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Abstract

In this paper, we investigate that under which conditions of the geodesic curvature of unit
speed curve γ that lies on S2

1 or H2, the curve α which is obtained by using γ , is a spherical
helix or slant helix in Minkowski 3-space.

1. Introduction

There are several studies in literature examining methodology to use spherical curves to construct some specialized curves. For example,
Izuyama and Takeuchi [7], defined a way to construct Bertrand curves from the spherical curve whose spherical evolute coincides with the
spherical Darboux image of the Bertrand curve. In addition to this paper, Encheva and Georgiev [4] showed a way to construct all Frenet
curves(κ > 0) by the following formula

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

where b is a constant number, a is a constant vector, γ is a unit speed curve on S2 with the Sabban f rame and k : I→ R is a function of
class C1. Moreover, they showed that the spherical curve γ is a circle if and only if the corresponding Frenet curves are cylindrical helices.
Previously, we have found some characterizations to construct spherical helices and slant helices in Euclidean space by using these methods
[2].
This paper is organized in the following way. In section 2 basic concepts of Minkowski 3-space R3

1 are given. In section 3, spherical helices
in R3

1 are discussed by indicating some examples. Similarly, in section 4, slant helices in R3
1 are examined.

2. Basic Concepts

Let us consider the Minkowski 3-space R3
1 with the Lorentzian inner product

〈x,y〉= x1y1 + x2y2− x3y3

where x = (x1,x2,x3) and y = (y1,y2,y3) ∈ R1
3. The pseudo-norm of a vector x is given by ‖x‖=

√
|〈x,x〉|.

In the space R3
1, the Lorentzian cross-product is defined as follows

x∧ y =

∣∣∣∣∣∣
e1 e2 −e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣= (x2y3− x3y2, x3y1− x1y3, x2y1− x1y2) .
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It’s clearly seen that the cross-product has the following properties [3],

(i) x∧ y =−(y∧ x)

(ii) 〈x∧ y,z〉= det(x,y,z)

(iii) x∧ (y∧ z) = 〈x,y〉z−〈x,z〉y
(iv) 〈x∧ y,x∧ y〉= (〈x,y〉)2−〈x,x〉〈y,y〉
(v) 〈x∧ y,x〉= 0 , 〈x∧ y,y〉= 0

where x,y,z ∈ R1
3.

A vector x ∈ R1
3 is called spacelike if 〈x,x〉> 0 or x = 0, timelike if 〈x,x〉< 0, lightlike if 〈x,x〉= 0 and x 6= 0 [8].

In [8], the hyperbolic plane (resp. pseudosphere) center q ∈ R3
1 and of radius r > 0 are defined by,

H2(r;q) =
{

x = (x1,x2,x3) ∈ R3
1 : 〈x−q,x−q〉=−r2,x3−q3 > 0

}
,

S2
1(r;q) =

{
(x1,x2,x3) ∈ R3

1 : 〈x−q,x−q〉= r2
}
.

When r = 1 and p is the origin, the hyperbolic plane is denoted by H2 and the pseudosphere is denoted by S2
1. ,

In this paper, when a helix lies on H2(r;q) or S2
1(r;q), we call it spherical curve.

Given a regular curve α (t) : I ⊂ R→ R3
1. We say that α is spacelike (resp. timelike, lightlike) at t if α ′ (t) is a spacelike (resp. timelike,

lightlike) vector. The curve α is called spacelike (resp. timelike, lightlike) if it is for any t ∈ I [8].
A non-lightlike curve α : I ⊂ R−→ E1

3 is said to be parametrized by the pseudo arclength parameter s, if | 〈α ′ (s) ,α ′ (s)〉 |= 1. In this case,
we call α is a unit speed curve.
For a unit speed non-lightlike curve α with a spacelike or timelike normal vector N (s), the Frenet formulae are given in [8]. It’s easy to
calculate the formulae for arbitrary speed non-lightlike curves as follows.
If α is a timelike curve, T ′

N′

B′

=

 0 κν 0
κν 0 τν

0 −τν 0

T
N
B

 (2.1)

If α is a spacelike curve with a spacelike normal vector N (t),T ′

N′

B′

=

 0 κν 0
−κν 0 τν

0 τν 0

T
N
B

 (2.2)

If α is a spacelike curve with a timelike normal vector N (t),T ′

N′

B′

=

 0 κν 0
κν 0 τν

0 τν 0

T
N
B

 (2.3)

where

κ =
‖α ′∧α ′′‖
‖α ′‖3 ,τ =

det (α ′,α ′′,α ′′′)

‖α ′∧α ′′‖2 ,ν =
√
|〈α ′,α ′〉|. (2.4)

In the formulae above, we denote unit tangent vector with T (t), unit binormal vector with B(t), unit normal vector with N (t).
A regular timelike or spacelike curve α is a helix, if τ/κ is a constant function.
For a unit speed curve α in R3

1, slant helix characterization is given in [1]. Also, some characterizations of Lorentzian unit speed curves
which lies on H2 or S2

1 were investigated in [9, 10, 11, 12]. With the help of these papers, we easily have the Lemmas for arbitrary speed
curves below.

Lemma 2.1. Let α be a timelike curve in R3
1. Then, α is a slant helix if and only if either one of the next two functions

κ2

ν
(
τ2−κ2

)3/2

(
τ

κ

)′
or

κ2

ν
(
κ2− τ2

)3/2

(
τ

κ

)′
(2.5)

is constant everywhere τ2−κ2 does not vanish.

Lemma 2.2. Let α be a spacelike curve in R3
1 with a spacelike normal vector. Then, α is a slant helix if and only if either one of the next

two functions

κ2

ν
(
τ2−κ2

)3/2

(
τ

κ

)′
or

κ2

ν
(
κ2− τ2

)3/2

(
τ

κ

)′
(2.6)

is constant everywhere τ2−κ2 does not vanish.
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Lemma 2.3. Let α be a spacelike curve in R3
1 with a timelike normal vector. Then, α is a slant helix if and only if the function

κ2

ν
(
τ2 +κ2

)3/2

(
τ

κ

)′
(2.7)

is constant.

Lemma 2.4. Let α be a spacelike curve in R3
1 with a spacelike normal vector. Image of α lies on the pseudosphere (resp. hyperbolic plane)

of radius r and center q if and only if

1
κ2 −

(
1

ντ

(
1
κ

)′)2

=±r2(resp.) (2.8)

where r > 0 ∈ R,κ 6= 0,τ 6= 0.

Lemma 2.5. Let α be a timelike curve in R3
1. Image of α lies on the pseudosphere of radius r and center q if and only if

1
κ2 +

(
1

ντ

(
1
κ

)′)2

= r2 (2.9)

where r > 0 ∈ R,κ 6= 0,τ 6= 0.

Lemma 2.6. Let α be a spacelike curve in R3
1 with a timelike normal vector. Image of α lies on the hyperbolic plane of radius r and center

q if and only if

−1
κ2 +

(
1

ντ

(
1
κ

)′)2

=−r2 (2.10)

where r > 0 ∈ R,κ 6= 0,τ 6= 0.

Let γ be a non-lightlike unit speed spherical curve with the arc-length parameter s and denote γ
′
= t where γ

′
= dγ/ds. If we set a vector

p = γ ∧ t, by definition we have an orthonormal frame {γ, t, p}. This frame is called the pseudo-Sabban frame of γ [5, 6]. Thus, we have the
following Lemma .

Lemma 2.7. Let γ(s) be a unit speed spherical curve in R3
1, then

(i) If γ is a timelike curve on S2
1 then,

γ
′
= t

t
′
= kg p+ γ

p
′
= kgt

(2.11)

(ii) If γ is a spacelike curve on S2
1, then

γ
′
= t

t
′
=−kg p− γ

p
′
=−kgt

(2.12)

(iii) If γ is a spacelike curve on H2, then

γ
′
= t

t
′
= kg p+ γ

p
′
=−kgt

(2.13)

where kg = det
(

γ, t, t
′
)

the geodesic curvature of curve γ .

3. Spherical helices on S2
1(r; p) and H2(r; p)

Let us take the curve

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a (3.1)

at [4]. If we make the neccessary calculations, we have

α
′
(s) = be

∫
k(s)dsγ (s) ,

α
′′
(s) = be

∫
k(s)ds

(
k (s)γ (s)+ γ

′
(s)
)
,

α
′′′
(s) = be

∫
k(s)ds

((
k2 (s)+ k

′
(s)
)

γ (s)+2k (s)γ
′
(s)+ γ

′′
(s)
)
.

(3.2)

If we calculate κ , τ , and ν of the curve α by using the equations at (2.4) and (3.2), we find

κ (s) = 1
be
∫

k(s)ds ,

τ (s) = kg(s)
be
∫

k(s)ds ,

ν (s) = be
∫

k(s)ds.

(3.3)
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It’s easy to see

〈α ′ (s) ,α ′ (s)〉= b2e2
∫

k(s)ds 〈γ (s) ,γ (s)〉 ,
T (s) = γ (s) ,
T ′ (s) = t (s) .

(3.4)

So, we can say if γ is a unit speed spacelike curve which lies on S2
1, then α is a spacelike curve with a spacelike normal vector N.

If γ is a unit speed spacelike curve which lies on H2, then α is a timelike curve with a spacelike normal vector N.
If γ is a unit speed timelike curve which lies on S2

1 then α is a spacelike curve with a timelike normal vector N.
Now, we want to show, under which circumstances the curve α at equation (3.1) is a spherical helix on S2

1(r; p).

Theorem 3.1. If the curve γ is a unit speed spacelike curve with a constant geodesic curvature, which lies on S2
1, the curve α defined

by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function
k (s) = kgtanh

[(
kg
)
(s− c)

]
where b,c,d ∈ R .

Proof. From (3.2), (3.3), and (3.4), we know the curve

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

is a spacelike curve with a spacelike normal vector N(s). So we need to use (2.8). Let’s take the derivate of (2.8) with respect to s. Then, we
have  1

ν

[
1

ντ

(
1
κ

)′]′
− τ

κ

(s) = 0

By putting (3.3) in this equation, we have (
1

be
∫

kds

[
1
kg

(
be
∫

kds
)′]′
− kg

)
(s) = 0

k
′
(s)+ k2 (s) = kg

2.

If we solve this differential equation, we have

k (s) = kgtanh
[(

kg
)
(s− c)

]
Conversely, if we take k (s) = kgtanh

[(
kg
)
(s− c)

]
in (14), then∫

k (s)ds =
∫

kgtanh
[(

kg
)
(s− c)

]
ds.

Let u = kg (s− c) = kgs− kgc then kgds = du, by using these equations

∫
k (s)ds =

∫
tanhudu

= lncoshu+ lnd

= ln
[
d cosh

(
kg (s− c)

)]
we have

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

= b
∫

eln [d cosh(kg(s−c))]
γ (s)ds+a

= b
∫

d cosh
(
kg (s− c)

)
γ (s)ds+a

where c,d ∈ R.
Now, we must show that curve α is spherical. If we use (2.8) to do it, we have

r2 =

( 1
κ2 −

(
1

ντ

(
1
κ

)′))2
(s)

=

(
b2e2

∫
kds

(
1− k2

k2
g

))
(s)

= b2d2 cosh2 (kg (s− c)
)( 1

cosh2 (kg (s− c)
))

= b2d2.

Therefore, it can be said that the curve α lies on S2
1 which has a radius |bd|.



Fundamental Journal of Mathematics and Applications 53

Now, we can give another theorem.

Theorem 3.2. If the curve γ is a unit speed spacelike curve with a constant geodesic curvature, which lies on H2, the curve α defined
by (3.1) is a spherical helix which lies on the pseudosphere of the radius |bd| and of the center origin if and only if the function
k (s) = kgtan

[(
kg
)
(s− c)

]
where b,c,d ∈ R.

Proof. By using (2.9) instead of (2.8) in Theorem 3.1, the proof is similar.

Theorem 3.3. If the curve γ is a unit speed timelike curve with a constant geodesic curvature, which lies on S2
1, the curve α defined

by (3.1) is a spherical helix which lies on the hyperbolic plane of the radius |bd| and of the center origin if and only if the function
k (s) = kgtanh

[(
kg
)
(s− c)

]
where b,c,d ∈ R.

Proof. By using (2.10) instead of (2.8) in Theorem 3.1, the proof is similar.

Example 3.4. Let’s take γ (s) =
{√

2cos
(

s/
√

2
)
,
√

2sin
(

s/
√

2
)
,1
}

, we know that γ is a spacelike curve on S2
1 with the geodesic curvature

√
2. Then due to Theorem 3.1,

k (s) = kgtanh
[(

kg
)
(s− c)

]
and

α (s) = b
∫

d cosh
(
kg (s− c)

)
γ (s)ds+a

where b,c,d ∈ R. If we take b = 2,c = 0,d = 1; then, we have

α1 (s) = 2cosh
(

s/
√

2
)

sin
(

s/
√

2
)
+2cos

(
s/
√

2
)

sinh
(

s/
√

2
)

α2 (s) =−2cos
(

s/
√

2
)

cosh
(

s/
√

2
)
−2sin

(
s/
√

2
)

sinh
(

s/
√

2
)

α3 (s) = 2
√

2sinh
(

s/
√

2
)

where α (s) = (α1 (s) ,α2 (s) ,α3 (s)) and a = (0,0,0)

Example 3.5. Let’s take γ (s) =
{

cos(s) ,sin(s) ,
√

2
}

, we know that γ is a spacelike curve on H2 with the geodesic curvature
√

2. Then,
due to Theorem 3.2,

k (s) = kgtan
[(

kg
)
(s− c)

]
and

α (s) = b
∫

d cos
(
kg (s− c)

)
γ (s)ds+a

where b,c,d ∈ R. If we take b = 2,c = 0,d = 1; then, we have

α1 (s) =−2cos
(√

2s
)

sin(s)+2
√

2cos(s)sin
(√

2s
)

α2 (s) = 2cos(s)cos
(√

2s
)
+2
√

2sin(s)sin
(√

2s
)

α3 (s) = 2sin
(√

2s
)

where α (s) = (α1 (s) ,α2 (s) ,α3 (s)) and a = (0,0,0)

Example 3.6. Let’s take γ (s) =
{

1√
3

cosh
(√

3s
)
,
√

2√
3
, 1√

3
sinh

(√
3s
)}

, we know that γ is a timelike curve on S2
1 with the geodesic curvature

√
2. Then, due to Theorem 3.3,

k (s) = kgtanh
[(

kg
)
(s− c)

]
and

α (s) = b
∫

d cosh
(
kg (s− c)

)
γ (s)ds+a

where b,c,d ∈ R. If we take b = 2,c = 0,d = 1; then, we have

α1 (s) =−2
√

2
3 cosh

(√
3s
)

sinh
(√

2s
)
+2cosh

(√
2s
)

sinh
(√

3s
)

α2 (s) =
2sinh(

√
2s)√

3

α3 (s) = 2cosh
(√

2s
)

cosh
(√

3s
)
−2
√

2
3 sinh

(√
2s
)

sinh
(√

3s
)

where α (s) = (α1 (s) ,α2 (s) ,α3 (s)) and a = (0,0,0)
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Figure 3.1: Spherical Helices (Resp. Example 1,2, and 3)

4. Constructing slant helices from unit speed spherical curves

In this section, we want to give some characterizations about slant helices.

Theorem 4.1. Let γ (s) be a unit speed spacelike curve on S2
1; b,m,n be constant numbers; and a be a constant vector. The geodesic

curvature of γ (s) satisfies

kg
2 (s) =

(ms+n)2

1+(ms+n)2

if and only if

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

is a spacelike slant helix with a spacelike normal vector.

Proof. Let, for γ

kg
2 (s) =

(ms+n)2

1+(ms+n)2 . (4.1)

From (3.2), (3.3), and (3.4), we know α is a spacelike curve with a spacelike normal vector N. So; from (2.6), the geodesic curvature of the
spherical image of the principal normal indicatrix of α is as follows

σ(s) =

(
κ2

ν
(
κ2− τ2

)3/2

(
τ

κ

)′)
(s)

=

 1
ν2

ν

(
1

ν2 −
kg

2

ν2

)3/2
kg
′

(s) .

So, we have

σ(s) =
kg
′
(s)(

1− kg
2 (s)

)3/2
(4.2)

Now, let’s take u(s) = ms+n, then we have (4.1)

kg
2 (s) =

u2 (s)
1+u2 (s)

. (4.3)

If we take the derivates of the both sides of (4.3) with respect to s, we have

2kg(s)kg
′
(s) =

2uu
′ (

1+u2)−(2uu
′
)

u2(
1+u2

)2

(s)

kg(s)kg
′
(s) =

(
uu
′(

1+u2
)2

)
(s)

kg
′
(s) =

((
uu
′(

1+u2
)2

)(
ε

√
1+u2

u2

))
(s) (4.4)
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where ε =±1. Putting (4.3) and (4.4) in (4.3), we have

σ(s) =
kg
′
(s)(

1− kg
2 (s)

)3/2

=

(
ε

√
1+u2uu

′

|u|
(
1+u2

)2

(
1+u2

)3/2
)
(s)

= ε
ms+n
|ms+n|

m

= εm

which is constant.
Conversely, let α (s) be a spacelike slant helix, then the geodesic curvature of the spherical image of the principal normal indicatrix of α is a
constant function. So, we can take

σ(s) =

(
κ2

ν
(
κ2− τ2

)3/2

(
τ

κ

)′)
(s) = m

where m ∈ R. Therefore, from (4.2)

m =

(
κ2

ν
(
κ2− τ2

)3/2

(
τ

κ

)′)
(s)

=
kg
′
(s)(

1− kg
2 (s)

)3/2

If we solve this differential equation, we have

kg (s)√
1− kg

2 (s)
= ms+n

where n ∈ R. Then,

kg
2 (s) =

(ms+n)2

1+(ms+n)2 .

Theorem 4.2. Let γ (s) be a unit speed spacelike curve on H2; b,m,n be constant numbers; and a be a constant vector. The geodesic
curvature of γ (s) satisfies

kg
2 (s) =

(ms+n)2

1+(ms+n)2

if and only if

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

is a timelike slant helix with a spacelike normal vector.

Proof. By using (2.5) instead of (2.6) in Theorem 4.1, the proof is similar.

Theorem 4.3. Let γ (s) be a unit speed timelike curve on S2
1; b,m,n be constant numbers; and a be a constant vector. The geodesic curvature

of γ (s) satisfies

kg
2 (s) =

(ms+n)2

1− (ms+n)2

if and only if

α (s) = b
∫

e
∫

k(s)ds
γ (s)ds+a

is a spacelike slant helix with a timelike normal vector.

Proof. By using (2.7) instead of (2.6) in Theorem 4.1, the proof is similar.
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