

layer abstraction, and simulation flow in a comprehensive 

manner. 

 

A. Channel Model and Physical Environment 

In this study, a single-cell wireless communication scenario is 

modeled, comprising one fixed-position base station and three 

mobile users traversing predefined linear trajectories. Each user 

is equipped with a single antenna, while the base station is 

configured with multiple antennas equal in number to the active 

users, enabling spatially distinct communication links. 

The simulation environment includes dynamic user locations 

over time to see how user mobility affects link quality. To 

ensure realistic propagation modeling, common construction 

materials listed in ITU-R P.2040-2 [19] were explicitly 

parameterized; relative permittivity and conductivity values for 

concrete, brick, metal, and ground surfaces were assigned. A 

high-fidelity ray tracing simulation records the environment's 

propagation characteristics and creates a spatial distribution 

map of SINR values across the coverage area. Figure 1 shows 

that the base station is marked with a red dot and the three users’ 

starting points are marked with orange dots. The black lines 

show the paths that the users can take to move in a straight line 

during the simulation. The color-coded background illustrates 

the SINR distribution in the environment, where lighter regions 

represent higher signal quality, and darker areas indicate zones 

of weaker reception due to obstruction and shadowing effects 

caused by surrounding buildings. 

This SINR map allows the simulation to extract the 

instantaneous link quality corresponding to the real-time user 

position at each transmission interval. These SINR values are 

used as input to link adaptation and scheduling algorithms to 

reflect realistic performance under mobility. 

 

 
Fig. 1. Map representation in Sionna 

 

In this study, SINR is calculated based on received signal 

power, interference and thermal noise as follows: 

 

 𝑆𝐼𝑁𝑅𝑖,𝑗
𝑘 =

𝑅𝑆𝑆𝑖,𝑗
𝑘

𝑁0+∑ 𝑅𝑆𝑆𝑖,𝑗
𝑘′

𝑘′≠𝑘

 (1) 

 

where 𝑅𝑆𝑆𝑖,𝑗
𝑘  represents the received signal power for the kth 

user at the ith subcarrier and jth time sample, and 𝑁0 represents 

the thermal noise power. 

The slot-wise SINR values are summarized across time-

frequency sources to calculate the effective SINR (𝑆𝐼𝑁𝑅𝑒𝑓𝑓) for 

each user. 𝑆𝐼𝑁𝑅𝑒𝑓𝑓  is a scalar quantity that models the average 

error behavior of coded symbols when they are subjected to 

different SINRs in the time, frequency or stream dimensions 

with a single SINR value in the AWGN channel. In this way, 

the BLER (Block Error Rate) observed under variable channel 

conditions can be reproduced under a constant channel model. 

Effective SINR is calculated as follows: 

 

 𝑆𝐼𝑁𝑅𝑒𝑓𝑓 = −𝛽 (
1

𝑁
∑ 𝑒

−𝑆𝐼𝑁𝑅𝑖
𝛽⁄𝑁

𝑖=1 ) (2) 

 

where 𝑆𝐼𝑁𝑅𝑖 is the instantaneous SINR value observed for 

each time-frequency source 𝑖 = 1, … , 𝑁, N is the total number 

of resource units (number of subcarriers times number of slots), 

and β is a positive parameter that depends on the MCS used. 

This metric is used in this study to summarize the SINR 

distributions of time-moving users under different scheduler 

algorithms (Round Robin, Best-CQI, Proportional Fair) into a 

single value. In particular, in the OLLA-based link adaptation 

process, these 𝑆𝐼𝑁𝑅𝑒𝑓𝑓  values are used as direct input for MCS 

selection. 

 

B. Time-Frequency Resource Structure 

The simulation utilizes a time-frequency grid including 128 

subcarriers and 12 OFDM symbols per slot, with a spacing of 

30 kHz for a slot duration of 0.5 ms.  User mobility is modeled 

throughout 200 slots by updating positions and reassessing 

channels, facilitating dynamic resource allocation according to 

real-time link quality. Each user can be allocated multiple 
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subcarriers per slot, determined by the scheduling rules and 

channel state information. Slot-specific SINR values are 

utilized to determine appropriate MCS levels and achievable 

data rates, creating a direct correlation between channel 

dynamics, resource allocation, and link adaptation. 

 

C. Link Adaptation 

Link adaptation is a mechanism that selects the appropriate 

Modulation and Coding Scheme (MCS) taking into account 

changing channel conditions, thus aiming for reliable 

communication and optimized spectral efficiency. In this study, 

we use OLLA, one of the link adaptation techniques, to steer 

the system below the targeted BLER value of 0.1. To achieve 

this, MCS decisions are based on HARQ feedback and update 

the channel estimates according to the offset values (μ) shown 

in (3). 

 

          𝜇𝑛+1 = 𝜇𝑛 + ∆𝑛 ; ∆𝑛= {
+𝛼, 𝑖𝑓 𝐻𝐴𝑅𝑄 = 𝑁𝐴𝐶𝐾 

−𝛽, 𝑖𝑓 𝐻𝐴𝑅𝑄 = 𝐴𝐶𝐾
 (3) 

 

In (3), α and β denote upward/downward step sizes, 

respectively. The ratio between α and β determines the average 

BLER that the OLLA converges to (4) [20]. Thanks to this 

control mechanism, OLLA adapts to changes in link quality 

over time and keeps the data transmission performance at the 

targeted level. 

  

 𝐵𝐿𝐸𝑅𝑡𝑎𝑟𝑔𝑒𝑡 =
𝛽

𝛼+𝛽
   (4) 

 

To highlight OLLA’s convergence behavior within the 

limited 200-slot window, the step pair has been fixed at α = 1 

dB and β = 0.11 dB, which corresponds to the 0.1 BLER target 

(=10%). With this relatively large upward step size, the offset 

reaches steady state in only a few HARQ rounds, allowing the 

simulation to demonstrate how each scheduler interacts with a 

fully settled OLLA loop rather than its transient phase. 

Although smaller steps would yield smoother steady-state 

ripple, they would require substantially more slots to converge 

and thus obscure the main scheduler-level effects we wish to 

compare. 

Within the scope of the study, spectral efficiency values were 

obtained by using the OLLA technique and compared with the 

Shannon capacity (5) of the system specified as theoretical 

limit. 

 

 𝐶 = 𝐵 log2(1 + 𝑆𝐼𝑁𝑅) (5) 

 

The system structure described above allowed for a 

comparative analysis of the impact of different scheduling 

algorithms on both link quality and link adaptation 

performance. In the next section, the technical structures of 

these scheduling algorithms are described in detail. 

 

 

 

D. Scheduling Algorithms 

Resource allocation is a critical element that directly affects 

the performance of wireless communication systems. For this 

reason, this study comparatively evaluates the performance of 

Round Robin (RR), Proportional Fair (PF) and Best-CQI 

scheduling algorithms that are frequently used in literature. 

Round Robin algorithm is an algorithm that does not care 

about the channel quality experienced by users, but only about 

fairness between users. In each slot, one user is allocated 

resources, and this procedure is repeated across all users. 

Best-CQI is an algorithm that allocates resources to the user 

with the highest channel quality in each slot. While this 

approach improves overall system efficiency, it negatively 

affects inter-user fairness by limiting access to resources for 

users with lower channel quality. 

The Proportional Fair (PF) scheduler provides a decision 

mechanism that balances channel gain and user fairness. In each 

slot n, the user with the highest relative gain is selected by 

calculating the ratio of the user’s estimated data rate 𝑅𝑘(𝑛) and 

the historical average data rate 𝑇𝑘(𝑛) as in (6). The decision rule 

is defined as follows: 

 

 𝑘∗(𝑛) = arg 𝑚𝑎𝑥𝑘 (
𝑅𝑘(𝑛)

𝑇𝑘(𝑛)
) (6) 

 

The average rates are updated over time with an exponentially 

weighted average as in (7): 

 

 𝑇𝑘(𝑛 + 1) = (1 −
1

𝜏
) 𝑇𝑘(𝑛 − 1) +

1

𝜏
𝑅𝑘(𝑛) (7) 

 

where 1 𝜏⁄ ∈ (0,1) is a constant factor [21].  This structure 

enables users who have been operating at low rates for an 

extended period to acquire priority in the future, as well as users 

who have good channel conditions to efficiently utilize system 

resources. 

The contents described in this section have been adapted to 

our network scenario with Sionna ray tracing simulations using 

the values specified in Table I. The next section presents the 

simulation results in detail. 
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TABLE I 

SIMULATION PARAMETERS 

 

Parameter Value 

Carrier frequency 3.5 GHz 

# of subcarriers 128 

Subcarrier spacing 30 kHz 

# of OFDM symbols 12 

# of slots 200 

Transmitter power 44 dBm  

# of BS 1 

# of BS antenna/user 1 

# of users 3 

Target BLER 10% 

𝛼  1 dB 

Schedulers RR, Best-CQI, PF 

Number of reflections 8 

III. RESULTS AND DISCUSSION 

A. Impact of Scheduling Algorithms on Effective SINR 

Figure 2, Figure 3, and Figure 4 show the time series of 

effective SINR values observed for each user under different 

scheduling algorithms. The Round Robin (Figure 2) exhibits a 

structure where users are assigned to slots sequentially 

regardless of channel quality. Therefore, users with low SINR 

(e.g., user 2) often consume system resources, which reduces 

the overall average SINR and prevents the system from 

efficiently utilizing the channel gain. 

According to the Effective SINR graphs obtained under the 

Best-CQI scheduling algorithm as shown in Figure 3, the 

determining effect of the physical location of the users on the 

channel quality is clearly visible. User 1, which has the 

advantage of Line-of-Sight (LoS) on the path closest to the 

transmitter, communicated with a constant and high effective 

SINR value in the range of 29-30 dB in almost all slots. While 

user 2 initially received no resource, it became active and 

prioritized by the algorithm when the channel conditions 

improved and the SINR level reached 29 dB. On the other hand, 

user 3 only received resources in a few slots as it followed a 

path with more signal blocking and severe shadowing, and the 

effective SINR in these slots remained between 18 dB-23 dB. 

These results show that the Best-CQI algorithm consistently 

prioritizes users with high SINR regions, thus increasing system 

capacity but reducing service continuity for users in poor 

channel conditions. 

 

 
(a) Effective SINR of user 1 

 

 
(b) Effective SINR of user 2 

 

 
(c) Effective SINR of user 3 

Fig. 2. Effective SINR values for RR Scheduler 
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(a) Effective SINR of user 1 

 

 
(b) Effective SINR of user 2 

 

 
(c) Effective SINR of user 3 

Fig. 3. Effective SINR values for Best-CQI Scheduler 

 

Figure 4 shows the results of the PF algorithm. According to 

the effective SINR graphs, user 1’s channel conditions remain 

constant over time, and it receives continuous resource 

allocation with high SINR values (~30 dB) due to the presence 

of a direct LoS along the user’s path. User 2’s SINR values 

fluctuate significantly over time, ranging from 5 dB to 30 dB. 

This indicates exposure to building shadowing and multipath 

effects during movement. User 3 mostly operates at high SINR 

levels; however, occasional drops indicate possible temporary 

movement along low SINR regions. Because the PF aims to 

provide every user with an opportunity, user 2 is allocated 

resources during periods of low SINR, which increases the 

variance of the SINR.  

 

 
(a) Effective SINR of user 1 

 

 
(b) Effective SINR of user 2 

 

 
(c) Effective SINR of user 3 

Fig. 4. Effective SINR values for PF Scheduler 

 

B. Impact of Scheduling Algorithms and OLLA on Achievable 

Spectral Efficiency 

Figure 5, Figure 6, and Figure 7 show the spectral efficiency 

values of the users over time. In each graph, the theoretical 

Shannon capacity curve is also presented to evaluate the 

closeness of the link adaptation in practice to the theoretical 

limit. Under the Round Robin algorithm (Figure 5), spectral 

efficiency fluctuates significantly and then shows a recovery 

over time with OLLA adaptation. Due to the sequential 

resource allocation to all users, low SINR users often transmit 

data with low MCS levels, which limits the overall system 

capacity. 
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(a) Spectral efficiency of user 1 

 

 
(b) Spectral efficiency of user 2 

 

 
(c) Spectral efficiency of user 3 

Fig. 5. Spectral efficiency values of users for RR Scheduler 

 

The spectral efficiency values of users under the Best-CQI 

scheduler (Figure 6) reflect their spatial differences, which are 

directly related to channel quality. Considering the map in 

Figure 1, it can be seen that user 1, which has the LoS 

advantage, benefits from resource allocation for the longest 

period of time and is served with high efficiency. User 2, 

initially characterized by poor channel conditions, is eventually 

seen to benefit from resource allocation, partially reaching 

higher SINR regions. On the other hand, user 3 travels through 

lower SINR regions along its path and is matched with 

resources in only a limited number of slots, achieving at most a 

short-term spectral efficiency of around 6 bps/Hz. 

 

 
(a) Spectral efficiency of user 1 

 

 
(b) Spectral efficiency of user 2 

 

 
(c) Spectral efficiency of user 3 

Fig. 6. Spectral efficiency values for Best-CQI Scheduler 

 

The results obtained under the Proportional Fair algorithm 

(Figure 7) show that the selected MCS levels, especially for 

users 1 and user 3, are very close to the system capacity. Despite 

the sudden changes in the channel conditions of user 2, the 

system seems to be stable thanks to the MCS adjustments made 

by the OLLA algorithm. 
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(a) Spectral efficiency of user 1 

 

 
(b) Spectral efficiency of user 2 

 

 
(c) Spectral efficiency of user 3 

Fig. 7. Spectral efficiency values for PF Scheduler 

 

C. Impact of Scheduling Algorithms and OLLA on Achieved 

TBLER 

Figure 8, Figure 9 and Figure 10 present the TBLER values 

obtained for each scheduler algorithm separately. In the case of 

the RR algorithm (Figure 8), TBLER values were observed to 

be well above the target at times, and OLLA’s balancing 

capacity was strained due to more frequent slot allocation, 

especially to users with low channel gain. 

 

 
(a) Achieved TBLER of user 1 

 

 
(b) Achieved TBLER of user 2 

 

 
(c) Achieved TBLER of user 3 

Fig. 8. Achieved TBLER values for RR scheduler 

 

The TBLER plots obtained under the Best-CQI scheduler 

show that the OLLA mechanism operates at values well below 

the target TBLER threshold of 0.1 for all users (Figure 9). In 

particular, the TBLER values for user 1 and user 2 are close to 

zero, while user 3, which receives a limited number of resource 

allocations, similarly achieves very low error rates. This shows 

that the system successfully maintains reliability despite 

aggressive MCS selection under high SINR conditions.  
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(a) Achieved TBLER of user 1 

 

 
(b) Achieved TBLER of user 2 

 

 
(c) Achieved TBLER of user 3 

Fig. 9. Achieved TBLER values for Best-CQI Scheduler 

 

Under the PF algorithm (Figure 10), the TBLER values 

fluctuate steadily around the 10% target, while OLLA reacts 

quickly and successfully maintains the target level. 

 

 
(a) Achieved TBLER of user 1 

 

 
(b) Achieved TBLER of user 2 

 

 
(c) Achieved TBLER of User 3 

Fig. 10. Achieved TBLER values of users for PF Scheduler 

 

Table II, Table III, and Table IV present the statistical analysis 

of SINR, spectral efficiency (SE), and Transport BLER 

(TBLER) for the RR, Best-CQI, and PF schedulers, 

respectively, reporting the mean, standard deviation, 95% 

confidence interval (CI), and sample count for each user. 

Results in Table II show that the time-fair RR scheduler gives 

user 1 and user 3 average SINR values of 29.1 dB and 27.0 dB, 

with corresponding spectral efficiencies of 5.18 and 5.40 

bps/Hz, respectively; however, the weaker user 2 transmits at 

only 20.6 dB SINR and 4.08 bps/Hz, pushing its TBLER up to 

13% and lowering the cell-wide averages. 
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TABLE II 

PERFORMANCE METRICS STATISTICAL ANALYSIS FOR ROUND ROBIN 

 

User Metric Mean Std. Dev. 95% CI Samples 

User 1 SINR [dB] 29.11 5.12 [27.86, 30.36]            67 

SE [bps/Hz] 5.18 1.35 [4.85, 5.50]              67 

TBLER 0.05 0.04 [0.04, 0.06]              67 

User 2 SINR [dB] 20.57 8.72 [18.44, 22.69]            67 

SE [bps/Hz] 4.08 1.97 [3.60, 4.56]              67 

TBLER 0.13 0.05 [0.12, 0.14]              67 

User 3 SINR [dB] 27.03 3.55 [26.16, 27.90]            66 

SE [bps/Hz] 5.40 0.90 [5.18, 5.62] 66 

TBLER 0.01 0.01 [0.00, 0.01]              66 

 

 

In Table III, the Best-CQI strategy maximizes capacity by 

focusing on the two strongest users: both user 1 and user 2 

operate at a constant 30 dB SINR with spectral efficiencies of 

about 5.5 bps/Hz and virtually zero TBLER, whereas user 3 is 

scheduled in just six slots and achieves 22.4 dB SINR together 

with 4.68 bps/Hz—an extreme illustration of the throughput–

fairness trade-off. 

Table IV places PF squarely between these extremes. It retains 

the 30 dB SINR and 5.50 bps/Hz performance of user 1 while 

still assigning 97 slots to user 2, raising its average SINR to 21.1 

dB and spectral efficiency to 4.13 bps/Hz; the cost is a moderate 

mean TBLER of 15 % for that user, only slightly above the 10 

% target. Altogether, PF alleviates the starvation observed with 

Best-CQI while avoiding the pronounced efficiency loss of RR, 

emerging as the most sustainable scheduler for balancing high 

aggregate capacity, acceptable error rates, and improved user 

fairness.

 

TABLE III 

PERFORMANCE METRICS STATISTICAL ANALYSIS FOR BEST-CQI 

 

User Metric Mean Std. Dev. 95% CI Samples 

User 1 SINR [dB] 30.00 0.00 [30.00, 30.00]            132 

SE [bps/Hz] 5.52 0.42 [5.45, 5.59]              132 

TBLER 0.00 0.00 [0.00, 0.00]              132 

User 2 SINR [dB] 30.00 0.00 [30.00, 30.00]            63 

SE [bps/Hz] 5.48 0.61 [5.33, 5.63]              63 

TBLER 0.00 0.00 [0.00, 0.00]              63 

User 3 SINR [dB] 22.39 2.232 [19.95, 24.82]            6 

SE [bps/Hz] 4.68 1.94 [2.65, 6.71] 6 

TBLER 0.00 0.00 [0.00, 0.00]              6 
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TABLE IV 

PERFORMANCE METRICS STATISTICAL ANALYSIS FOR PROPORTIONAL FAIR 

 

User Metric Mean Std. Dev. 95% CI Samples 

User 1 SINR [dB] 30.00 0.00 [30.00, 30.00]            93 

SE [bps/Hz] 5.50 0.50 [5.40, 5.60]              93 

TBLER 0.00 0.00 [0.00, 0.00]              93 

User 2 SINR [dB] 21.12 8.08 [19.50, 22.75]            97 

SE [bps/Hz] 4.13 1.85 [3.76, 4.50]              97 

TBLER 0.15 0.06 [0.13, 0.16]              97 

User 3 SINR [dB] 27.48 3.67 [26.66, 28.29]            81 

SE [bps/Hz] 5.18 1.33 [4.89, 5.48] 81 

TBLER 0.07 0.04 [0.06, 0.08]              81 

 

D. Impact of Scheduling Algorithms and OLLA on Subcarrier 

Utilization 

Maps showing the subcarrier and time-domain user allocation 

are given in Figure 11, Figure 12 and Figure 13. Under the RR 

algorithm (Figure 11), it can be observed that all three users 

appear on subcarriers with equal frequency; therefore, the 

spectrum is shared equally. However, it is clear from the 

previous metrics that this fairness is achieved at the expense of 

the overall efficiency of the system. 

The allocation map obtained with the Best-CQI scheduler 

(Figure 12) shows a serious disparity between users. The vast 

majority of subcarriers are consistently assigned to the user with 

the highest SINR, while other users are excluded from the 

system. 

In the case where the PF algorithm is applied (Figure 13), 

users receive resources in certain blocks over time, but in the 

long run, a balanced allocation profile is obtained where every 

user can benefit from the spectrum. This pattern demonstrates 

the successful implementation of a strategy that considers both 

channel quality utilization and user fairness. 

 

 
Fig. 11. Subcarrier utilization map for RR scheduler 

 

 
Fig. 12. Subcarrier utilization map for Best-CQI scheduler 

 

 
Fig. 13. Subcarrier utilization map for PF scheduler 

 

E. Discussion 

The results obtained from the simulation campaign highlight 

several critical insights regarding scheduler behavior and link 

adaptation under user mobility in a realistic wireless 

environment. 

First, the Proportional Fair (PF) scheduler demonstrated the 

most balanced performance across all metrics. It achieved good 

spectral efficiency for all users while maintaining the achieved 

TBLER close to the target value of 0.1 for all users. The fairness 

in resource allocation, coupled with adaptive MCS selection via 
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OLLA, allowed PF to closely track the effective SINR 

variations without significant degradation in error performance. 

In contrast, the Best-CQI scheduler, while achieving the 

highest peak spectral efficiency exceeding 5 bits/s/Hz, failed to 

provide reliable communication for users in low-SINR zones. 

The average TBLER graph for the Best-CQI algorithm shows 

that all users’ error rates are much below 0.1. The OLLA 

mechanism works well in high-quality channels. This 

achievement applies only to resource-assignable users. Users 

with inadequate channel conditions often do not receive 

resource allocation across several time steps, preventing 

TBLER measurements. The Best-CQI algorithm may ignore 

users with low SINRs and ignore user fairness over time by 

relying entirely on instantaneous channel quality. 

The Round Robin (RR) scheduler, on the other hand, ensured 

strict fairness in time-domain allocation but suffered from 

underutilization of spectral resources, especially in slots where 

users experienced poor channel conditions. Average spectral 

efficiency dropped below 2.5 bits/s/Hz, and OLLA had limited 

ability to compensate for the mismatch between allocation and 

instantaneous channel quality. 

These relative strengths and weaknesses become even more 

pronounced as the number of active users increases. In denser 

networks these tendencies intensify: PF still apportions 

resources in proportion to instantaneous–average rate ratios, so 

it continues to balance throughput and fairness even when many 

users compete for the channel. Best-CQI increasingly 

concentrates resources on the strongest links; overall capacity 

rises, but the performance gap between cell-center and cell-

edge users widens. RR maintains equal time sharing yet its 

spectral-efficiency penalty grows, because a larger share of 

slots is inevitably consumed by users in persistently low-SINR 

conditions. 

A fine-grained analysis of link adaptation performance was 

made possible by the use of efficient SINR mapping and slot-

level tracking of MCS decisions. The system’s spectral 

efficiency, especially under PF scheduling, closely matched the 

theoretical Shannon limit in all cases. The dynamic interaction 

between SINR variation, OLLA adaptation, and selection of 

appropriate scheduling algorithms emerged as the key factor 

driving performance trends. 

From an operational standpoint, the simulation findings 

translate into the following scheduler guidelines: In practical 

deployments the choice of scheduler should hinge on mobility 

patterns and service priorities: Proportional Fair is the best all-

round candidate for heterogeneous or highly mobile cells—its 

instantaneous-over-average metric tracks fast SINR 

fluctuations while still distributing resources equitably; Best-

CQI excels in capacity-driven hot spots where a few users enjoy 

consistently strong links (e.g., fixed-wireless access or small 

cells with clear LoS), maximizing aggregate throughput as long 

as relaxed edge-user QoS is acceptable or backed up by 

complementary layers; whereas coverage-oriented or strict-

QoS scenarios (public-safety networks, uniformly serviced 

sensor clusters) benefit from the predictable airtime of Round 

Robin or from PF operated with a tightened fairness weight, 

sacrificing some spectral efficiency to guarantee that every user 

maintains a minimum service level. 

Overall, this study looks at the connection between 

scheduling strategies and link adaptability under mobility in a 

detailed and quantitative way.  It highlights how crucial it is to 

build balanced algorithms so that the future generation of 

wireless systems can handle a lot of data and be very reliable. 

IV. CONCLUSION 

This study investigates the impact of scheduling strategies on 

link adaptation in multi-user cellular systems using metrics 

such as effective SINR, spectral efficiency, and TBLER. 

Results show that (i) channel-agnostic Round Robin ensures 

airtime fairness but lowers aggregate spectral efficiency by 

roughly 20% relative to the Shannon limit; (ii) Best-CQI 

maximizes throughput, achieving within 10% of the capacity 

bound, yet starves low-SINR users; and (iii) Proportional Fair 

offers the best overall trade-off, keeping BLER close to the 10 

% target while sustaining about 82% of the Shannon spectral-

efficiency benchmark. Consequently, PF is preferred for mixed-

mobility or QoS-balanced 6G deployments, whereas Best-CQI 

suits capacity-driven hot spots and RR fits coverage-oriented 

scenarios demanding strict airtime equity. 

Future work will extend the evaluation to larger user 

populations and investigate reinforcement-learning schedulers 

that leverage short-term mobility prediction to anticipate SINR 

variations several slots ahead, enabling proactive MCS and 

resource adjustments that reduce HARQ overhead and improve 

latency tolerance in high-speed 6G scenarios. 
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